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Introduction

Ischemia reperfusion (IR) is a common pathological 
process that participates in a wide range of diseases, such 
as myocardial infarction, acute ischemic stroke, acute 
kidney injury, trauma, and circulatory failure. Restoring the 

blood supply to ischemic tissue in a timely manner is the 
best treatment strategy to improve the patient’s condition. 
However, the recovery of the blood supply (1) also brings 
new damage to ischemic tissues and organs, namely, 
ischemia/reperfusion injury (IRI). Long noncoding RNAs 
(lncRNAs) has become a research hotspot in recent years. 
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Many studies have proven that lncRNAs are involved in the 
pathological process of IRI in many important organs, such 
as the heart, brain, liver, kidney and vascular endothelium (2). 
Some lncRNAs have been proven to be biomarkers of IRI 
in brain tissue. In the future, lncRNAs may be a potential 
therapeutic target for preventing stroke IRI (3). Some 
lncRNAs have been proved to be biomarkers of IR. In the 
future, it may become a potential therapeutic target for the 
prevention of IR. Comprehensively exploring the biological 
function and molecular mechanism of lncRNAs is of great 
significance for us to study how to protect IRI of tissues 
and organs. It is of great significance for us to study how 
to protect tissues and organs from IRI by comprehensively 
exploring the biological  functions and molecular 
mechanisms of lncRNAs. We present the following 
article in accordance with the Narrative Review reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-268/rc).

Methods

We conducted a literature search for published manuscripts 
on neural ischemia/reperfusion up to October 2021 in the 
PubMed, Web of Science, Cochrane Library, and EMBASE 
databases. We used the following search words and terms: 
“neural ischemia/reperfusion”, “injury”, “repair”, and “long 
noncoding RNA”. Qualitative and quantitative data were 
extracted by interpreting each paper in cycles to avoid 
missing potentially valuable data (Table 1).

Discussion

LncRNA

LncRNAs exist in the nucleus or cytoplasm of organisms. 
They do not encode proteins and are the transcription 
products of genes encoding very short polypeptides. 
At present, there is no unified view about the sources 
of  lncRNAs (4) .  The recognized sources  mainly 
include mutations of protein-coding genes, chromatin 
recombination, reverse transcription of noncoding genes, 
duplication of internal segments of noncoding RNA and 
insertion of transposable elements (5). RNA acts as a 
medium to regulate the internal conversion of pathways and 
signals. Four core nucleotides and a variety of chemically 
modified nucleotides regulate and stabilize the structure 
of RNA. LncRNAs are usually long, and they form poly A 
tails and promoter structures by splicing. Then, they form 
thermodynamically stable secondary or higher structures 
to perform their function after folding. Compared with 
coding RNAs, lncRNAs are more susceptible to species 
evolution, and their sequences are less conserved. More 
and more lncRNAs can be found in the genomes of 
organisms, and there are relatively conserved short 
sequences in their molecules, which are closely related to 
the important physiological and biochemical functions of 
expression (6). Therefore, lncRNAs have the characteristics 
of a specific secondary spatial structure, low sequence 
conservation but relatively conservative internal short 
sequences, developmental specificity, dynamic expression 

Table 1 The search strategy summary

Items Specification

Date of Search (specified to date, month and year) Up to October 2021

Databases and other sources searched PubMed, Web of Science, Cochrane Library, and EMBASE 
databases

Search terms used (including MeSH and free text search terms and filters) 
(Note: please use an independent supplement table to present detailed 
search strategy of one database as an example)

“neural ischemia/reperfusion”, “injury”, “repair”, and “long 
noncoding RNA”

Timeframe Up to October 2021

Inclusion and exclusion criteria (study type, language restrictions etc.) Qualitative and quantitative data were extracted by 
interpreting each paper in cycles to avoid missing potentially 
valuable data

Selection process (who conducted the selection, whether it was conducted 
independently, how consensus was obtained, etc.)

