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Identification of differentially expressed and methylated genes and 
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Background: Age-related macular degeneration (AMD) is the leading cause of blindness for people over 
50 years old worldwide. The purpose of this study was to identify differentially expressed and methylated 
genes (DEMGs) and construct a co-expression network for AMD.
Methods: Microarray expression (GSE29801 dataset) and DNA methylation (GSE102952 dataset) profiles 
were retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) 
and differentially methylated genes (DMGs) were analyzed between AMD retina tissues and normal retina 
tissues. A protein-protein interaction (PPI) network was constructed and hub genes were screened, followed by 
functional enrichment analysis. Then, weighted gene co-expression network analysis (WGCNA) was conducted. 
The ARPE‐19 cells were maintained in a hypoxic state to construct an AMD cellular model. Enzyme-linked 
immunosorbent assay (ELISA) and the real-time qPCR (RT-qPCR) were performed for validation.
Results: After overlapping, 16 hypermethylated and down-regulated genes and 15 hypomethylated and up-
regulated genes were identified for extramacular AMD. A total of 4 hub genes (LMNB2, EMD, HLA-A, and 
HLA-B) were screened for AMD in the extramacular retina. Furthermore, 13 hypermethylated and down-
regulated genes and 31 hypomethylated and up-regulated genes were identified for macular AMD. Among 
them, 11 hub genes (HLA-A, HLA-B, HLA-DRB1, IFITM3, SAT1, MAOB, CHRDL1, FSTL1, HSPA1A, AR, 
and YAP1) were considered hub genes. The DEMGs were distinctly related with immune-related biological 
processes and pathways. A total of 16 co-expression modules were constructed, of which 2 significantly 
correlated with AMD. The genes in the 2 modules were involved in various crucial signaling pathways. The 
HIF1α and VEGF levels were significantly up-regulated in cell supernatant of hypoxia-induced ARPE‐19 
cells, indicating that the AMD cellular model was successfully established. Hub genes including CHRDL, 
FSTL1, and IFITM3 displayed significantly higher expression in hypoxia-induced ARPE‐19 cells compared 
to normal cells. Greater up-regulation of CHRDL, FSTL1, and IFITM3 expression was found in hypoxia-
induced ARPE‐19 cells than in normal cells.
Conclusions: These findings offered several key DEMGs and pathways for AMD and constructed AMD-
related co-expression modules, deepening understanding of the pathogenesis of AMD.
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Introduction

With the aging populat ion,  age-re lated macular 
degeneration (AMD) is the main cause of blindness 
worldwide for people over 50 years old (1). The most 
frequent AMD phenotype exhibits a feature of an increased 
number and diameter of extracellular retina deposits called 
drusen, pigmentary irregularity, progressive atrophy of the 
retinal pigmented epithelium (RPE) and retina, as well as a 
graded loss in visual acuity (2). It is estimated that by 2040, 
the number of AMD patients worldwide will increase to 
288 million (3). However, the current treatment of AMD 
is limited. A thorough understanding of its molecular 
mechanisms may help promote the progression of effective 
therapies against AMD.

Various risk factors such as genetic factors as well as 
epigenetic modification are the cause of AMD (4). With 
the advance of microarray or RNA sequencing technology, 
gene expression profiling has been used to identify genes 
and pathways related to the pathogenesis of AMD, which 
helps to uncover its underlying mechanism. More than  
50 genetic susceptibility loci have been identified, especially 
the CFH and ARMS2 genes (5). In addition to genetic risk 
factors, environmental factors such as smoking contribute 
to the progression of AMD. It has been thought that 
environmental factors could accelerate the accumulation of 
epigenetic changes over time (6). Nevertheless, the exact 
pathogenesis of AMD caused by DNA methylation is still 
unclear.

