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Does fructose have a protective role on migraine?—experimental 
evidence in a rat model of metabolic syndrome under omega-3 
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Background: Migraine is a highly disabling disease, for which current therapies are limited to symptom 
alleviation. There is compelling evidence linking migraine with metabolic disorders, but the causal 
relationship is not clear. Omega-3 (n-3) fatty acids have anti-inflammatory properties, with clear benefits in 
metabolic disorders, but its effects on migraine remains to be tested. We hypothesized that fructose-induced 
metabolic syndrome could aggravate migraine by increasing neuroinflammation and that n-3 treatment 
could mitigate it. 
Methods: Male Wistar rats were used. Animals that received 10% high fructose diet (HFD) or tap water 
were subdivided into two additional groups: with or without n-3 supplementation. Fifteen days before 
euthanasia, each group was subdivided into two additional groups: with or without nitroglycerin (NTG)-
induced migraine. 
Results: HFD lessened the migraine-like painful symptoms, as indicated by decreased grimace scores, 
which paralleled with reduced CGRP and leptin serum levels, increased hypothalamic CGRP, and decreased 
hypothalamic adiponectin and IL-6. There was a recovery of body and adipose tissue weight, besides a 
reduction of crown-like structures (CLS) in the inguinal adipose tissue. N-3 supplementation had no effect 
on NTG-related pain, but it decreased body and adipose tissue weight of HFD and tap water NTG-injected 
rats. N-3 improved NTG-related affective behavior and inflammatory parameters in tap water NTG-
injected rats, with decreased hypothalamic TNF, serum CGRP and inguinal adipose-tissue CLS. 
Conclusions: HFD relieved NTG-induced pain, possibly due to decreased energy expenditure, 
minimizing migraine energy needs. N-3 exhibited favorable effects regarding affective behavior and central 
and peripheral inflammation, irrespective of HFD. 
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Introduction

Migraine has been considered the main cause of years 
living with disability, according to the 2019 Global Burden 
of Disease data, while analyzing subjects in economically 
active ages, from 15 to 49 years old (1). Its treatment is 
often challenging, due to the mild efficacy and the adverse 
effects of the currently available drugs. Migraine therapies 
are mostly limited to the alleviation of headache episodes 
and associated symptoms, leaving aside the biochemical 
changes inherent to the disease pathophysiology, allowing 
new migraine attacks (2). 

The metabolic syndrome (MS) encompasses elevated 
triglycerides, high low-density lipoprotein (LDL) and 
low high-density lipoprotein (HDL) cholesterol levels, 
hyperinsulinemia, hyperglycemia, hypertension, and/or 
increased waist circumference, being related to lifestyle 
features, such as sedentarism, stress, and poor dietary habits. 
This assembly of alterations can favor the development of 
type 2 diabetes mellitus (T2DM), also increasing the risk 
of cardiovascular burden. The growing number of people 
living with MS worldwide poses a real challenge for the 
health systems, as for the direct and indirect costs and 
morbidity rates (3). 

I t  has  been demonstra ted  that  omega-3  (n-3) 
polyunsaturated fatty acids display pain relief ensuing their 
anti-inflammatory/pro-resolution effects (4). Hence, n-3 
might well represent an alternative for migraine control, 
with fewer side effects than the commonly used drug 
therapies (5). Furthermore, n-3 has clear benefits for 
metabolic disorders (6), permitting us to suggest that its 
application would be particularly interesting for individuals 
with MS plus migraine. There are some pieces of evidence 
linking migraine with metabolic disorders, such as MS and 
T2DM (7,8). Notably, it has been suggested that migraineurs 
with aura presentation are at higher risk of developing 
MS, with an association with low HDL cholesterol 
levels plus hyperglycemia and abdominal obesity (9).  
However, the causal relationship concerning these 
conditions remains uncertain. It is worth noting that some 
authors have proposed that disrupted adipose tissue function 
in MS might increase cytokine and adipokine production, 
leading to a proinflammatory state, which in turn prompts 
neuroinflammation, finally aggravating headache bouts (10).

Considering the link between migraine and MS, besides 
the promising effects of n-3 in both conditions, the present 
study was designed to investigate whether the induction of 

MS, by long-term fructose intake, might alter nitroglycerin 
(NTG)-evoked migraine attacks in rats, also evaluating 
the effects of n-3 supplementation in this context. For this 
purpose, we analyzed anthropometric data, adipose tissue 
dysregulation, biochemical and inflammatory profiling, 
painful-like changes, as well as affective behavioral 
alterations, when the experimental paradigms of migraine 
and MS were combined, with or without n-3 administration. 
Our data shed new light on the intricate connection 
between migraine and MS, further extending the previous 
evidence on the effects of n-3 in either disease state. We 
present the following article in accordance with the ARRIVE 
reporting checklist (available at https://atm.amegroups.com/
article/view/10.21037/atm-21-5699/rc) (11).

Methods

Animals

Male Wistar rats (6-week-old, total N=96 animals) 
weighing 170 to 240 g at the onset of experiments, were 
obtained from the Central Animal House of the Pontifícia 
Universidade Católica do Rio Grande do Sul (CeMBE; 
PUCRS; Brazil). The age of animals was selected based on 
a previous literature study (12). Males were used instead of 
females, considering the great hormonal influence in the 
migraine NTG model (13). From a total of 96 rats, three 
died due to NTG injections and one was euthanized after 
oral gavage of n-3, by recommendation of the responsible 
Veterinarian. Therefore, a final number of 92 animals was 
included in the analysis. The animals were housed under 
standard conditions of temperature (22±2 ℃), light (12-h  
light-dark cycle) and humidity (50–70%), in ventilated 
cages, with autoclaved wood chip bedding. They received 
a standard rat chow diet (Nuvilab®), with free access to 
filtered water or 10% fructose solution, depending on 
the experimental group. The experimental protocols 
followed the current Brazilian guidelines for the care 
and use of animals for scientific and didactic procedures, 
from the National Council for the Control of Animal 
Experimentation (CONCEA, Brazil). Experiments were 
performed under a project license (9088) granted by 
Institutional Animal Care and Use Committee of PUCRS 
on December 5, 2018. The number of animals was based 
on previous studies (14) with an alpha of 5% and statistical 
power of 80% (GraphPad StatMate 2.0) which resulted in a 
number of 12 rats per group.

https://atm.amegroups.com/article/view/10.21037/atm-21-5699/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-5699/rc
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Induction of MS and experimental groups
MS was induced as described previously (15). Rats received 
10%-fructose solution in the drinking water for eight 
weeks. The control animals received filtered water during 
the same period. Rats were weighed (g) three times a 
week, and the chow was weighed (g) every day. The water 
was refilled, the consumed volume (mL) was measured 
every day, and the results by cage were pooled weekly. 
The glucose levels (mg/dL) were measured at the end of 
experiments with a digital glucometer (Accu-Check III, 
Boehringer Mannheim, Germany). After four weeks, the 
animals submitted to high fructose diet (HFD; N=12) or 
normal diet (water; N=12) were randomly subdivided into 
additional experimental groups: with n-3 supplementation 
(n-3; N=12 each); without n-3 supplementation (vehicle; 
N=12 each). For randomization, the animals were initially 
allocated into two major groups, with or without HFD, 
after determining the mean body weight of each cage with 
four rats. The allocation of animals into the NTG and/
or n-3 groups was performed by alternating the cages in 
the following order, considering the body weigh means: 
(I) water + saline; (II) water + n-3; (III) water + NTG; (IV) 
water + n-3 + NTG, and the same was carried out for HFD 
groups. NTG-injected rats were maintained separated 
from control animals. The general experimental design and 
group distribution are depicted in Figure 1.

Chronic migraine model
Chronic migraine induction was accomplished as 
described previously (14). Nitroglycerin (NTG; Broilo 
Pharmaceutical products, Brazil)—5 mg/mL—dissolved 
in 30% alcohol, 30% propylene glycol and water were 
used. NTG was administered intraperitoneally (i.p.) with 
a sterile glass syringe, in a volume of 2 mL/kg, every three 
days, to reach the dose of 10 mg/kg, totaling five NTG 
injections (Figure 1). The animals in the control group 
received saline solution (2 mL/kg) i.p. at the same time 
intervals.

Omega-3 (n-3) treatment
The treatment with n-3 was initiated four weeks after 
the onset of HFD protocol. Half of animals received 
n-3 through fish oil administration (Essential Nutrition; 
Essentia Pharma, Brazil) composed of 55% n-3 (1 g 
contains 360 mg EPA and 240 mg DHA), by gavage, in 
a dose of 1 g/kg, every day, for four weeks, as previously 
described (16). After two weeks of treatment with n-3, the 
protocol of migraine induction with NTG injections was 

initiated. Control animals received saline solution at the 
same schedule of treatment. 

Behavioral assays

Animals were transferred to the testing room 40 min 
prior to the behavioral tests. grimace scale, photophobia 
evaluation in the light/dark box, and anxiety-like behavior 
assessment in the elevated plus maze (EPM) were carried 
out at 30 min, 60 min or 24 h after the NTG injection, 
respectively. Two experimenters conducted all of the 
behavioral tests to avoid biased outcomes. The protocols for 
each assay are described below. 

Rat grimace scale
After each NTG injection, rats were placed in a transparent 
glass cage and recorded for 60 min. After each test, 
the device was thoroughly cleaned with ethanol 70%. 
Following the experiment, the records were assessed for 
scoring by one trained research assistant who was blinded 
to the experimental condition. After 30 min of recording, 
10 pictures were taken every 3 min and then the images 
were scored for three features, namely orbital tightening, 
nose/cheek flattening, and ear changes using a scale of 0–2 
(not present, moderate, obvious). The scores were averaged 
across the 10 pictures to produce an overall pain score for 
each rat. 