Qualitative and quantitative data were extracted by 
interpreting each paper in cycles to avoid missing potentially 
valuable data

Any additional considerations, if applicable No
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during differentiation, and various shearing forms. RNA 
not only plays an auxiliary role as the intermediate carrier 
of genetic information but also plays a more important 
role in various regulatory functions (7). Similarly, lncRNAs 
have complex biological functions at the genetic and 
transcription levels. In recent years, it has been found 
that the functions of lncRNAs at the molecular level 
mainly include three aspects. First, chromatin modifying 
proteins are collected to regulate gene expression (8). It 
has been found that the inactivation-specific transcript of 
the X chromosome transcribed from the X chromosome 
can recruit multicomb suppression complex 2. This can 
inhibit gene transcription on the X chromosome, inactivate 
the genetic traits of one X chromosome in mammalian 
females, and achieve the goal of maintaining the same gene 
phenotype of male and female organisms (9). In addition, 
lncRNAs related to chromosome modifications other than 
the X chromosome are being continuously identified, and 
such lncRNAs include the Kcnq1 antisense transcript 
and Igf2 antisense transcript. Second, when combining 
with DNA or some RNA through base complementation 
lncRNAs play a regulatory role at the transcriptional and 
posttranscriptional levels by modifying the promoter 
structure, changing the cleavage site and covering the 
binding site. For example, an Alu sequence lncRNA 
regulates the transcription process by combining with RNA 
polymerase II to achieve the goal of gene suppression (10). 
Third, lncRNAs directly affect the function of proteins 
by changing their location in the cytoplasm, combining 
with specific proteins and forming nucleic acid-protein 
complexes. For example, lncRNA ADORA2A was found 
to exerts tumor-suppressive roles via binding the RNA 
stable protein Hu antigen R and repressing Fascin Actin-
Bundling Protein 1 (11).

LncRNA and IR 

The brain is the most sensitive organ to the ischemic 
response. Cerebral ischemia will cause irreversible 
damage to brain tissue in less than 20 min. IR-induced 
brain microvascular endothelial cell injury is the initial 
stage of blood–brain barrier injury, which leads to poor 
prognosis in patients with ischemic stroke (12). Studies 
have proven that autophagy has a protective effect on 
ischemic injury in brain microvascular endothelial cells. 
Li et al. (13) found that the level of metastasis-associated 
lung adenocarcinoma transcript 1 (MALAT1) in brain 
microvascular endothelial cells was significantly increased 

in an IR mouse model. Furthermore, the expression of 
ULK2 was downregulated by inhibiting the level of miR-
26b, which promoted autophagy and cell survival of brain 
microvascular endothelial cells. Wang et al. (14) found that 
MALAT1 expression increased PI3K activity and AKT 
phosphorylation but decreased Caspase-3 activity in an 
IR model of brain microvascular endothelial cells. It also 
inhibited the apoptosis of brain microvascular endothelial 
cells. Zhang et al. (15) found that the level of MALAT1 
was significantly increased after IR in mouse models of 
both brain microvascular endothelial cell IR and brain IR. 
Studies have shown that MALAT1 can inhibit apoptosis 
by inhibiting the levels of the proapoptotic factor BIM 
and the proinflammatory factors MCP-1, IL-6 and 
endothelial cell selectin, thus protecting against IRI in 
cerebral apoplexy. Extensive studies have shown that IRI 
not only causes brain microvascular endothelial damage 
but also triggers a series of neural events, such as hypoxia, 
oxidative stress, neurotoxicity, inflammatory reaction 
and edema formation, leading to the death of neurons in 
ischemic areas (16). Wu et al. (17) detected the change 
in the expression profile of whole genome lncRNAs in a 
mouse model of brain IRI and found that lncRNA-N1LR 
may inhibit apoptosis by inhibiting phosphorylation of 
the 15th serine residue of the p53 protein, thus protecting 
nerve cells. Li et al. (18) also screened lncRNAs after IRI 
in mouse hippocampal neurons with high throughput and 
found that lncRNA-Tnxa-psi promoted the survival of 
neurons by inhibiting apoptosis.