Epigenetic modification is a key factor of AMD (7),  
which is  composed of DNA methylation, histone 
modification, and chromatin remodeling. The DNA 
methylation may mediate gene transcription and cell 
differentiation in association with gene silencing while 
demethylation induces gene transcription in AMD (8). 
Increasing evidence suggests that DNA methylation is 
involved in complex biological processes such as aging, 
inflammation, and apoptosis in AMD (9). Extensive 
research has been conducted on epigenetics for AMD. For 
example, a previous study constructed genome-wide DNA 
methylation profiles of retinal tissues and blood samples 
from AMD patients (10). Another study identified 2 novel 
DMGs, SKI and GTF2H4, for AMD using genome-wide 
methylation analysis (11). Besides, Xu et al. identified five 
hub genes might serve as aberrant methylation-based 
candidate biomarkers for AMD, including NOP56, EZR, 
IGF2, SLC2A1, CDKN1C (12). Weighted gene co-
expression network analysis (WGCNA) has been widely 
used to explore modules and hub genes related to clinical 

features for various diseases (13,14). Nevertheless, little 
is known about the WGCNA co-expression network 
characteristics in AMD.

The Gene Expression Omnibus (GEO) database is a 
gene expression database created and maintained by the 
National Center for Biotechnology Information (NCBI). 
It was founded in 2000 and contains high-throughput 
gene expression data submitted by research institutions 
around the world. Based on the gene expression profiles, 
a systematic network can help identify driver genes or 
disease-related pathways. Herein, this study aimed to 
identify a subset of differentially methylated genes (DMGs) 
and differentially expressed genes (DEGs) that could 
regulate the biological processes and pathways involved 
in AMD and to construct an AMD-related co-expression 
network based on WGCNA algorithm. The expression 
of these hub genes was further verified by RT-qPCR. Our 
research could provide new targets for AMD in the future 
therapeutic intervention.

We present the following article in accordance with 
the STREGA reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-21-7043/rc).

Methods

Data acquisition

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). Microarray expression 
(GSE29801 dataset) and DNA methylation (GSE102952 
dataset) profiles were retrieved from the GEO (http://www.
ncbi.nlm.nih.gov/geo/) database. The GSE29801 dataset 
was based on the GPL4133 platform, composed of 27 
normal extramacular retina samples, 31 AMD extramacular 
retina samples, 28 normal macular retina samples, and 32 
AMD macular retina samples (2). The GSE102952 dataset 
included 9 control retina tissues and 9 AMD retina tissues 
on the GPL13534 platform (12,15).

Data preprocessing

The microarray expression profile data were normalized by 
quartile using the normalize Between Arrays function of the 
limma package in R, which were then transformed into log2 
to obtain the gene expression matrix of the samples (16,17). 
The Infinium Methylation 450K was used to profile. The 
standard index of DNA methylation at any specific CpG site 
is β = M/(M + U + α), where M and U are methylated and 
unmethylated signal intensities and α is an arbitrary offset 

https://atm.amegroups.com/article/view/10.21037/atm-21-7043/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-7043/rc
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/


Annals of Translational Medicine, Vol 10, No 4 February 2022 Page 3 of 19

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(4):223 | https://dx.doi.org/10.21037/atm-21-7043

(usually 100) intended to stabilize β values where fluorescent 
intensities are low. Absolute methylation values (β-values) 
were extracted with the GenomeStudio™ software and then 
subjected to detailed analysis (18). The β value of Illumina 
450K DNA methylation was normalized using the beta-
function of the wateRmelon package in R (19).

Principal component analysis (PCA)

PCA of samples was presented for removal of outlier 
samples, and to identify samples with high similarity. 
Samples with one-way analysis of variance (ANOVA) 
P≤0.05 were screened out. Furthermore, the correlation 
coefficients of gene expression levels between samples 
were calculated. The correlation coefficients can reflect the 
degree of similarity between samples.

Differential expression and methylation analysis

Differential expression and methylation analysis was 
presented using the limma package in R (https://www.
rdocumentation.org/packages/limma/versions/3.28.14). 
The cutoff value was set as |fold change (FC)| >1.2 and 
P<0.05. Genes with FC >1.2 and P<0.05 were highly 
expressed in AMD while genes with FC <−1.2 and P<0.05 
were lowly expressed in AMD. Meanwhile, genes with FC 
>1.2 and P<0.05 were hypermethylated in AMD, while 
genes with FC <−1.2 and P<0.05 were hypomethylated in 
AMD. Then, hypermethylated and down-regulated and 
hypomethylated and up-regulated genes were separately 
identified by intersection of genes with high methylation 
and low expression as well as genes with low methylation 
and high expression.