Photophobia assessment in the light/dark box
After 60 min of each NTG injection, migraine-related 
photophobia was assessed in a light/dark box (Insight, 
Brazil), which consisted of a two-chamber apparatus, with 
dimensions of 210 mm × 450 mm × 410 mm for the bright 
side, and of 210 mm × 350 mm × 410 mm for the dark side. 
A red adhesive paper was taped over the acrylic lid of the 
black chamber to reduce illumination. The rats were placed 
in the corner of the white chamber facing away from the 
experimenter and were allowed to explore the two chambers 
for 20 min. The time spent in the white chamber during 
this period was measured and expressed in seconds. The 
results of the five NTG injections were summed up. After 
each test, the device was thoroughly cleaned with 30% 
ethanol.

Assessment of affective behavior 
After 24 h of each NTG injection, the elevated plus maze 
(EPM) paradigm was used for assessment of affective-
emotional disorders related to pain. The animals were 
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Figure 1 General experimental design. (A) The MS protocol started on day one and finished on day 60; the n-3 supplementation protocol 
started on day 30 and ended on day 60; the migraine induction lasted from days 45 to 60. The animals were assessed in behavioral tasks 
and submitted to euthanasia for sample collection. (B) The chronic migraine protocol comprised five i.p. injections of NTG at days 47, 
50, 53, 56, and 59; control animals received vehicle at the same treatment schedule. (C) Scheme showing the group distribution. Rats 
were initially distributed into two experimental groups that received tap water or 10% fructose solution for 60 days. After 30 days of 
supplementation onset, animals were randomly subdivided into control or n-3-treated groups. Additional subgroups were formed after  
15 days of treatment: one-half of animals were subjected to the protocol of migraine induction, by five NTG i.p. injections every three days, 
whereas control animals received vehicle by the same route of administration. MS, metabolic syndrome; NTG, nitroglycerin; HFD, high 
fructose diet.
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placed in the center of the maze facing an open arm and 
were allowed to explore the apparatus for five minutes. The 
time spent as well as the entries in the open and closed arms 
were registered during this period. An entry into an open 

arm was defined as all four paws crossing the center of the 
maze. During the permanence in the open arm, the head 
dipping counts were also registered. After each test, the 
device was thoroughly cleaned with ethanol 70%.
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Levels of cytokines and adipokines

Animals were euthanized 8 weeks after the onset of the 
HFD consumption by deep anesthesia with isoflurane. 
Immediately after euthanasia, the blood was collected by 
cardiac puncture. After a resting period for coagulation, the 
samples were centrifuged (4,500 rpm, 12 min, 4 ℃), and the 
serum was aliquoted and stored at −80 ℃ until the analysis 
(up to six months at most). Serum and hypothalamus were 
collected to evaluate the levels of CGRP, tumor necrosis 
factor (TNF), interleukin-6 (IL-6), leptin, and adiponectin. 
Cytokines and adipokines were analyzed by sandwich 
ELISA using DuoSet® kits according to the manufacturer’s 
instructions (R&D Systems, Minneapolis, MN, USA) and 
the results were expressed in picograms per mL The kits 
and the limits of detection were: rat TNF-α (DY510; 62.5 
to 4,000 pg/mL); rat IL-6 (DY506; 62.5 to 4,000 pg/mL);  
rat leptin (MOB00B; 62.50 to 4,000 pg/mL) and rat 
adiponectin (DY3100-05; 156.0 to 10,000 pg/mL). The 
experiments with serum samples were run in duplicate, and 
hypothalamic samples were run in simplicate.

Lipid profile

The serum levels of triglycerides (catalog No. 87), total 
cholesterol catalog No. 76), HDL (catalog No. 13) and 
non-HDL cholesterol fractions were determined by 
using colorimetric enzyme assay kits, according to the 
manufacturer’s instructions (LabTest, Brazil) and results 
were expressed in milligrams per dL.

Histopathological analysis

Inguinal (subcutaneous) and epidydimal (visceral) white 
adipose tissues (WAT) were collected and fixed in 10% 
formaldehyde solution for further histopathological 
analysis. WAT samples were included in paraffin and 
sectioned in 5-µm slices, for staining with hematoxylin 
and eosin, as described elsewhere (17). Briefly, the slides 
were stained for 30 s in hematoxylin, followed by 30 s in 
eosin, under agitation, intercalated with water washes. At 
the end of staining procedures, the slides were submitted 
to dehydration steps with alcohol and xylene. Images were 
captured using a Zeiss AxioImager M2 light microscope 
under ×200 magnification (Carl Zeiss, Gottingen, 
Germany) and were analyzed using NIH ImageJ 1.36b 
Software. Adipocyte areas were measured manually, using 
the free-hand function, after adjusting the image scale in 

square micrometer. The frequency size of adipocyte areas 
was determined by a trained experimenter blinded to the 
groups. Crown-like structures (CLS) density was obtained 
by counting the total number of CLS in each image of 
inguinal and epidydimal WAT samples.

Statistical analysis

The results are expressed as the mean ± the standard error 
mean. Brown-Forsythe and Kolmogorov-Smirnov tests 
were used for checking data normality. Column data (group 
as the only factor) was analyzed by one-way ANOVA 
(parametric data) or Kruskal-Wallis (non-parametric 
data) tests. For grouped results (with treatment and 
time as factors), data was evaluated by two-way ANOVA 
(parametric data) or mixed-effect analysis (non-parametric 
data). When the interaction of factors was statistically 
significant (P values less than 0.05), pairwise comparisons 
were conducted by using uncorrected Fisher’s LSD’s or 
Dunn’s post-hoc tests, after one-way ANOVA and Kruskal 
Wallis, respectively. For two-way ANOVA and mixed-
effect analysis, pairwise comparisons were conducted 
by using Tukey or uncorrected Fisher’s LSD’s post-hoc 
tests, respectively (GraphPad Software Inc., San Diego, 
CA, USA, version 8.0.2). P values less than 0.05 were 
considered statistically significant. The variations in the 
experimental N due to sample limitations are described in 
each legend figure.

Results

Food and liquid intake at different time points

We examined the chronic effects of 10-% fructose 
supplementation and NTG injections on food and liquid 
intake in rats. HFD rats showed a decrease in food intake 
over 60 days of experiments (Figure 2A,2B). NTG-injected 
rats also presented a significant reduction of food intake 
in comparison with the respective control group, this 
feature being observed on days 50 to 56, 59 and 60. NTG-
injected rats under HFD showed suppressed feeding only 
on days 45 and 58, compared with their HFD counterparts. 
Conversely, NTG-injected rats receiving tap water 
consumed more food than HFD NTG-injected rats on days 
45 to 47 (Figure 2B). Analyzing the AUC throughout the 
protocol of chronic migraine induction (from days 45 to 60),  
it is possible to observe that NTG injections reduced food 
intake, regardless of HFD or tap water consumption. 
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Figure 2 Food and liquid intake of rats in the water control group (water + saline), HFD control group (HFD + saline), NTG-injected 
rats (water + NTG), and HFD NTG-injected rats (HFD + NTG). (A) Food intake until day 60, before and after the migraine induction 
protocol. (B) Food intake from days 45 to 60, during migraine induction protocol. (C) The area under the curve of food intake from  
days 45 to 60. (D) Liquid intake until day 60, before and after migraine induction protocol. (E) Liquid intake from days 45 to 60 during 
migraine induction protocol. (F) The area under the curve of liquid intake from days 45 to 60. Data are presented as mean ± SEM of 10 to 
12 rats per group (two-way ANOVA followed by Tukey’s post hoc test; mixed-effect analysis followed by uncorrected Fisher’s LSD’s post 
hoc test; or one-way ANOVA followed by uncorrected Fisher’s LSD’s post hoc). a, P<0.05 water + saline vs. HFD + saline; b, P<0.05 water + 
saline vs. water + NTG; f, P<0.05 HFD + saline vs. HFD + NTG; k, P<0.05 water + NTG vs. HFD + NTG. NTG, nitroglycerin; HFD, high 
fructose diet; SEM, standard error of the mean.
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Importantly, HFD NTG-injected rats significantly 
reduced chow consumption when compared with NTG-
injected rats receiving tap water (Figure 2C). Concerning 
the liquid intake, HFD increased the consumption over  
60 days of evaluation (Figure 2D). Throughout the migraine 
induction protocol, NTG injections lessened the liquid 
intake in the HFD group, but not in rats drinking tap water. 
HFD NTG-injected rats drank more liquids on day 48 in 
relation to NTG-injected rats taking tap water (Figure 2E). 
Scrutinizing the AUC of liquid intake during the protocol 
of migraine induction, NTG injections neither affected this 
behavior in rats receiving tap water nor in rats submitted to 
HFD; however, HFD increased the liquid intake compared 
with control rats receiving tap water (Figure 2F).