Mechanisms of noncoding RNAs in the IR process

Cell damage and death

Reperfusion injury after cerebral ischemia refers to 
brain cell damage in the ischemic area that continues to 
worsen after blood flow is restored. Cerebral ischemia 
is the first disabling factor, and reperfusion injury after 
cerebral ischemia is harmful. Therefore, effective control 
of reperfusion injury is of great benefit to patients with 
cerebral ischemia. Thai et al. (19) found that the endotoxins 
in damaged cells were significantly increased and the cell 
survival rate was significantly decreased after the knockout 
of a lncRNA named SCAL1, which indicates that SCAL1 
plays an important role in cell survival. The NF-κB pathway 
is a cellular and molecular pathway closely related to IRI. 
Activation of the NF-κB pathway can aggravate the loss of 
integrity of the blood–brain barrier when injury occurs (20). 
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After the blood barrier is destroyed, many inflammatory 
factors further aggravate cell damage through blood vessels 
with increased permeability. Additionally, the expression of 
specific lncRNAs in vascular endothelial cells is increased, 
which regulates cell damage. The extra-domain A (EDA) 
is an extra domain of alternative splicing exons encoding 
type III repeats, and it is closely related to the tissue injury 
response. Studies have shown that some lncRNAs are 
related to EDA production (21,22). Apoptosis is an active 
process under the action of a series of gene activation, 
expression and regulation. After cerebral ischemia, injured 
and necrotic cells are mainly located in the ischemic central 
area, while apoptotic cells are located in the peripheral 
areas. Apoptosis of brain cells is not necrosis. Many neurons 
in the ischemic penumbra or infarct area have the potential 
to recover after a period of ischemia (23). Inhibition of 
apoptosis is of great help to the prognosis of stroke patients. 
It has been reported that Zusanli electroacupuncture can 
inhibit apoptosis and help to improve cerebral ischemia (24). 
P53 is a tumor suppressor gene, and its encoded protein 
is a transcription factor that controls the start of the cell 
cycle. When the cell is damaged and cannot be repaired, the 
p53 protein participates in the start-up process and causes 
damaged cells to die via apoptosis (25). The expression of 
p53 is rapidly increased in ischemic stroke. Recent studies 
have shown that lncRNA-ROR negatively regulates the 
expression of p53 by inhibiting the binding of hnRNPI 
to p53 mRNA, which is induced by stress. These findings 
suggest that lncRNA-ROR indirectly regulates apoptosis 
after cerebral ischemia. Zhou et al. (26) that lincRNA-p21 
can directly bind to the MDM2 protein and inhibit the 
binding of P53 and MDM2, thus affecting the function of 
p53 (Figure 1).

Excitotoxicity

Excitotoxicity is one of the important mechanisms of 
ischemic brain injury. Under conditions of anoxia and 
glucose deficiency, the energy metabolism of cells is 
obstructed. Such obstructions can lead to a decrease in 
ATP-dependent sodium and potassium pump activity, 
a significant increase in extracellular K+, membrane 
depolarization, a large release of excitatory amino acids, 
excessive excitation of postsynaptic neurons, the activation 
of ionic glutamate receptors on cell membranes, the 
promotion of extracellular Ca2+ influx, the aggravation of 
intracellular calcium overload, and a series of events, such 
as cell swelling, necrosis and apoptosis (26). Ionic glutamate 

receptors can be divided into NMDA receptors and AMPA 
receptors (27). The AMPA family includes GluR1-44 
subunits, among which the GluR2 subunit can regulate 
the permeability of the AMDA receptor to Ca2+. However, 
REST can facilitate gene expression by upregulating the 
activity of the gene promoter of the GluR EAAT2, which 
affects Ca2+ influx after excitotoxicity brain injury (28,29). 
Recently, it has been found that under the induction of 
stroke, more lncRNA binds to the REST coinhibitors 
Sin3A and coREST and regulates REST-mediated gene 
silencing at the epigenetic level (30).