Protein-protein interaction (PPI) network

The interactions between proteins were predicted using 
the Search Tool for the Retrieval of Interacting Genes 
(STRING; version 11.0) online database (20), with the 
threshold of required confidence (combined score) >0.7. A 
PPI network was visualized using the Cytoscape software 
(version 3.5.1; https://cytoscape.org/) (21). Hub genes with 
the highest degree were identified.

Function annotation analysis

Function annotation analysis of hypermethylated and 

down-regulated and hypomethylated and up-regulated hub 
genes or genes in the AMD-related modules was carried 
out using the Gene Ontology (GO) database (http://www.
geneontology.org) (22) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) PATHWAY database (http://www.
genome.ad.jp/kegg/) (23). The GO terms were composed 
of biological process (BP), molecular function (MF), and 
cellular component (CC). Fisher’s exact test was used 
to determine which specific functional items were most 
closely related to the list of the above genes. The P value 
corresponding to each term was calculated. The smaller the 
P-value, the greater the connection between the terms and 
the above genes, indicating that most of the above genes 
had the function corresponding to the terms.

External validation

Gene expression profiles of AMD and normal samples 
were downloaded from the E-MTAB-7183 dataset. The 
expression of hypomethylated and up-regulated hub genes 
and hypermethylated and down-regulated hub genes was 
externally validated in AMD and normal samples. The 
differences in their expression between AMD and normal 
samples were compared by Student’s t-test.

WGCNA

The WGCNA package in R was utilized to construct a 
co-expression network (24). Following construction of a 
Pearson correlation matrix, the weighted adjacency matrix 
was presented by combining the Pearson correlation 
between genes and soft thresholding parameters (β). The 
β value can amplify the correlation between genes by 
enhancing high correlation and weakening low correlation. 
In this study, β value was set to 4 to ensure a scale-free 
co-expression network. After the adjacency relation was 
converted into a topological overlap matrix (TOM), 
hierarchical clustering was carried out to identify modules 
within similar genes (25). Then, genes with similar 
expression patterns were clustered into the same module. 
Furthermore, the average linkage hierarchical clustering was 
presented in line with the TOM dissimilarity measure (13).  
The minimum number of genes was set to 30. Next, the 
dendrogram was constructed. Following evaluation of the 
dissimilarity of module eigengenes (MEs), a cut line was 
determined for the module tree, and similar modules were 
merged.

https://www.rdocumentation.org/packages/limma/versions/3.28.14
https://www.rdocumentation.org/packages/limma/versions/3.28.14
http://www.geneontology.org
http://www.geneontology.org
http://www.genome.ad.jp/kegg/
http://www.genome.ad.jp/kegg/
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Construction of co-expression modules

Co-expression modules were constructed by calculating the 
correlation between MEs and clinical traits. The P value 
of each gene was converted into log10, which was defined 
as gene significance (GS). The median GS of all genes in 
each module was defined as module significance (MS). The 
module with high MS value was considered correlated with 
clinical traits.

Cell culture and treatment

Human ARPE‐19 cells (American Type Culture Collection; 
ATCC, Manassas, VA, USA) were grown in Dulbecco’s 
modified Eagle medium (DMEM) plus 10% fetal bovine 
serum (FBS), glutamine, and 50 U penicillin/50 mg  
streptomycin.  To construct  an AMD cel l  model , 
ARPE‐19 cells were maintained in a 95% N2 and 5% CO2 
microenvironment. Normal ARPE‐19 cells were maintained 
in a 95% O2 and 5% CO2 microenvironment.

Enzyme-linked immunosorbent assay

The cell culture medium was collected. At 4 ℃, the 
culture medium was centrifuged at 5,000 g for 15 min. 
The supernatant was then harvested. The levels of HIF-
1α (ab227898; Abcam, Cambridge, MA, USA) and VEGF 
(ab222510; Abcam, USA) in the cell supernatant were 
detected according to the kit instructions.