Body weight changes 

We analyzed the body weight means and the body weight 
variation by subtracting the initial body weight from the 
final body weight at different time points: from days 1 
to 30, from days 30 to 45, from days 45 to 60, and from  
days 1 to 60 (Table 1). From days 1 to 30, the body weight 
means were not significantly different between HFD and 
tap water groups. Conversely, at the same time point, 
HFD rats showed a significant increase in body weight 
variation when compared with tap water rats. There was no 
significant effect for n-3 treatment in either body weight 
means or body weight variation, from days 30 to 45. HFD 
rats treated with n-3 had increased body weight means and 
variation in comparison with n-3-treated tap water rats. A 

b
a
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Table 1 Body weight and body weight variation from days 1 to 30, 30 to 45 and 45 to 60 in water control group (water + saline), HFD 
control group rats (HFD + saline), NTG-injected rats (water + NTG), and HFD NTG-injected rats (HFD + NTG), with or without n-3 
supplementation (water + n-3; HFD + n-3; n-3 + NTG; HFD + n-3 + NTG)

Body weight evaluation
Water HFD

Saline NTG n-3 n-3 + NTG Saline NTG n-3 n-3 + NTG

BW mean days 1–30 (g) 294.0±16.0 – – – 303.0±17.0 – – –

BW mean days 30–45 (g) 403.6±6.5a – 401.0±6.4j – 425.0±8.0a – 426.0±8.0j –

BW mean days 45–60 (g) 439.4±3.5a,b 429.0±3.0b,k 438.0±4.0j 426.4±4.0l 455.5±4.0a,f 475.0±2.0f,i,k 467.0±4.0j 458.0±3.0l,i

ΔBW days 1–30 (g) 176.0±4.0a – – – 190±4.5a – – –

ΔBW days 30–45 (g) 41.4±2.0a – 39.5±3.0j – 54.4±2.0a – 52.0±3.0j –

ΔBW days 45–60 (g) 26.0±2.5b −9.2±7.0b 29.0±3.0d −21.0±10.0 d 30.0±2.4f 3.4±5.0f 29.0±3.0h –12.6±9.0h 

ΔBW days 1–60 (g) 246.5±12.0 229.0±11.4 
(P=0.05)

254.0±6.7 217.8±17.6 264.1±7.9 283.0±11.0 
(P=0.05)

273.4±14.7 251.5±14.3 

Data are presented as means ± SEM of 10 to 12 rats per group for body weight (two-way ANOVA followed by Tukey’s post hoc test; one-
way ANOVA followed by uncorrected Fisher’s LSD’s post hoc; or Kruskal-Wallis followed by uncorrected Dunn’s post hoc test). a, P<0.05 
water + saline vs. HFD + saline; b, P<0.05 water + saline vs. water + NTG; d, P<0.05 water + n-3 vs. water + n-3 + NTG; f, P<0.05 HFD + 
saline vs. HFD + NTG; h, P<0.05 HFD + n-3 vs. HFD + n-3 + NTG; i, P<0.05 HFD + NTG vs. HFD + n-3+ NTG; j, P<0.05 water + n-3 vs. 
HFD + n-3; k, P<0.05 water + NTG vs. HFD + NTG; l, P<0.05 water + n-3 + NTG vs. HFD + n-3+ NTG. BW, body weight; NTG, nitroglycerin; 

HFD, high fructose diet; SEM, standard error of the mean.

similar effect was observed for n-3-free HFD rats, while 
compared with n-3 free tap water rats. From days 45 to 60, 
HFD rats displayed increased body weight means than tap 
water rats, with no difference for body weight variation. 
Additionally, n-3 treated HFD rats displayed increased 
body weight mean in relation to n-3 treated tap water 
rats. NTG-injected tap water rats had their body weight 
mean and variation significantly decreased compared with 
the tap water control group, unlike HFD NTG-injected 
rats, which presented an increased body weight mean 
compared with their NTG-free counterparts. HFD NTG-
injected rats had an increased body weight mean than tap 
water NTG-injected rats, while body weight variation 
was not statistically different between these groups. N-3 
supplementation restored the body weight mean of NTG-
injected rats under HFD. The body weight variation of 
n-3-treated HFD rats was significantly different from the 
n-3-treated HFD NTG-injected group, indicating that 
n-3 treatment decreased the body weight along with NTG 
injections. From days 1 to 60, the body weight variation of 
HFD NTG-injected rats was slightly higher (P=0.05) than 
that from tap water NTG-injected animals (Table 1).

Inguinal and epididymal WAT dynamics

We tested whether the supplementation with 10% fructose 

solution or migraine induction by NTG injections altered 
the subcutaneous (inguinal) and visceral (epididymal) 
WAT dynamics and whether n-3 treatment changed these 
parameters. Tap water NTG-injected rats showed a partial 
decrease of inguinal WAT weight (P=0.069), compared with 
their NTG-free counterparts, with no significant difference 
for HFD NTG-injected rats. Interestingly, HFD NTG-
injected rats exhibited a significant increase of inguinal 
WAT weight when compared with tap water NTG-injected 
rats, a difference that was also seen with n-3 treatment. 
The n-3 supplementation did not alter inguinal WAT 
weight in tap water rats compared with their counterparts. 
Conversely, n-3-treated HFD rats exhibited significantly 
higher inguinal WAT weight, when compared with n-3-
treated rats that received tap water (Figure 3A). 

We also evaluated the inguinal adipocyte areas and the 
size-frequency distribution in the different experimental 
groups. As expected, the mean inguinal adipocyte area of 
HFD rats was significantly higher when compared with 
tap water rats. HFD NTG-injected rats showed a trend 
to decrease of the mean inguinal adipocyte area (P=0.07) 
in relation to the HFD control group, whereas the tap 
water NTG-injected rats did not display any differences, 
when compared with the tap water control group. N-3-
treated HFD rats showed a slight decrease of inguinal 
adipocyte areas (P=0.06) compared with their n-3-free 
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Figure 3 Profile of inguinal white adipose tissue in the different experimental groups. (A) Inguinal white adipose tissue weight; (B,C) 
histological analysis of inguinal adipocyte size and frequency of inguinal adipocyte sizes, after migraine and HFD induction protocols. The 
evaluations were performed by an examiner blinded to the experimental groups. After the analysis, one representative picture per group was 
selected to compose the panel of representative images. (D-K) Images were captured using a Zeiss AxioImager M2 light microscope under 
×200 magnification (Carl Zeiss, Gottingen, Germany). Representative histological images of inguinal adipose tissue in: water control group 
(water + saline; D), NTG-injected rats (water + NTG; E), rats with n-3 supplementation (water + n-3; F), NTG-injected rats with n-3 
supplementation (water + n-3 + NTG; G), HFD control group (HFD + saline; H), HFD NTG-injected rats (HFD + NTG; I), HFD rats 
with n-3 supplementation (HFD + n-3; J), and HFD NTG-injected rats with n-3 supplementation (HFD + n-3 + NTG; K), respectively. 
Data are presented as mean ± SEM of 4 to 8 rats per group (mixed-effect analysis followed by uncorrected Fisher’s LSD’s post hoc test; or 
one-way ANOVA followed by uncorrected Fisher’s LSD’s post hoc). a, P<0.05 water + saline vs. HFD + saline; d, P<0.05 water + n-3 vs. water 
+ n-3 + NTG; e, P<0.05 water + NTG vs. water + n-3 + NTG; f, P<0.05 HFD + saline vs. HFD + NTG; i, P<0.05 HFD + NTG vs. HFD + n-3+ 
NTG; j, P<0.05 water + n-3 vs. HFD + n-3; k, P<0.05 water + NTG vs. HFD + NTG. NTG, nitroglycerin; HFD, high fructose diet; SEM, 
standard error of the mean.

counterparts, with no differences for the tap water group. 
Lastly, n-3-treated tap water NTG-injected rats showed 
a reduced mean inguinal adipocyte area than the NTG-
free rats (Figure 3B). As for the inguinal adipocyte size-
frequency distribution, HFD NTG-injected rats displayed 
a significantly higher number of adipocytes with an area of 
<500 µm2 than HFD NTG-free rats. N-3-treated tap water 
NTG-injected rats showed decreased adipocyte areas, with 
a higher number of adipocytes displaying an area ranging 

from 2,000 to 2,500 µm2, compared with n-3-free tap water 
NTG-injected rats (Figure 3C). Representative images of 
inguinal adipocytes are provided in panels Figure 3D-3K.

Concerning the epididymal WAT weight, NTG-
injected rats presented a significant reduction of this 
parameter compared with the respective NTG-free 
control groups that had received either tap water or HFD. 
Moreover, n-3-treated HFD NTG-injected rats showed 
higher epididymal adiposity than n-3 treated and NTG-
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Figure 4 Profile of epididymal white adipose tissue in the different experimental groups. (A) Epididymal white adipose tissue weight; 
(B,C) histological analysis of epididymal adipocyte sizes and frequency of epididymal adipocyte sizes after migraine and HFD induction 
protocols. The evaluations were performed by an examiner blinded to the experimental groups. After the analysis, one representative picture 
per group was selected to compose the panel of representative images. (D-K) Images were captured using a Zeiss AxioImager M2 light 
microscope under×200 magnification (Carl Zeiss, Gottingen, Germany). Representative histological images of epididymal adipose tissue 
in: water control group (water + saline; D), NTG-injected rats (water + NTG; E), rats with n-3 supplementation (water + n-3; F), NTG-
injected rats with n-3 supplementation (water + n-3 + NTG; G), HFD control group (HFD + saline; H), HFD NTG-injected rats (HFD 
+ NTG; I), HFD rats with n-3 supplementation (HFD + n-3; J), and HFD NTG-injected rats with n-3 supplementation (HFD + n-3 + 
NTG; K), respectively. Data are presented as mean ± SEM of 4 to 8 rats per group (mixed-effect analysis followed by uncorrected Fisher’s 
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injected tap water animals, as well as than HFD NTG-
injected rats without n-3 treatment (Figure 4A). Extending 
this data, tap water NTG-injected rats exhibited a decrease 
of epididymal adipocyte areas, in relation to the NTG-free 
control group, with no significant differences for the HFD 
group. Curiously, the n-3 treated tap water rats displayed 
decreased epididymal adipocyte area compared with the 
n-3-free control group; there were no changes for the 
HFD groups. Also, n-3 treated HFD NTG-injected rats 
showed increased epididymal adipocyte areas, compared 