Oxidative

Nerve cells and endothelial cells produce a large amount 
of reactive oxygen species (ROS) during mitochondrial 
respiratory chain injury and reperfusion after ischemia. 
ROS can damage proteins and DNA and transmit cell 
necrosis and apoptosis signals (31). ROS can directly 
activate the mitochondrial permeability transition pore 
(MPTP) on the mitochondrial membrane or induce p53 
to bind to cyclophilin D to open the MPTP. This binding 
can lead to mitochondrial swelling and further blockage 
of the mitochondrial respiratory chain and ultimately 
promotes cell necrosis in the ischemic core area (32). In 
addition, ROS can activate p38MAPK and mediate the 
apoptosis of ischemic penumbra cells through the caspase 
pathway. The pathological process of ischemic stroke 
can activate two antioxidant pathways: the superoxide 
dismutase pathway and the Nrf2/ARE pathway (33,34). 
Signal transduction and activator of transcription 3 (STAT3) 
is inactivated during reperfusion injury, which leads to a 
decrease in SOD2 gene expression regulated by STAT3. 
Bioinformatics methods predict that 120 lncRNAs contain 
STAT3 binding sites, which suggests that lncRNAs may 
regulate the expression of SOD genes through STAT3 (35).  
Under physiological conditions, Keap1 binds to Nrf2, 
inhibiting its biological activity (36). Under oxidative stress, 
ROS promote its separation. Then, free Nrf2 binds to the 
ARE, which induces the expression of antioxidant proteins. 
Recent studies have shown that SCAL1, a newly discovered 
lncRNA, increases SCAL1 expression in the endothelial 
cells of patients with lung cancer caused by smoking. 
SCAL1 is the downstream molecule of Nrf2. SCAL1 
knockout leads to an increase in endotoxins and a decrease 
in the cell survival rate, which means that SCAL1 plays an 
important role in the Nrf2/ARE antioxidant pathway (19) 
(Figure 2).
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Figure 1 Mechanism of lncRNAs in ischemia–reperfusion injury. SHPRH, SNF2 histone linker PHD RING helicase; AKT3, AKT serine/
threonine kinase 3; FBXW7, F-box and WD repeat domain containing 7; PDK1, pyruvate dehydrogenase kinase 1; DTL, denticleless E3 
ubiquitin protein ligase homolog; PCNA, proliferating cell nuclear antigen; USP28, ubiquitin specific peptidase 28.
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Ischemic stroke rapidly leads to early local inflammatory 
reactions, including microglial activation and cytokine 
secretion. With the extension of time, the infiltration of 
consanguineous macrophages and lymphocytes is also 
involved in the pathological process of ischemic stroke (37).  
In the brain, TLR is mainly expressed on the surface 
of microglia, astrocytes and oligodendrocytes and plays 
a regulatory role in the activation of the inflammatory 
response and the secretion of cytokines after cerebral 
ischemia. Activation of TLR2 after cerebral IRI can cause 
microglia to secrete IL-23, IL-17 and other cytokines that 
can damage neurons (38). The expression level of TLR4 

was increased after cerebral ischemia, and TLR4 could 
regulate the expression of TNF-α, COX-2, iNOS and 
other cytokines (39). The signal transduction of TLR2 and 
TLR4 mainly depends on the MyD88-dependent pathway 
and MyD88-independent pathway, and it eventually 
leads to the activation of NF-κB and the production 
and secretion of cytokines. Chen et al. (40) found that 
inhibition of lncRNAAK139328 can significantly decrease 
the level of Akt in liver IRI. Additionally, Akt binds to  
NF-κB, which inhibits its nuclear metastasis and reduces 
the expression of inflammatory factors. Wang et al. (41) also 
found that ROCK2, which can promote the inflammatory 
response after cerebral IRI, has a certain relationship with 
lncRNAs. Covarrubias et al. (42) found that TLR-induced 
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Figure 2 Mechanism of inflammation in ischemia–reperfusion injury. MYD88, MYD88 innate immune signal transduction adaptor; TLR4, 
toll like receptor 4; NLRP3, NLR family pyrin domain containing 3; GSDMD, gasdermin D.
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macrophage lincRNA-Cox2, enhanced the expression 
of IL-6, and bidirectionally regulated the inflammatory 
reaction by binding to hnRNPs. All these results indicate 
that lncRNAs play an important role in the inflammatory 
response after cerebral IRI.