Real-time quantitative polymerase chain reaction (qPCR)

Total RNA was extracted from ARPE‐19 cells by TRIzol 
reagent. The concentration, purity, and integrity of the 
RNA were detected by a micro-spectrophotometer. The 
complementary DNA (cDNA) was synthesized according 
to the instructions of the reverse transcription kit. Using 
cDNA as a template, by fluorescence qPCR detection kit, 
amplification was carried out on the PCR instrument. The 
reaction conditions were as follows: pre-denaturation at 
94 ℃ for 3 min; denaturation at 94 ℃ for 10 s, annealing 
at 60 ℃ for 30 s, and extension at 72 ℃ for 30 s, for a 
total of 38 cycles; after the end of the cycle, extension was 
performed at 72 ℃ for 5 min. The primer sequences were 
as follows: FSTL1: 5'-GAGGGCAAGAGTACACCA-3' 
( F ) ,  5 ' - TA C G G C ATA G A C G A C A G C - 3 '  ( R ) ; 
CHRDL1:  5 ' -CCGAGGACGAGGAAGAAGA-3' 
( F ) ,  5 ' - A G T T G T C C C AT T G TA C T C G - 3 '  ( R ) ; 

IFITM3: 5'-ATAGCATTCGCCTACTCCG-3' (F), 
5'-ACAGACAAAGCCACTGACG-3' (R); GAPDH: 
5 ' -CAAGGTCATCCATGACAACTTTG-3 '  (F ) , 
5'-GTCCACCACCCTGTTGCTGTAG-3' (R). The 
relative expression of FSTL1, CHRDL1, and IFITM3 
was quantified with 2−ΔΔCt method, with glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) as an internal control.

Western blot

Total protein was extracted from ARPE‐19 cells using 
lysis (Beyotime, Shanghai, China). Above protein was 
separated by 10% sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis (SDS‐PAGE; Invitrogen, Carlsbad, 
CA, USA) and transferred onto polyvinylidene fluoride 
(PVDF) membrane (Invitrogen, USA). Afterwards, the 
membrane was incubated with primary antibodies against 
FSTL1 (1/1,000; ab223287; Abcam, USA), CHRDL1 
(1/1,000; ab103369; Abcam, USA), IFITM3 (1/1,000; 
ab109429; Abcam, USA), and GAPDH (1/1,000; ab8245; 
Abcam, USA), followed by being incubation with 
horseradish peroxidase (HRP)‐conjugated goat anti‐rabbit 
IgG secondary antibodies (1/10,000; ab7090; Abcam, 
USA). The protein bands were visualized using enhanced 
chemiluminescent (ECL) kit.

Statistical analysis

Statistical analysis was presented by R language and 
GraphPad Prism software (GraphPad Software, La Jolla, CA, 
USA). Data were displayed as the mean ± standard deviation. 
The difference between 2 groups was evaluated with 
Student’s t-test, while multiple comparisons were carried out 
by ANOVA. A P value <0.05 indicated statistical significance.

Results

DEGs of extramacular and macular AMD

Microarray expression profiles concerning 27 normal 
extramacular retina samples, 31 AMD extramacular retina 
samples, 28 normal macular retina samples, and 32 AMD 
macular retina samples from the GSE29801 dataset were 
used for this study. After PCA, there were no outlier samples 
(Figure 1A). There was a distinctly high correlation between 
different samples (Figure 1B). The expression profiles were 
normalized, as shown in Figure 1C,1D. Under the threshold 
of |FC| >1.2 and P<0.05, 896 genes were differentially 
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expressed in AMD extramacular retina samples compared 
to normal extramacular retina samples (Figure 2A). 
Furthermore, 1,161 DEGs were screened between AMD 
macular retina tissues and normal macular retina tissues 
(Figure 2B). A volcano diagram showed that there were 490 
up-regulated genes and 406 down-regulated genes between 
AMD extramacular retina samples and normal extramacular 
retina samples (Figure 2C). The top 10 DEG with the 

highest |FC| were visualized, including LOC100128239, 
SERPINC1, LOC729684, HSPH1, HSPA1A, CP, FGFBP2, 
RGS1, NPVF, and RBM3. Moreover, 766 genes were up-
regulated and 395 genes were down-regulated in AMD 
macular retina tissues compared to normal macular retina 
tissues (Figure 2D). The top 10 DEG with the highest |FC| 
included MTHFD2, CHAC1, ATF3, LOC64521, GDEP, CP, 
C3, RGS1, SERPINA3, and NPVF.
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Figure 1 Data filtering and normalization for GSE29801 dataset. (A) PCA of normal extramacular retina samples, AMD extramacular retina 
samples, normal macular retina samples and AMD macular retina samples. (B) Heatmap showing the correlation between different samples. 
The color depth is proportional to the correlation coefficient. (C,D) Pre-normalization and post-normalization of different samples. PCA, 
principal component analysis; AMD, age-related macular degeneration.
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DMGs for extramacular and macular AMD