with their n-3 treated tap water counterparts (Figure 4B). 
Both the NTG-injected HFD and the NTG-injected 
tap water rats showed reduced epididymal adipocyte size 
frequencies compared with their NTG-free control rats; 
with the smallest adipocytes for the NTG-injected HFD 
rats ranging from 1,500 to 2,000 µm2, whereas the most 
adipocytes of control water group ranged from 4,500 to 
6,000 µm2. Remarkably, tap water rats treated with n-3 
showed a decrease of epididymal adipocyte size frequencies, 
in comparison with their n-3 free counterparts, the former 
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displaying a higher number of adipocytes with areas 
ranging from 5,000 to 5,500 µm2, compared with their n-3 
treated counterparts. Also, n-3 treated HFD rats showed 
a decrease of epididymal adipocyte size frequencies, as the 
n-3-free HFD rats displayed a higher number of adipocytes 
with areas ranging from 5,000 to 5,500, compared with 
their HFD n-3-free counterparts. N-3-treated HFD 
NTG-injected rats showed increased epididymal adipocyte 
size frequencies when compared with tap water rats with 
the same treatment; the former displaying a higher number 
of adipocytes with areas ranging from 6,500 to 7,000 µm2  

(Figure 4C) .  Representative images of epididymal 
adipocytes are provided in panels Figure 4D-4K.

We carried out a semi-quantitative analysis of crown-
like structures (CLS) in epididymal and inguinal rat 
adipose tissues (Figure 5). Tap water NTG-injected 
rats displayed a higher intensity of CLS in visceral and 
subcutaneous WAT, than tap water control rats, with a 
higher occurrence of CLS in the subcutaneous WAT. 
Interestingly, this effect was almost totally reversed by 
n-3 supplementation in the tap water rats. HFD increased 
the subcutaneous CLS compared with rats receiving tap 
water. N-3 treatment switched this parameter as well. 
Remarkably, HFD NTG-injected rats showed CLS only 
in the visceral WAT, with a less intensity than HFD NTG-
free rats. Unexpectedly, n-3 treated HFD NTG-injected 
rats displayed increased CLS in visceral and subcutaneous 
WAT in comparison with n-3-free HFD NTG-injected 
rats. Lastly, CLS were superior in the WAT of tap water 
NTG-injected rats than in the WAT of HFD NTG-
injected rats, both visceral and subcutaneous (Figure 5). 

Nociception endpoints 

We analyzed photophobia by using the light/dark box and 
the pain-like symptoms by the grimace scale evaluation. 
NTG injections significantly decreased the time spent 
in the light chamber of the light/dark box in all groups  
(Figure 6A). The AUC of grimace scores showed a 
pronounced pain-like behavior in groups that received 
NTG. Curiously, HFD NTG-injected rats displayed a 
significant decrease of grimace scores, when compared 
with tap water NTG-injected rats, an effect that has 
been prevented by n-3 supplementation (Figure 6B,6C). 
Representative grimace images taken 30 minutes after the 
last NTG injection are depicted in panels Figure 6D-6K.  
These conclusions are supported by descriptive data 
showing the minimal and maximal AUC values, besides 

the sum of values in each experimental group (Table S1). 

Changes in MS and migraine-like biomarkers 

NTG did not change the serum levels of CGRP, neither in 
the tap water nor in the HFD group, compared with their 
NTG-free counterparts. Nevertheless, n-3-treated tap 
water NTG-injected rats displayed decreased serum CGRP 
levels compared with their n-3-free and NTG-injected 
counterparts. HFD NTG-injected rats showed a slight 
decrease in the serum CGRP contents, when compared 
with tap water NTG-injected rats (P=0.06). No changes 
were observed for n-3-treatment in the HFD groups  
(Figure 7A). N-3 treated tap water rats displayed decreased 
serum leptin compared with the n-3-free control rats. 
Either HFD or tap water NTG-injected rats showed a 
decrease in serum leptin levels when compared with their 
NTG-free counterparts. Interestingly, n-3 treated HFD 
rats exhibited higher serum leptin levels than the n-3 
treated HFD NTG-injected group. Also, n-3-treated HFD 
rats presented higher serum leptin contents than n-3-treated 
tap water rats (Figure 7B). As for the analysis of circulating 
adiponectin, HFD rats’ levels were decreased in relation 
to tap water control rats. Also, the same occurred in rats 
receiving n-3, when compared with those without n-3 
supplementation, both in the tap water or in the HFD rats. 
Furthermore, the n-3-treated NTG-injected rats displayed 
decreased serum adiponectin levels, while compared to n-3-
free NTG-injected rats, regardless of HFD. Also, there was 
a tendency toward decreased serum adiponectin levels in 
n-3 treated HFD rats compared with n-3 treated tap water 
rats (Figure 7C). There were no detectable TNF and IL-6 
contents in serum of any evaluated group.

Relating to the hypothalamic parameters, HFD rats 
displayed decreased hypothalamic CGRP levels than tap 
water rats, while HFD NTG-injected rats showed increased 
hypothalamic CGRP than HFD control rats. No changes 
were seen for n-3 treated rats (Figure 8A). The n-3-treated 
tap water group displayed decreased hypothalamic IL-
6, when compared with n-3-free tap water rats. A slight 
decrease in this parameter was observed for HFD rats, if 
compared with tap water rats (P=0.06). A slight increase 
(P=0.08) of hypothalamic IL-6 was seen in n-3 treated 
tap water NTG-injected rats, when compared with n-3 
treated NTG-free rats. Also, a mild increase (P=0.08) 
in this parameter was seen in n-3 treated HFD NTG-
injected rats, compared with n-3-free HFD NTG-injected 
rats. Surprisingly, hypothalamic IL-6 had a slight decrease 

https://cdn.amegroups.cn/static/public/ATM-21-5699-supplementary.pdf
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evaluations were performed by an examiner blinded to the experimental groups. After the analysis, one representative picture per group 
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HFD rats with n-3 supplementation (HFD + n-3; H), and HFD NTG-injected rats with n-3 supplementation (HFD + n-3 + NTG; I), 
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with n-3 supplementation (HFD + n-3 + NTG; Q), respectively. The red asterisks indicate the adipocytes presenting CLS. CLS, crown-like 
structure. WAT, white adipose tissues; NTG, nitroglycerin; HFD, high fructose diet.

(P=0.08) in HFD NTG-injected rats compared with tap 
water NTG-injected rats (Figure 8B). As for hypothalamic 
TNF contents, there was a significant decrease in n-3 
treated tap water NTG-injected rats, when compared with 

their n-3-free counterparts; no changes were observed in 
HFD groups (Figure 8C). Concerning hypothalamic leptin 
contents, n-3 treated HFD NTG-injected rats displayed 
a slight decrease compared with n-3-free HFD NTG-
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with n-3 supplementation (water + n-3 + NTG; G), HFD control group (HFD + saline; H), HFD NTG-injected rats (HFD + NTG; I), HFD 
rats with n-3 supplementation (HFD + n-3; J), and HFD NTG-injected rats with n-3 supplementation (HFD + n-3 + NTG; K), respectively. 
Data are presented as mean ± SEM of 7 to 12 rats per group (Kruskal Wallis followed by uncorrected Dunn’s post hoc test; mixed-effect analysis 
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water + saline vs. water + NTG; d, P<0.05 water + n-3 vs. water + n-3 + NTG; f, P<0.05 HFD + saline vs. HFD + NTG; h, P<0.05 HFD + n-3 
vs. HFD + n-3 + NTG; k, P<0.05 water + NTG vs. HFD + NTG; i, P<0.05 HFD + NTG vs. HFD + n-3 + NTG. NTG, nitroglycerin; HFD, 
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injected rats (P=0.063), with no changes for tap water groups  
(Figure 8D). As for hypothalamic adiponectin levels, there was 
a decrease of this biomarker in the HFD NTG-injected rats, 
when compared with HFD NTG-free rats. Also, n-3 treated 
tap water NTG-injected rats displayed reduced adiponectin 
levels than their NTG-free counterparts (Figure 8E).