Destruction of blood barrier

Cerebral vascular endothelial cells are an important part of 
the blood–brain barrier (43). Damage to endothelial cells after 
cerebral ischemia can lead to destruction and dysfunction 
of the blood–brain barrier, changes in the permeability 
and integrity of cerebral vessels, vasogenic brain edema, 
the production of inflammatory factors or the promotion 
of a large number of inflammatory factors in the ischemic 
injury area. Such conditions aggravate cell necrosis and  

apoptosis (44). In cerebrovascular endothelial cells, there is 
some specific expression of ncRNAs, such as miR-101, miR-
125a, miR-155, linc00439, Meg3, MALAT1, and TUG1 
(45,46). However, little research has been done on their role 
in injury and protection of the vascular endothelium after 
stroke (45). Although some miRNAs have been reported 
to regulate the apoptosis of vascular endothelial cells after 
stroke and its protective mechanism, the newly discovered 
role of lncRNAs in vascular endothelial cells after ischemic 
stroke is still rarely reported (47). This role could provide a 
new direction for pathological research and the treatment of 
ischemic stroke in the future.

Role of lncRNA in nerve repair after IR

For a long time, the central nervous system has not been 
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considered to have the function of regeneration after 
injury. Recently, however, it has been found that there are 
endogenous neural stem cells (NPCs) in the subventricular 
zone (SVZ) and subgranular zone (SGZ) of the dentate 
gyrus of the hippocampus (48). After cerebral ischemia, 
these neural stem cells begin to differentiate into neurons 
and glial cells and gradually migrate to ischemic injury 
areas. This means that nerve repair will become another 
important treatment measure for ischemic stroke after 
nerve protection (49). Nerve repair after stroke mainly 
includes nerve regeneration, blood vessel regeneration, 
oligodendrocyte regeneration and astrocyte regeneration, 
which together determine the functional integrity of 
nerve and blood vessel units after injury (50). Nerve 
regeneration promotes nerve plasticity and functional 
recovery. Oligodendrocyte regeneration repairs neuron 
signal transduction and promotes myelination. Vascular 
regeneration increases blood flow in the ischemic area and 
regulates nerve regeneration and glial cell regeneration (51).

Angiogenesis

Vascular endothelial cells (VECs) are single-layer flat cells 
lining the lumen of blood vessels, and their activation, 
proliferation and migration are essential intermediate 
processes of angiogenesis. Xiong and others (45,46) found 
that endothelial cells were damaged after cerebral ischemia. 
They also found that the expression of specific lncRNAs 
that are highly expressed in vascular endothelial cells, such 
as linc00493, Meg3, and MALAT1, is increased, which 
might be related to the injury and repair of endothelial 
cells (52). Moreover, it was found that the cell cycle of 
vascular basal endothelial cells was inhibited, the number 
of basal cells decreased, and cells migrated and germinated 
to block new blood vessels after MALAT1 was knocked-
out in mice. These findings suggest that MALAT1 is 
involved in regulating angiogenesis. Vascular endothelial 
growth factor (VEGF) can promote the proliferation of 
vascular endothelial cells (52,53). Its synthesis level is very 
low in normal tissues of animals and adults, but it is high in 
embryos and tissues with angiogenesis. VEGF is considered 
to promote capillary fusion in angiogenesis. There are 
multiple types of VEGF, including VEGF-A, -B, -C, -D 
and -E types. Among these types, VEGF-A can promote 
the mitosis of endothelial cells and increase the permeability 
of vascular endothelial cells (54). The VEGF receptors 
R-1, R-2 and R-3 are distributed on the surface of vascular 
endothelial cells (55). Huang et al. (56) found that maternal 