Methylation profile data including 9 control retina 
tissues and 9 AMD retina tissues were retrieved from the 

GSE102952 dataset. No outlier samples were detected 

according to PCA results (Figure 3A). A high correlation 

between different samples was found, as shown in the heat 
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Figure 2 Screening DEGs for extramacular and macular AMD. Heat map showing all DEGs between AMD extramacular retina samples 
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map (Figure 3B). After screening with the threshold of 
|FC| >1.2 and P<0.05, 1,345 hypermethylated and 1,086 
hypomethylated genes were determined for AMD retina 

tissues (Figure 3C). Heat maps depicted the differences in 
methylation of all DMGs between AMD retina tissues and 
control retina tissues (Figure 3D).
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Identification of hypermethylated and down-regulated and 
hypomethylated and up-regulated hub genes for AMD 
extramacular retina

After interaction, 16 hypermethylated and down-regulated 
genes (Figure 4A) and 15 hypomethylated and up-regulated 
genes (Figure 4B) were identified for AMD extramacular 
retina samples. A PPI network was constructed based 
on these overlapping genes. There were 4 nodes in the 
network, which could be considered as hub genes (LMNB2, 
EMD, HLA-A, and HLA-B) for AMD extramacular 
retina (Figure 4C). Functional enrichment analysis was 
then presented. As shown in Figure 5A, these genes 
were distinctly related with immune-related biological 
processes such as cytokine-mediated signaling pathway, 
regulation of T cell mediated cytotoxicity, and antigen 
processing and presentation of endogenous antigen. 
These genes were involved in cell components like MHC 

class I protein complex, transport vesicle, and phagocytic 
vesicle (Figure 5B). Furthermore, they had the molecular 
functions of peptide antigen binding, secondary active 
transmembrane transporter activity, cadherin binding, and 
anion transmembrane transporter activity (Figure 5C). The 
KEGG enrichment analysis results showed that these genes 
were involved in several crucial pathways such as antigen 
processing and presentation, endocytosis, and natural killer 
cell-mediated cytotoxicity (Figure 5D).

Identification of hypermethylated and down-regulated and 
hypomethylated and up-regulated hub genes for AMD 
macular retina

A total of 13 hypermethylated and down-regulated genes and 
31 hypomethylated and up-regulated genes were identified 
for AMD macular retina tissues (Figure 6A,6B). These genes 
were used for construction of the PPI network. As shown 
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Figure 4 Identification of hypermethylated and down-regulated and hypomethylated and up-regulated hub genes for AMD extramacular 
retina. (A,B) Venn diagrams showing hypermethylated and down-regulated genes and hypomethylated & up-regulated genes for AMD 
extramacular retina. (C) A PPI network based on overlapping genes. AMD, age-related macular degeneration; PPI, protein-protein 
interaction.
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in Figure 6C, there were 11 hub genes (HLA-A, HLA-B, 
HLA-DRB1, IFITM3, SAT1, MAOB, CHRDL1, FSTL1, 
HSPA1A, AR, and YAP1) in the network. Consistent with 
hypermethylated and down-regulated and hypomethylated 
and up-regulated genes, GO-BP results showed that these 
genes were primarily enriched in immune-related biological 
processes (Figure 7A). As for GO-MF, they were prominently 
correlated with plasma membrane, recycling endosome 
membrane, luminal side of membrane, and so on (Figure 7B).  
Moreover, these genes possessed the functions of peptide 
antigen binding, transition metal ion transmembrane 

transporter  act iv i ty,  ca lc ium ion transmembrane 
transporter activity, transcription corepressor activity, and 
phosphatidylinositol binding (Figure 7C). As displayed 
in Figure 7D, these genes mainly participated in antigen 
processing and presentation, allograft rejection, graft-versus-
host disease, and the like.