Biochemical parameters

At the end of the MS protocol, HFD rats displayed a mild 
increase in glycemia compared with tap water control rats 
(P=0.055). HFD NTG-injected rats presented decreased 
glycemia levels, when compared with their NTG-free 
equivalents. No differences were noticed between tap water 
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Figure 8 Effects of NTG, HFD, and n-3 treatment on hypothalamic levels of (A) CGRP, (B) IL-6, (C) TNF, (D) leptin, and (E) 
adiponectin, measured by enzyme immunoassay at the end of experiments. Data are presented as means ± SEM of 4 to 6 rats per group (one-
way ANOVA followed by uncorrected Fisher’s LSD’s post hoc test). a, P<0.05 water + saline vs. HFD + saline;  d, P<0.05 water + n-3 vs. water 
+ n-3 + NTG; e, P<0.05 water + NTG vs. water + n-3+ NTG; f, P<0.05 HFD + saline vs. HFD + NTG. TNF, tumor necrosis factor; NTG, 
nitroglycerin; HFD, high fructose diet; SEM, standard error of the mean.
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NTG-injected rats and tap water control rats. There was 
a slight decrease (P=0.09) in glycemia levels with NTG 
injections in n-3 treated tap water rats, compared with n-3 
treated NTG-free tap water rats. Interestingly, n-3 treated 
HFD NTG-injected rats presented a modest increase 
(P=0.08) in glycemia levels than tap water rats with the 
same treatments. Concerning triglycerides, we observed a 
trend to decrease of this parameter in HFD NTG-injected 
rats, compared with their NTG-free counterparts (P=0.07); 
no changes were registered for NTG or n-3 treatments. 
HFD rats showed decreased total cholesterol in comparison 
with tap water rats. Also, a reduction of total cholesterol 
was observed in tap water NTG-injected rats, in relation 
to tap water NTG-free rats. N-3 treatment decreased the 
total cholesterol of tap water rats, while HFD rats displayed 
a slight decrease of total cholesterol by n-3 treatment 
(P=0.054). Total cholesterol was decreased in n-3 treated 
rats, either in the tap water NTG-injected group or the 
HFD NTG-injected group, compared with their n-3-free 
counterparts. 

Concerning the HDL cholesterol fraction, tap water 
NTG-injected rats displayed decreased HDL cholesterol 
than the NTG-free tap water rats. Unexpectedly, we 

observed a decrease in this parameter in the n-3 treated 
tap water rats compared with the n-3-free control group. 
Also, there was a slight decrease in HDL cholesterol in 
the n-3 treated tap water NTG-injected rats, compared 
with the n-3-free tap water NTG-injected rats (P=0.051). 
N-3 treatment was able to decrease the HDL cholesterol 
in HFD NTG-injected rats compared with their n-3-free 
counterparts. We did not observe any differences for the 
non-HDL cholesterol among the experimental groups 
(Table 2).

Assessment of affective behavior 

We looked over to the anxiety behavior by using the EPM, 
24 h after each NTG injection (Table 3). The HFD group 
had a significant increase in the total number of entries 
in the EPM, compared with the tap water control group. 
Furthermore, there was a decrease in the total number of 
entries for rats that received NTG injections, either in 
the HFD or in the tap water group. The n-3 treatment 
had no effect on this parameter. Also, the NTG injections 
significantly reduced the number of entries in open arms, 
regardless of HFD supplementation, compared with their 

Table 2 Biochemical metabolic parameters in water control group (water + saline), HFD control group rats (HFD + saline), NTG-injected rats 
(water + NTG), and HFD NTG-injected rats (HFD + NTG), with or without n-3 supplementation (water + n-3; HFD + n-3; n-3 + NTG; HFD 
+ n-3 + NTG)

Biochemical 
parameters

Water HFD

Saline  
(P value)

NTG  
(P value)

n-3  
(P value)

n-3 + NTG  
(P value)

Saline  
(P value)

NTG  
(P value)

n-3  
(P value)

n-3 + NTG  
(P value)

Glycemia (mg/dL) 152.0±11.0 
(P=0.055)

144.0±9.0 157.0±13.0 
(P=0.09)

131.0±7.0 
(P=0.09, 
P=0.08)

180.5±10.5f 

(P=0.055)
150.5±9.0f 156.0±9.0 157.0±13.5 

(P=0.08)

Triglycerides (mg/dL) 61.0±9.0 74.8±15.0 48.7±7.0 55.0±7.0 84.0±11.4 
(P=0.07)

55.0±12.0 
(P=0.07)

71.0±11.0 74.4±12.0

Total cholesterol  
(mg/dL)

82.0±8.0a,b,c 55.7±8.5b,e 47.4±8.0c 38.0±7.0e 63.0±3.6a 

(P=0.054)
61.0±3.5i 46.0±2.0 

(P=0.054)
43.5±3.4i

HDL (mg/dL) 59.0±5.2b,c 32.4±8.0b 

(P=0.051)
38.6±2.4c,d 20.0±4.5d 

(P=0.051)
47.0±5.6 39.0±1.4i 35.0±2.0 26.0±1.5i

Non–HDL cholesterol 
(mg/dL)

23.6±3.0 21.6±3.0 15.0±4.4 18.0±3.0 16.6±4.0 22.0±2.4 11.0±2.0 18.0±3.0

Data are presented as means ± SEM of 10 to 12 rats per group for glycemia, 5 to 6 rats per group for triglycerides, total cholesterol, HDL 
and non-HDL cholesterol (one-way ANOVA followed by uncorrected Fisher’s LSD’s post hoc; or Kruskal-Wallis followed by uncorrected 
Dunn’s post hoc test). a, P<0.05 water + saline vs. HFD + saline; b, P<0.05 water + saline vs. water + NTG; c, P<0.05 water + saline vs. 
water + n-3; d, P<0.05 water + n–3 vs. water + n-3 + NTG; e, water + NTG vs. water + n-3 + NTG; f, P<0.05 HFD + saline vs. HFD + NTG; 
i, P<0.05 HFD + NTG vs. HFD + n-3 + NTG; P=0.09 for water + n-3 vs. water + n-3 + NTG, P=0.08 for water + n-3 + NTG vs. HFD + n-3 + 

NTG. NTG, nitroglycerin; HFD, high fructose diet; SEM, standard error of the mean.
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Table 3 Elevated plus maze (EPM) behavior assessed 24 h after NTG injections in: water control group rats (water + saline), HFD control 
group rats (HFD + saline), NTG-injected rats (water + NTG), HFD NTG-injected rats (HFD + NTG), rats supplemented with n-3 (water + 
n-3), HFD rats supplemented with n-3 (HFD + n-3), NTG-injected rats supplemented with n-3 (n-3 + NTG) and HFD NTG-injected rats 
supplemented with n-3 (HFD + n-3 + NTG)

Behavioral parameters
Water HFD

Saline (P value) NTG (P value) n-3 n-3 + NTG Saline NTG n-3 n-3 + NTG

Total number of entries 13.0±1.4a,b 7.0±1.5b 14.0±1.0d 6.0 ±1.0d,l 18.0±2.0a,f 10.0±1.0f 15.0±1.0h 10.0±2.0h,l

Entries in open arms 6.0±1.4b 2.5±1.0b 5.0±1.0 2.0±1.0 7.0±1.4f,g 3.0±1.0f 4.0±1.0g 4.0±1.0

%Time in open arms (s) 22.0±5.0 (P=0.08) 8.0±3.4 (P=0.08) 21.0±6.0 13.4±6.0 30.0±5.4f 11.0±3.0f 25.4±8.0 25.0±7.0

%Time in closed arms (s) 54.4±6.5 65.6±7.5 43.0±8.0 53.0±10.0 45.0±5.0 58.6±5.5 51.6±4.0 49.0±9.0

Head dipping 3.5±1.0b 0.4±0.2b 3.0±1.0d 0.5±0.3d 7.0±2.6f 1.0±0.4f 2.0±0.5 3.0±1.0

Data are presented as means ± SEM of 10 to 12 rats per group (one-way ANOVA followed by uncorrected Fisher’s LSD’s post hoc; or 
Kruskal-Wallis followed by uncorrected Dunn’s post hoc test). a, P<0.05 water + saline vs. HFD + saline; b, P<0.05 water + saline vs. water 
+ NTG; d, P<0.05 water + n-3 vs. water + n-3 + NTG; f, P<0.05 HFD + saline vs. HFD + NTG; g, P<0.05 HFD + saline vs. HFD + n-3; h, 
P<0.05 HFD + n-3 vs. HFD + n-3 + NT; l, P<0.05 water + n-3 + NTG vs. HFD + n-3 + NTG. NTG, nitroglycerin; HFD, high fructose diet; 
SEM, standard error of the mean.

NTG-free counterparts. N-3 treatment decreased the 
number of entries in open arms only in the HFD group. 

As for the percentage of time spent in open arms, we 
observed a slight decrease of this parameter in the tap 
water NTG-injected rats compared with tap water control 
group (P=0.08). There was a significant decrease of the 
percentage of the time spent in the open arms for the HFD 
NTG-injected rats, when compared with their NTG-free 
counterparts. The n-3 treated HFD NTG-injected rats 
did not display any changes in the percentage of time spent 
in open arms, compared with n-3 treated HFD NTG-
free rats, despite the lack of significant differences when 
comparing HFD NTG-injected rats, with and without n-3. 
This result indicates that NTG injections did not exert 
affective alterations in rats that had been treated with n-3. 
As for the percentage of time spent in the closed arms, there 
were no significant differences among the groups. 

About the number of head dippings, we noted a decrease 
of head dippings in the NTG-injected rats, both in the tap 
water rats or in the HFD rats, when compared with their 
control mates. N-3 treated HFD rats that received NTG 
injections did not display reduced exploratory behavior as 
the n-3-free HFD rats with NTG injections (Table 3).

Discussion

The present study investigated the impacts of HFD-
induced MS in a rat model of migraine evoked by NTG 
administration, aiming to analyze the effects of n-3 

supplementation in this scenery. To achieve this goal, we 
looked over the influence of HFD and n-3 supplementation 
on pain-like intensity, photophobia, adiposity, inflammatory 
markers, adipokines, biochemical profiling, and the affective 
behavior endpoints related to the induction of migraine-like 
changes by repeated NTG injections. 