transcript 3 (Meg3) of noncoding RNA can significantly 
affect the expression of VEGF-A and VEGFR-1, which 
indicates that Meg3 is closely related to angiogenesis. 
Nitric oxide (NO) is an important messenger molecule 
and cell growth regulator related to blood vessels. Nitric 
oxide synthase (NOS) is the rate-limiting factor of NO  
production (57). NOS is usually used to locate the 
distribution of NO. Endothelial nitric oxide synthase 
(eNOS) is type of a NOS in endothelial cells. Ling and 
others have clarified the mechanism of NO and eNOS 
in endothelial cells (58). Xu et al. (59) reported that the 
long noncoding RNA AK094457 plays a role in regulating 
blood vessels by influencing the production of eNOS. 
Further research has clarified the mechanism by which 
the multiprotein complex bound by the eNOS3'UTR 
can stabilize eNOS mRNA and further interfere with its 
transcription process to regulate angiogenesis (60).

LncRNA and nerve repair

Recent research has shown that after the central nervous 
system is injured by ischemia, the body will trigger a series 
of reactions to promote the recovery of injured nerves. Jin 
et al. explained the neuroprotective process of autophagy 
that occurs in organisms (61). An and others (62) found that 
after ischemia, some endogenous neural stem cells (NPCs) 
migrate to the ischemic area and gradually differentiate 
into neurons and glial cells. Studies have found that more 
than 30 kinds of lncRNAs are highly expressed in mature 
neurons. Among these is lncRNAN1, which is involved 
in regulating gene expression and NPC differentiation. 
lncRNAN2 can indirectly mediate the occurrence of 
nerve cells, and the expression of the transcription factor 
SOX2 can promote NPC differentiation into nerve cells. 
Some studies have found that lncRNA RMST can bind 
to the promoter region of the SOX2 target gene and 
influence the differentiation direction of NPC (63). Recent 
studies have shown that lncRNAs can also regulate the 
regeneration and differentiation of neurons by regulating 
target proteins in the process of nerve regeneration. Glial 
cells are widely distributed in the central and peripheral 
nervous systems, and they support and guide the migration 
of neurons (64). They are divided into astrocytes, 
oligodendrocytes and microglia, which participate in the 
repair and regeneration of the nervous system. The main 
functions of oligodendrocytes are to surround axons, form 
myelin sheath structures and assist in the transmission of 
nerve electrical signals. Thus, they maintain and protect 

R E T R A C T E D



Cai and Zhang. Role of lncRNA in the process of nerve ischemia/reperfusionPage 8 of 11

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(4):235 | https://dx.doi.org/10.21037/atm-22-268

the normal function of neurons. Studies that analyzed the 
expression profiles of lncRNAs and mRNAs in injured rat 
sciatic nerves found 105 lncRNAs that were differentially 
expressed. They also found that the migration of glial cells 
was affected, which indicates that lncRNAs could regulate 
the migration of glial cells (65). In addition, after decreasing 
the expression level of lncRNA BC089918 in cells, the 
axons of nerve cells were elongated, which indicates that 
lncRNAs can inhibit nerve regeneration.

Conclusions

In summary, lncRNAs are widely involved in various 
regulatory pathways, such as apoptosis, autophagy, necrosis, 
and inflammatory reactions, in the process of cerebral 
ischemia-reperfusion and play an important role. The 
structure and function of lncRNAs are highly diverse, 
and lncRNAs play an important role in many human 
diseases. As a biological marker and therapeutic target, 
lncRNAs have been widely studied and applied in the field 
of oncology, but research on lncRNAs in IR is still in its 
infancy. The specific working mechanism of many lncRNAs 
is still unknown. In particular, the role of lncRNAs in IRI 
of lung tissue is unknown, and more research is required 
to further explore this topic. With the rapid development 
of science and technology, high-throughput sequencing 
provides a very convenient method for lncRNA research. 
There are an increasing number of studies using gene chip 
technology to discover known and unknown lncRNAs that 
are differentially expressed in IRI and to further explore 
their functions. The popularization of this technology is 
also an inevitable trend for studying lncRNAs in the future. 
Understanding the functions and mechanisms of these 
lncRNAs is expected to clarify their complex regulatory 
mechanisms in IRI.
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