Validation of hypermethylated and down-regulated and 
hypomethylated and up-regulated hub genes in AMD
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Figure 5 Functional enrichment analysis of hypermethylated and down-regulated and hypomethylated and up-regulated genes for AMD 
extramacular retina. (A) GO-BP; (B) GO-CC; (C) GO-MF; (D) KEGG. AMD, age-related macular degeneration; GO, Gene Ontology; BP, 
biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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hypomethylated and up-regulated hub genes between AMD 
and normal samples was validated in the E-MTAB-7,183 
dataset. Among them, ATP2C2 (log2FC =0.033, P=8.67e-03), 
CACNG6 (log2FC =0.119, P=1.84e-02), CNKSR2 (log2FC 
=0.038, P=1.22e-02), FSTL1 (log2FC =0.719, P=1.31e-02), 
MTM1 (log2FC =0.082, P=1.42e-02), MYO10 (log2FC 
=0.212, P=1.71e-03), RPH3AL (log2FC =0.045, P=6.74e-04), 
and SORCS2 (log2FC =0.319, P=2.97e-02) were highly 
expressed in AMD compared to normal samples (Figure 8A). 
Meanwhile, B4GALNT1 (log2FC =−0.697, P=1.94e-02), 
LACTB (log2FC =−0.02, P=1.63e-02), and SLC35E2 (log2FC 
=−0.263, P=1.36e-02) were more lowly expressed in AMD 
than normal samples (Figure 8B).

Construction of AMD-related co-expression modules

A total of 27 normal extramacular retina samples, 31 AMD 
extramacular retina samples, 28 normal macular retina 
samples, and 32 AMD macular retina samples from the 

GSE29801 dataset were used for co-expression analysis. 
The clinical traits of these samples are shown in Figure 9A. 
Soft threshold β value was set as 4 to ensure a scale-free 
network (R2=0.005; Figure 9B). A heat map depicted the 
high co-expressions between all genes (Figure 9C). A total of 
16 merged modules were identified (Figure 9D). As shown 
in Figure 9E,9F, the turquoise module was in significant 
correlation with macular AMD (r=0.46 and P=2e-07),  
normal macular (r=0.56 and P=5e-11), and extramacular 
AMD (r=−0.54 and P=2e-10). Furthermore, blue module 
was distinctly correlated with macular AMD (r=−0.45 and  
P=4e-07) and extramacular AMD (r=0.47 and P=6e-08). The 
2 co-expression modules were selected for further analysis.

Functional enrichment analysis of genes in the turquoise 
and blue modules

We performed functional enrichment analysis of genes in 
the turquoise and blue modules. As shown in Figure 10A, 
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Figure 6 Identification of hypermethylated and down-regulated and hypomethylated and up-regulated hub genes for AMD macular retina. 
(A,B) Venn diagrams demonstrating hypermethylated and down-regulated genes and hypomethylated and up-regulated genes for AMD 
macular retina; (C) construction of a PPI network through overlapping genes. AMD, age-related macular degeneration; PPI, protein-protein 
interaction.
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we found that genes in the turquoise module were primarily 
enriched several biological processes such as chromosome 
organization, multicellular organismal reproductive process, 
and spermatid development. For GO-CC, these genes were 
significantly correlated with nucleus, photoreceptor cell 
cilium, nuclear lumen, and so on (Figure 10B). Furthermore, 
these genes had the functions of DNA binding, DNA 
N-glycosylase activity, neurotransmitter transmembrane 
transporter activity, and so on (Figure 10C). For KEGG 
enrichment analysis results, several key KEGG pathways 