Initially, we hypothesized that MS generated by HFD 
could exacerbate the migraine-like symptoms. This premise 
was based on previous studies suggesting that migraine 
could be aggravated in obese children and adults (7,8,18-20).  
Surprisingly, our data revealed that HFD alleviated the 
pain-like behavior caused by NTG injections. In the 
present study, five NTG injections led to photophobia 
and pronounced migraine-like pain behavior, as assessed 
by the dark/light box and grimace scores, respectively, 
in accordance with previous studies (14,21). The NTG 
injections also diminished food intake, either in the tap 
water or in the HFD group, a feature that was described 
elsewhere (22). Moreover, we observed an important 
reduction of whole body and epididymal fat weights and a 
mild reduction of inguinal fat weight in the tap water NTG-
injected rats. The decrease of food intake and body weight 
by NTG injections might reflect the reduced appetite 
and the presence of nausea, which are common migraine 
symptoms (22). Otherwise, NTG-injected rats consuming 
HFD showed body weight gain, despite a mild reduction of 
inguinal adipocyte area and size frequency, epididymal fat 
weight and the respective adipocyte size frequency. Also, 
HFD NTG-injected rats displayed reduced glycemia when 
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compared with the HFD control rats. The increase in body 
weight might suggest a protective role for fructose ingestion 
in migraine, correlating with the diminished grimace scale 
scores in this group. One has reported that ghrelin can relief 
pain, restoring body weight and appetite in rats submitted 
to NTG injections (22). Furthermore, it was previously 
observed that maternal fructose supplementation can 
increase plasma ghrelin levels in dams and pups (23), which 
is supposed to relieve the painful responses by activating 
the mesolimbic dopaminergic circuit, leading to reward 
and motivation-related feelings (22). Another mechanism 
that could support our findings is that fructose can decrease 
the cerebral blood flow, evoking feeding behavior in  
rodents (24). Also, there is evidence suggesting that fructose 
can reduce the eNOS activation, consequently preventing 
the nitric oxide (NO) production (25). In fact, NO is able to 
increase the cerebral blood flow, being the vasodilator agent 
released by NTG (25-27). 

The disfunction in sensory processing in migraine might 
lead the brain to demand greater amounts of energy (28).  
It has been suggested that a migraineur brain has 
decreased organic phosphates because of fallen oxidative 
phosphorylation (29-31) and a glucose hypometabolism in 
brain regions linked with nociceptive processing (32). Some 
authors suggest that the combination of greater energy 
expenditure with reduced energy storage could activate the 
trigeminovascular system, triggering migraine (33). There is 
evidence that the degree of insulin resistance (IR) positively 
correlated with chronic migraine (34), which could be 
an adaptive counter regulatory response that impairs the 
entry of glucose into peripheral tissues, thereby increasing 
the glucose availability in the brain (33). This mechanism 
explains why T2DM might be protective against migraine 
(35,36). Herein, we observed that NTG injections reduced 
the blood glucose levels in HFD rats, which could imply an 
increase of insulin sensitivity in this group.

Some authors have suggested that n-3 supplementation 
along with amitriptyline might help to decrease migraine 
frequency (37). Herein, there were no changes of 
photophobia or pain scores after one month of n-3 
supplementation. A reduction of headache duration and 
severity, besides life quality, has been demonstrated in 
patients supplemented with n-3 (38). Nonetheless, a meta-
analysis did not reveal any correlation between n-3 intake 
and migraine severity or frequency, despite a reduction of 
migraine duration per day (39). Further studies with longer 
n-3 treatment protocols and different doses are required for 
more conclusive results.

We observed a decrease of epididymal adipocyte weight 
in the NTG-injected rats, both in the HFD or in the tap 
water rats compared with their NTG-free control rats, 
which could suggest an increased lipolysis in this tissue, as 
the visceral WAT presents a higher lipolytic activity due 
to the greater presence of β3-adrenergic receptors (40).  
Some authors have observed increased cortisol levels in 
migraineurs (41-43), as well as an elevation of plasma 
free fatty acids and glycerol (44), which might suggest 
a protective response via adipose tissue lipolysis for 
compensating the high energy demand (33). Metabolic 
alterations during energy deprivation include suppression 
of anabolic pathways and stimulation of catabolic pathways, 
such as the glucose uptake and fatty acid oxidation, two 
processes that act together to restore ATP levels (45). The 
increase in inguinal fat weight in the HFD NTG-injected 
rats compared with the tap water NTG-injected rats might 
support a defensive role for fructose in migraine. 

In this study, the n-3 treatment did not exert any 
significant effect on body weight change in the tap water 
NTG-injected rats. Conversely, in the HFD NTG-injected 
rats, n-3 treatment prevented the body weight increase in 
this group. This effect might be due to the increased energy 
expenditure with n-3 supplementation (46), combined with 
the decreased food intake observed in the NTG-treated 
rats. The effect of n-3 might not be evident in the tap water 
NTG-injected rats because their body weight was lesser 
than the body weight of HFD NTG-injected rats. 

N-3 along with NTG injections potentiated the decrease 
in inguinal adipocyte size in the tap water rats. It is well 
documented that n-3 can induce browning in inguinal (47)  
and epididymal (48) adipocyte tissues, thus increasing 
the thermogenesis (47). Until now, there is no evidence 
regarding n-3 effects on the adipose tissue of NTG-injected 
rats. Nonetheless, the effects of n-3 on inguinal adipocyte 
size in NTG-injected rats might be due to NTG-induced 
decrease in food intake (22), combined with increased n-3-
induced thermogenesis in inguinal adipose tissue (47).  
Furthermore, there is evidence that n-3-induced thermogenesis 
might be dependent on TRPV1 activation (46), and 
it is known that migraine-like pain induced by NTG 
injections is mediated by this same receptor (22). There 
might be an overstimulation of TRPV1 channels leading 
to enhanced thermogenesis in the n-3 treated tap water 
NTG-injected rats. As expected, n-3 supplementation 
was able to decrease epididymal adipocyte size in the tap 
water rats and in the HFD rats, the last one evidenced 
by the adipocyte area frequency size. Similar results were 
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seen elsewhere, whose authors suggested that n-3 can 
increase epididymal fat utilization through mitochondrial 
uncoupling and peroxisomal fatty acid oxidation (48). 
Strikingly, n-3 treatment was unable to decrease epididymal 
fat weight and size in the HFD NTG-injected rats. It seems 
that n-3 preserved the epididymal fat somehow, despite 
the decreased body weight of n-3 treated HFD NTG-
injected rats compared with their n-3-free counterparts. 
Some studies reported increased visceral adipose tissue 
mass with n-3 treatment, and this has been associated 
with an amelioration of inflammation and metabolic  
parameters (49).

The CLS is a marker of macrophage infiltration in 
the adipose tissue, which can lead to cell death through 
pyroptosis (50). Remarkably, it has been previously 
demonstrated that pyroptosis mostly occurs in hypertrophic 
adipocytes (51). In our study, the HFD group presented 
higher CLS intensity than tap water rats, according to the 
evaluation of inguinal subcutaneous adipose tissue, which 
is likely related to an increase of HFD inguinal adipocytes. 
On the other hand, some authors suggested that adipocyte 
death is more prevalent in epididymal adipose tissue of 
mice (52) and rats (53) than in subcutaneous adipose 
tissue. However, individuals with MS showed increased 
macrophage infiltration and CLS in subcutaneous adipose 
tissue, and the amount of subcutaneous adipose tissue in 
these individuals was positively correlated with MS and IR 
degree (54). We observed an increase of CLS intensity in 
both inguinal and epididymal fat in the tap water NTG-
injected rats compared with the NTG-free tap water rats. 
The increase in CLS might point out to a pro-inflammatory 
state, with decreased insulin sensitivity (50). A previous 
study demonstrated that exercise training associated-
lipolysis led to increased inflammation in the subcutaneous 
adipose tissue, providing lipids for muscle energy, allowing 
to suggest that, in our study, the increased CLS numbers 
in inguinal fat—a pro-inflammatory process—of tap water 
NTG injected rats could be an indicative of lipolysis (55). 
Indeed, the increase in the epididymal CLS intensity in 
the HFD NTG-injected rats suggests a higher lipolysis in 
this group. The inflammation of the adipose tissue could 
be a hint to fatty acid oxidation (55), corroborating with 
the decreased epididymal fat depot weight in this group. 
The CLS was absent in the inguinal adipose tissue of HFD 
NTG-injected rats, possibly indicating an improvement 
of IR in the HFD NTG-injected rats compared with their 
NTG-free control rats. Hence, Jialal et al. suggested that 
a reduction of adipose tissue inflammation in MS might 

suggest an improved insulin sensitivity (54); however, this 
study was performed in the subcutaneous adipose tissue and 
there is no evidence of this process in the visceral adipose 
tissue. Another indication of HFD protection in migraine 
is the higher inguinal CLS intensity in the tap water 
NTG-injected rats than in the HFD NTG-injected rats, 
indicating decreased IR in the last group.