were enriched, such as phototransduction, base excision 
repair, and RNA polymerase (Figure 10D). For genes in the 
blue module, GO-BP results demonstrated that they were 
enriched in nervous system development, regulation of ion 
transmembrane transport, regulation of heart contraction, 
and so on (Figure 11A). Moreover, these genes could 
participate in various cell components such as axon, cation 
channel complex, and dendritic tree (Figure 11B). As shown 
in Figure 11C, they possessed the molecular functions 
of calcium ion binding, tubulin binding, small GTPase 
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Figure 7 Functional enrichment analysis of hypermethylated and down-regulated and hypomethylated and up-regulated genes for AMD 
macular retina. (A) GO-BP; (B) GO-CC; (C) GO-MF; (D) KEGG. AMD, age-related macular degeneration; GO, Gene Ontology; BP, 
biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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binding, and so on. The KEGG pathway enrichment 
analysis results suggested that these genes were involved 
in a few pathways like axon guidance, the CAMP signaling 
pathway, and metabolic pathway (Figure 11D).

Validation of hub genes in AMD cellular models

To construct an AMD cellular model, ARPE‐19 cells 
were maintained in a hypoxic state. Enzyme-linked 
immunosorbent assay (ELISA) was used for detecting 
HIF1α and VEGF expression in cell supernatant. Compared 

to normal ARPE‐19 cells, HIF1α and VEGF levels were 
significantly up-regulated in cell supernatant of hypoxia-
induced ARPE‐19 cells (Figure 12A), indicating that the 
AMD cellular model was successfully established. The 
real-time qPCR (RT-qPCR) results showed that hub 
genes including CHRDL, FSTL1, and IFITM3 displayed 
significantly higher expression in hypoxia-induced ARPE‐19 
cells compared to normal cells (Figure 12B). Meanwhile, 
greater up-regulation of CHRDL, FSTL1, and IFITM3 
expression was found in hypoxia-induced ARPE‐19 cells 
than in normal cells (Figure 12C,12D).
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Figure 8 Validation of hypomethylated and up-regulated hub genes and hypermethylated and down-regulated in E-MTAB-7183 dataset. (A) 
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Figure 9 Construction of AMD-related co-expression modules. (A) AMD sample dendrogram and trait heatmap; (B) determination of 
appropriate soft threshold β value; (C) network heatmap plot. The branches correspond to different modules. The color-coded modules 
are displayed below the tree diagram and in the color bar on the left. The co-expression is expressed by gradually saturated yellow and 
red. Modules are corresponding to blocks within highly co-expressed genes; (D) construction of clustering dendrogram; (E) module-
trait relationships; (F) module eigengene dendrogram and network heatmap. Green is representative of negative correlation and red is 
representative of positive correlation. AMD, age-related macular degeneration.
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Discussion

In this study, we identified 16 hypermethylated and down-
regulated genes and 15 hypomethylated and up-regulated 
genes for extramacular AMD and 13 hypermethylated 
and down-regulated genes and 31 hypomethylated and 
up-regulated genes for macular AMD. Our findings 
suggested that changes in DNA methylation may affect 
the differential expression of genes in AMD. In the PPI 
network, there were 4 hub genes (LMNB2, EMD, HLA-A, 
and HLA-B) for extramacular AMD and 11 hub genes 
(HLA-A, HLA-B, HLA-DRB1, IFITM3, SAT1, MAOB, 

CHRDL1, FSTL1, HSPA1A, AR, and YAP1) for macular 
AMD. These differentially expressed and methylated 
genes (DEMGs) could participate in various biological 
processes and pathways. Xu et al. have identified five hub 
genes might serve as aberrant methylation-based candidate 
biomarkers and construct a co-expression network for 
AMD (12). However, WGCNA co-expression network has 
not been used to explore modules and hub genes related to 
clinical features for AMD yet. This has been the first study 
to analyze the co-expression networks for AMD. What’s 
more, aberrantly-methylated DEGs have been identified 
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in AMD in previous studies (12,15); however, these 
studies have lacked external validation. In this study, we 
validated the expression of DEMGs in the E-MTAB-7183 
dataset. Among them, ATP2C2, CACNG6, CNKSR2, 
FSTL1, MTM1, MYO10, RPH3AL, and SORCS2 were 
highly expressed in AMD compared to normal samples. 
Meanwhile, B4GALNT1, LACTB, and SLC35E2 were lowly 
expressed in AMD than normal samples. A co-expression 
network was constructed and 2 AMD-related modules 
were screened out. Thus, our results offered novel insights 
into the molecular mechanisms for AMD and probed into 
several hub genes that could become underlying therapeutic 
markers for AMD in further research.

The DEMGs at the center of a PPI network could 
possess more important functions than other genes. 
Functional enrichment analysis results revealed that these 
DEMGs were involved in various immune-related biological 
processes and pathways such as cytokine-mediated signaling 
pathway, regulation of T cell mediated cytotoxicity, antigen 
processing and presentation of endogenous antigen, antigen 
processing and presentation, endocytosis, natural killer 
cell mediated cytotoxicity, and so on. Excessive activation 
of the immune system is important in the pathogenesis of 
AMD. Among 4 hub genes for extramacular AMD, LMNB2 
has been verified to possess the function of promoting 
proliferation, migration, and invasion of liver cancer cells, 
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regulated by miR-122 (26), and it is a key factor for RNA 
granules as well as axonal trafficking (27). The EMD gene 
has been confirmed as a risk factor for AMD (28). We found 
that HLA and HLA-B were hub genes both for extramacular 
and macular AMD. A cross-sectional observation clinical 
study found that the most frequent HLA haplotype 
iPS-RPE therapy may be an underlying alternative to  
AMD (29). Furthermore, HLA-B rs1055821 could correlate 
with AMD (30). Among 11 hub genes for macular AMD, 
except for HLA and HLA-B, HLA-DRB1, IFITM3, SAT1, 
MAOB, CHRDL1, FSTL1, HSPA1A, AR, and YAP1 are the 
causative factors of various diseases. For example, HLA-
DRB1*03 is correlated to anti-carbamylated protein for 
rheumatoid arthritis (31). Allele polymorphism of HLA-
DRB1 is associated with systemic sclerosis (32). The 
IFITM3 gene can promote bone metastasis of prostate 
cancer (33). Alternative splicing of SAT1 could suppress 

melanoma progression (34). The MAO-B gene has been 
detected as an underlying therapeutic target for Alzheimer’s 
disease (35). The CHRDL1 gene may participate in the 
progression of pulmonary thromboembolism by regulation 
of angiogenesis (36). Upregulation of FSTL1 enhances 
glioblastoma resistance to temozolomide (37). To validate 
the expression of hub genes CHRDL, FSTL1, and IFITM3 
in AMD, we established a hypoxia-induced AMD cellular 
model. Our data confirmed that CHRDL, FSTL1, and 
IFITM3 were significantly up-regulated in hypoxia-induced 
ARPE‐19 cells compared to normal cells. It has been 
predicted that HSPA1A is correlated to poor prognosis of 
epithelial ovarian cancer (38). However, the functions of 
these hub genes in AMD are still unclear, and in-depth 
verification is warranted.

Using WGNCA, we conducted a total of 16 co-
expression modules for AMD, of which 2 were in significant 
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correlation with AMD. Sor far, this has been the first 
study to analyze the co-expression networks for AMD. We 
further explored the biological significance of these 2 gene 
modules. For the genes in the turquoise module, several 
key KEGG pathways were enriched like phototransduction, 
base excision repair, and RNA polymerase. Our KEGG 
pathway enrichment analysis results suggested that genes in 
the blue module were involved in a few pathways like axon 
guidance, CAMP signaling pathway, and metabolic pathway.

In conclusion, our study probed into several hub DEMGs 
and pathways in AMD, which could become underlying 
therapeutic markers for AMD. We also constructed 2 
AMD-related gene co-expression modules, deepening the 
underlying concerning the molecular mechanisms of AMD. 
However, there are some limitations about this study. 
For example, it was better to choose a down-regulated 
expression of representative gene after hypoxia. Besides, 
the more specific experiments about the function of hub 
gene based on animal model or clinical samples should be 
performed in the further study.

Conclusions

In this study, we identified a series of DEMGs for 
extramacular and macular AMD, which could be involved 
in a variety of biological processes and pathways. Among 
them, several hub genes were identified, which could 
become therapeutic markers of AMD. Furthermore, a co-
expression network was conducted for AMD. Thus, our 
research probed into several key DEMGs and pathways for 
AMD, for which more in-depth verification through clinical 
and experimental research is warranted.
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