Herein, we observed an increased CLS intensity in the 
visceral fat depot of the n-3 treated HFD NTG-injected 
group. In conditions like fasting, the visceral adipose tissue 
might be protective via oxidation reaction, as this fat can 
better drain to the portal vein circulation compared with 
the subcutaneous fat, being more efficient as for energy 
demands, preserving energy homeostasis (56). Some 
authors suggest that migraine occurs in a sparse glucose 
condition, similar to fasting (33). Taking in account that 
n-3 treatment can increase energy expenditure (46), 
and increased visceral fat weight was seen in fasted rats 
previously supplemented with fructose (57), this effect 
might occur in our experimental paradigm. Also, increased 
visceral CLS intensity in this group might arise due to 
hypertrophic adipocytes (52), as n-3 treatment was unable 
to decrease adipocyte size in this group, despite the body 
weight decrease. There was a greater decrease in the CLS 
intensity in the subcutaneous fat of n-3-treated HFD rats, 
when compared with their n-3-free counterparts. Spencer 
et al. observed that n-3 decreased the pro-inflammatory 
macrophages and subcutaneous CLS in patients with  
MS (58). Considering that adipocyte enlargement is one of 
the CLS-inducing factors (59), we detected a mild decrease 
in the adipocyte areas of n-3 treated HFD rats. Therefore, 
decreased CLS intensity might occur due to n-3-induced 
improvement of adipocyte hypoxia and necrosis. N-3 
treatment significantly decreased the CLS intensity in 
subcutaneous and in visceral fat of tap water NTG-injected 
rats. Until now, there is no evidence of n-3 effects in adipose 
tissue of NTG-injected rodents. Nonetheless, it has been 
suggested that infiltrated macrophages in adipose tissue can 
contribute to systemic inflammation and IR (60). Thus, it is 
possible that n-3 might reduce adipose tissue inflammation, 
as it diminishes the systemic inflammation as well (58).

CGRP is a potent cerebral vasodilator, released by 
trigeminal nerves, being considered a neuromodulator of 
the central pain circuitries (61,62). Previous reports showed 
that NTG is capable of increasing plasma CGRP levels (14).  
However, we did not observe an increase in the serum 
CGRP levels, neither in the HFD nor in the tap water 
NTG-injected rats. Lee et al. did not find any correlation 
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between serum CGRP levels and migraine episodes in 
chronic migraineur patients (63). Nevertheless, there was 
a slight decrease of CGRP in the HFD NTG-injected 
rats, compared with the tap water NTG-injected rats. 
Fructose can lead to a serum CGRP decrease and enhanced 
production of vasoconstrictor mediators in rats (64), which 
could help to counteract NTG effects on development of 
migraine-like alterations. Noteworthy, there was a decrease 
in serum CGRP with n-3 treatment in the tap water NTG-
injected rats. A recent evidence showed that the n-3-derived 
resolvin D3 was able to inhibit the TRPV1 currents and 
the release of CGRP in psoriatic mice (65), supporting 
somewhat our results. Conversely, serum CGRP was not 
altered in the n-3 treated HFD NTG-injected rats, maybe 
because serum CGRP levels of n-3-free HFD NTG-
injected rats were already low.

The hypothalamic CGRP levels were decreased in the HFD 
rats, when compared with the tap water rats. Substantiating 
our results, previous evidence showed an increased signaling 
of glucocorticoid receptor and ghrelin levels during 
fructose metabolism (23,66), which might be responsible 
for the hypothalamic CGRP decline under HFD (67).  
Surprisingly, hypothalamic CGRP was increased in the 
HFD NTG-injected rats compared with their NTG-free 
counterparts. CGRP elevation can lead to fat accumulation 
in rodent models of obesity (68,69). According to that, in 
the present study, there was an increase of fat accumulation 
in the HFD NTG-injected group compared with their 
NTG-free counterparts. The increased hypothalamic 
CGRP levels could be a compensatory response for reduce 
the energy expenditure with the purpose to decrease 
migraine energy needs, as mice lacking CGRP gene have 
an increased energy expenditure (69). Hypothalamic CGRP 
was not affected by n-3 treatment in any group. It has been 
hypothesized that migraine can be alleviated by n-3-enriched 
diet, through decreased inflammatory mediators (70).  
However, until now, there is no evidence for n-3 effects 
on hypothalamic CGRP of NTG-injected and MS rats, 
indicating the need of more research that evaluate the 
n-3 effect under different doses and periods when these 
conditions co-occur.

Herein, we observed diminished serum leptin levels in 
NTG-injected rats, in both HFD and tap water groups. A 
previous study has shown that leptin could alter trigeminal 
nerve nociceptive inputs to higher brain levels. The 
authors demonstrated that trigeminocervical neuronal 
firing was significantly inhibited by leptin infusion in  
rats (71), indicating a potentially antinociceptive effect for 

this adipokine. These results are consistent with the fact 
that fasting induces a decrease in plasma leptin levels and 
it is able to trigger migraine attacks (71). Clinical studies 
also indicate a disruption of GLP-2 and leptin levels in 
migraineurs (72,73). Nonetheless, leptin levels are positively 
correlated with body fat mass (74) and, in our study, tap 
water NTG-injected rats displayed a reduction of this 
feature, when compared with NTG-free control rats. Thus, 
low leptin levels in NTG-injected rats could be a result of 
decreased fat mass. Still, the HFD NTG-injected rats had 
higher body fat mass than their NTG-free counterparts 
and still showed less leptin levels when compared with their 
NTG-free control group. There is evidence that a drop 
in leptin levels is accompanied by metabolic adaptations 
that limit the energy expenditure (75), which could be an 
adaptive advantage for preventing migraine energy needs. 
N-3 treatment was able to decrease serum leptin levels 
in the tap water rats. Some authors suggested that n-3 
lowering effects on leptin might occur only when combined 
with an energy-restricted diets (76). This hypothesis is in 
accordance with our results showing the absence of any 
serum leptin variation levels in the n-3-treated HFD rats. 

Leptin acts on hypothalamic neurons to regulate food 
intake, blood glucose levels and thermogenesis (77). We 
did not observe significant hypothalamic leptin changes 
among the groups. Despite being able to capture leptin 
from the blood, some studies suggest that hypothalamus 
itself produces leptin (78). Until now, there is no study 
that evaluated hypothalamic leptin levels under migraine 
and/or MS conditions. One has shown that hypothalamic 
leptin levels in fasting rats was significantly changed only 
when the lipid stores were compromised. For instance, 
hypothalamic leptin levels only decrease after 12-h of 
fasting, different of serum leptin levels that vary after 
6-h of fasting. The authors suggested that adipose leptin 
production has a role in the short-term food intake, while 
hypothalamic leptin is responsible for the long-term 
energy homeostasis regulation (79). N-3 treatment slightly 
reduced the hypothalamic leptin of HFD NTG-injected 
rats. Leptin act on hypothalamus triggering an increase in 
energy expenditure through its effects on cardiovascular 
system and adipose tissue thermogenesis (80). Ahlma et al. 
showed that starvation leads to decreased hypothalamic 
leptin levels, accompanied by metabolic adaptation that 
limits energy expenditure (75). Thus, as migraine might 
require more brain fuel, and n-3 leads to an increase in 
energy expenditure, a mild decrease of hypothalamic leptin 
in the n-3-treated HFD NTG-injected rats might be a 
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compensatory response to maintain energy homeostasis.
It is believed that adiponectin has a protective role 

against IR and atherosclerosis development, and also 
displays anti-inflammatory properties, regulating lipid 
and glucose metabolism (81). Plasma adiponectin is 
divided in low-, medium-, and high-molecular weight 
forms, which activate different pathways and have 
distinct physiological functions (82). The high molecular 
weight adiponectin seems to have pro-inflammatory 
effects, whereas the low molecular weight adiponectin 
might have anti-inflammatory properties (83). Herein, 
we measured the total adiponectin fraction. There is a 
consensus that decreased levels of total adiponectin is 
associated with IR, T2DM, obesity, and MS (81). Because 
of the pro-inflammatory effects of decreased adiponectin 
levels, literature data suggests that this mediator plays a 
relevant role in migraine (84). In the present study, HFD 
rats displayed decreased total serum adiponectin levels, 
when compared with the tap water group, suggesting a 
probable increase of IR in the HFD group. However, 
this difference was absent in the NTG-injected rats. It is 
worth mentioning that we cannot exclude that there were 
no differences in the proportion of the different molecular 
adiponectin fractions in our study. Unexpectedly, serum 
adiponectin levels were decreased in all n-3 treated groups. 
Ramos-Romero et al. reported no significant changes in 
serum adiponectin levels in the n-3 treated rats (85), while 
some authors documented increased (86) or decreased 
adiponectin levels (87), the last one corroborating with the 
present data, although it was associated with omega-6 (n-6)  
supplementation. The leptin:adiponectin ratio has been 
pointed out as a better indicator of inflammatory status (88).  
Unfortunately, we could not evaluate that because samples 
were insufficient to measure both leptin and adiponectin 
in samples obtained from the same animal. Despite, recent 
studies have shown that adiponectin might have a dual 
role, either anti- or pro-inflammatory, according to its 
isoform and the target tissue (89). This suggests the need 
for further investigation about the n-3 effects on serum 
adiponectin isoforms in the migraine and MS framework. 

Adiponectin receptors AdipoR1 and AdipoR2 are 
expressed in the CNS, and specifically in the hypothalamus, 
with the AdipoR1 playing a role in insulin sensitivity 
regulation (90). There is an inverse correlation between 
adiponectin levels and IR (91,92). Furthermore, a series 
of studies in rodents has demonstrated that in the CNS, 
adiponectin inhibits food intake and stimulates energy 
expenditure, leading to decreased body weight (93,94). Also, 

adiponectin enhances insulin action leading to suppression 
of liver glucose production—i.e., gluconeogenesis—, and 
thus, it lowers the plasma glucose and fatty acid levels, 
stimulating fatty acid oxidation by skeletal muscle (95). In 
our study, there was a decrease of hypothalamic adiponectin 
levels in the HFD NTG-injected rats, compared with the 
HFD control rats, a feature that was also seen in the n-3 
treated tap water rats injected with NTG, compared with 
n-3 treated NTG-free control rats. NTG might reduce 
hypothalamic adiponectin, so that the mechanisms above 
are suppressed, helping to let available circulating glucose 
and fatty acids for usage by the brain in an energy crisis, 
as it occurs in migraine (33). As adiponectin in the CNS 
inhibits food intake, stimulates energy expenditure (93,94) 
and enhances insulin action (91,92), the reduction of 
hypothalamic adiponectin might be a protective response to 
increased energy demands in NTG-injected rats, worsened 
by higher energy expenditure under n-3 treatment. 

HFD rats displayed a slight decrease of hypothalamic 
IL-6 levels when compared with the tap water rats. Previous 
studies have shown a decreased IL-6 expression in the 
parabrachial nucleus of obese male and female mice (96). 
The actions of IL-6 in the periphery and in the central 
nervous system can differ; for instance, increased IL-6 
serum levels in obesity did not reflect increased brain 
IL-6 levels. On the contrary, obese and overweight men 
displayed decreased IL-6 levels in the cerebrospinal fluid, 
being negatively correlated with body fat mass (97). Also, 
there was a modest decrease of hypothalamic IL-6 in the 
HFD NTG-injected rats compared with the tap water 
NTG-injected rats. As the overexpression of central IL-6 
can increase energy expenditure and decrease body weight 
(98,99), this reduction of hypothalamic IL-6 might suggest a 
drop of energy expenditure in the HFD NTG-injected rats, 
fixing the migraine energy needs. We observed decreased 
hypothalamic IL-6 levels only in the tap water rats treated 
with n-3. Conversely, others have observed an inverse 
relationship between n-3 and IL-6 levels in humans (100).  
More studies with different n-3 doses and longer 
treatment duration are required to confirm n-3 effects on 
neuroinflammation.

High hypotha lamic  TNF contents  re f lect s  an 
inflammatory damage, which is one of the mechanisms 
involved in the obesity pathophysiology (101). Some 
authors suggest that the inflammation and hypothalamic 
dysfunction present in obesity and in migraine can 
contribute to the development of each other. Also, they 
suggest that the prescription of low glycemic diet could 
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contribute to migraine improvement by decreasing 
neuroinflammation (70). Nonetheless, we did not observe 
significant hypothalamic TNF alterations in neither the 
HFD nor in the tap water NTG-injected rats. Opposing to 
our result, an increased mRNA expression of hypothalamic 
TNF has been shown after 8 weeks of high fat diet (102). 
Additionally, an elevation of hypothalamic TNF levels was 
seen following 56 days of 30% fructose supplementation 
in rats (103). There is evidence that after some days of 
neuroinflammation, a neuroprotective response occurs, 
triggering a decrease of inflammatory markers, with 
a recovery of enhanced levels within 4 weeks of high 
fat feeding (104), reflecting hypothalamic TNF levels 
oscillations. One study has reported only one peak of 
TNF mRNA expression, after 4 h of cortical spreading 
depression, which was resolved by 12 h (105). Hypothalamic 
TNFα levels significantly decreased with n-3 treatment in 
the tap water NTG-injected rats. It has been demonstrated 
that endogenous n-3 is related to decreased hypothalamic 
TNF levels in mice (106). Besides, n-3 supplementation led 
to a reduction of TNFα gene expression in NTG-injected 
patients (107). However, there is no evidence of reduced 
hypothalamic TNFα levels in NTG-injected rats, until 
now. There is a neuroinflammatory component in migraine 
pathogenesis and the n-3 treatment might attenuate this 
inflammation by decreasing TNFα levels (107).

Symptoms of anxiety and depression are frequent in 
individuals with MS (108) and migraine (109). Although not 
completely solved, the underlying mechanisms of MS are 
likely related to a low grade chronic inflammation, leading 
to impaired biochemical and hypothalamic pathways (108). 
Migraine-related affective behaviors have been associated 
with hypothalamic dysfunction and inflammation (110), 
as well. That said, IR has been described during major 
depression, suggesting impaired glucose utilization, similar 
to T2DM (111). Herein, HFD rats presented hyperactivity, 
as indicated by the greater number of entries in arms in the 
EPM. It has been documented that fructose intake can lead 
to hyperactive foraging response that stimulates impulsivity 
and increases the risk of developing deficit hyperactivity 
disorder (112). This effect might be related to increased 
uric acid driving to greater locomotion index, impulsivity 
and exploratory activity, as it was documented in rats (113) 
and humans (114). Nevertheless, chronic HFD can drive to 
desensitization of hedonic responses and to depression (112). 
Alternatively, at the end of migraine-induction protocol, 
NTG injections were able to decrease the total number of 
entries and head dipping bouts, either in the HFD rats or in 

the tap water rats. Furthermore, NTG injections decreased 
the entries in the open arms and the percentage of time 
spent in open arms, indicating minor locomotor activity 
and an anxiogenic behavior in NTG-injected rats. Similar 
results were described before in rats that had been treated 
with NTG, which is likely driven by increased cortisol 
levels (115). 

There are substantial evidence that n-3 can relief 
symptoms of affective-emotional disorders (100,116). 
In fact, n-3 was able to partly decrease the anxiety-like 
behavior in NTG-injected rats, as evidenced by the lack 
of significant difference in the percentage of time spent in 
open arms between HFD n-3 treated NTG-free rats and 
their n-3 treated NTG-injected counterparts, while there 
was a significant difference between HFD n-3- free control 
rats and HFD n-3-free NTG-injected rats. Importantly, this 
is the first data demonstrating the effects of n-3 treatment in 
affective-behavior related to migraine in rats. Nonetheless, 
prior evidence showed antidepressant effects for n-3 in a 
stress model in rats (117), corroborating with the present 
data. Also, n-3 was able to mitigate the fructose-induced 
hyperactivity in rats, as indicated by decreased entries in 
open arms of n-3 treated HFD rats, when compared with 
n-3 free HFD animals. Additionally, one has shown a 
significant improvement of clinical symptoms in children 
and adolescents with attention deficit hyperactivity disorder 
after supplementation with n-3 (118), rather supporting our 
results. 

Our study has some limitations that require to be 
discussed. Concerning the NTG model, it has been 
described that it can reproduce the main components of 
migraine in rodents and humans (119,120). However, it is 
relevant to mention that the model has some restrictions, 
such as a different pattern of responses depending on the 
rodent species and sex, or the previous history of migraine 
in humans (12,119). As for the inflammatory mediators’ 
analysis, whereas isoflurane does not seem to alter the 
CGRP levels (121), it can affect the brain contents of pro-
inflammatory cytokines, as described beforehand (122).  
However, the differences among the groups can be 
considered consistent, as all of the animals were submitted to 
euthanasia by isoflurane inhalation, under the same protocol. 

Conclusions

The present study highlights the role of fructose-related 
metabolic pathways in migraine pathogenesis and the 
impact of n-3 treatment in this context. Remarkably, the 
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Figure 9 Overview of the main findings of the present study. The blue rectangles indicate the situations in which there is a response to 
increase brain energy availability. Alternatively, the pink rectangles are indicative of responses triggering increased energy expenditure. Blue 
and pink stars show improvement and worsening of migraine-like changes, respectively. The blue and pink spiked circles show improvement 
and worsening of affective-behavior changes, correspondingly. The question marks represent the issues that need further investigation. 
Figure created with BioRender.com. CGRP, calcitonin gene-related peptide; e-NOS, endothelial nitric oxide synthase; IL-6, interleukin-6; 
HFD, high-fructose diet; NTG, nitroglycerin; TNF-α, tumor necrosis factor-α; TRPV-1, transient receptor potential vanilloid 1. 

HFD relieved migraine-related pain, although it did not 
affect photophobia. HFD also led to an enhancement of 
some biochemical and anthropometric parameters related 
to the NTG-induced migraine in rats. One month of n-3 
treatment was unable to ameliorate migraine pain, besides it 
impaired some of the favorable behavioral and biochemical 
effects of HFD on NTG-injected rats. However, there was 
a decrease of some inflammatory markers in the n-3 treated 
tap water NTG-injected rats, as well as a modulation of 
affective parameters. The improvement of NTG-related 
changes by HFD could be due to responses leading to 
an increase of energy availability, as the migraineur brain 
might requires more amounts of energy. In line with this, 
the prevention of HFD-related changes by n-3 treatment 
could be associated with an increased energy expenditure. 
A summary of these propositions is outlined in Figure 9.  

Future research should be conducted to investigate 
mitochondrial metabolism and ATP production in the MS 
and migraine framework. Also, there is a need to look over 
the effects of n-3 supplementation in long-term schedules 
of treatment, as well as the effects of other obesity-induced 
diets on migraine. Nonetheless, our data helps to pave the 
way regarding the relationship between MS and migraine, 
besides the effects of n-3 supplementation in this context.
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Table S1 Descriptive statistics showing the variations of the grimace scale AUC values in the following experimental groups: water control (water 
+ saline); HFD control (HFD + saline); migraine-like pain induction (water + NTG); and HFD plus migraine-like pain induction (HFD + NTG); 
with or without n-3 supplementation (water + n-3; HFD + n-3; n-3 + NTG; HFD + n-3 + NTG)

Water HFD

Saline NTG n-3 n-3 + NTG Saline NTG n-3 n-3 + NTG

Minimum Values 0.18 5.70 0.00 3.83 0.00 3.26 0.00 5.89

Maximum Values 0.82 7.95 2.18 7.83 1.53 7.30 2.03 7.86

Sum of Totals 4.58 57.09 4.00 46.94 3.17 40.67 4.95 58.91

Data are presented with a number of 7 to 8 rats per group.
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