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Background: Gastric cancer (GC) is the most common type of malignant neoplasm of the digestive 
system. Diabetes mellitus (DM) or hyperglycemia may increase the incidence or mortality of GC. We aimed 
to investigate the possible genetic relationship between GC, DM, and type 2 diabetes mellitus (T2DM), and 
to identify core genes that are associated with T2DM and GC. 
Methods: The GeneCards database was used to screen DM-, T2DM-, and GC-related genes, and a 
protein-protein interaction (PPI) network of the genes/proteins associated with overlapping genes between 
DM, T2DM, and GC was constructed. Molecular Complex Detection (MCODE) was used to identify the 
significant module. CytoHubba (U.S. National Institute of General Medical Sciences) was utilized to detect 
hub genes in the PPI. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) 
resources were used to analyze selected module genes, as well as Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway and Gene Ontology (GO) enrichment of PPI networks. The Kaplan-Meier plotter 
database, Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN and western blot were used to 
identify the prognostic value of hub genes and their expression in GC and normal tissue. 
Results: One thousand one hundred and fifty-two DM-related genes, 466 GC-related genes, and 531 
T2DM-related genes were obtained. Subsequently, 401 genes/proteins associated with 59 overlapping genes 
were screened. Two significant modules, which had higher scores, and 10 hub genes were chosen. Finally, 
caspase 3 (CASP3), and tumor protein P53 (TP53) were identified as core genes. 
Conclusions: We identified two genes that may play key roles in T2DM and GC: CASP3, TP53. Our 
study will contribute to further understanding the possible mechanism of diabetes progression to GC 
and provide useful information to identify new biomarkers for GC, and provided theoretical basis for the 
prevention of the occurrence and development of GC.
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Introduction

Among all malignancies worldwide, gastric cancer 
(GC) ranks fifth in morbidity and third in mortality. 
Approximately one million people are diagnosed with 
GC each year, with about 783,000 deaths annually (1,2). 
There are numerous risk factors for GC, including obesity, 
smoking, and Helicobacter pylori (H. pylori) infection (3). 
Although the overall incidence of GC has declined globally 
over the past 30 years, the number of new cases remains 
substantial.

Previous studies have demonstrated that diabetes is 
associated with an increased risk of breast cancer, liver 
cancer, pancreatic cancer, colorectal cancer, endometrial 
cancer, renal cancer, non-Hodgkin’s lymphoma, and bladder 
cancer, among others (3). This increase in the risk of cancer 
among diabetics may be caused by poor blood sugar control, 
insulin resistance (IR), and oxidative stress. Epidemiological 
studies have shown that diabetes or hyperglycemia 
may increase the incidence or mortality of GC to some 
extent (1,4). A large number of reactive oxygen species 
(ROS) such as superoxide anions were produced during 
the catabolism of glucose in high glucose environment. 
However, the expression level of antioxidant enzymes in 
tumor cells is low, and the ability of scavenging ROS is 
reduced. Therefore, the oxidative stress is aggravated by 
high glucose environment, resulting in DNA damage and 
enzyme synthesis disorder, thus inducing carcinogenesis. 
At the same time, higher blood glucose levels disrupt the 
body’s energy balance, weaken the effect of ascorbic acid on 
cellular metabolism, and reduce the body’s immunity (5).  
The GC patients are in a long-term stress state due to 
surgery or chemotherapy. In order to adapt to this stress 
state and resist the harsh tumor micro-environment, GC 
cells start a series of self-defense mechanisms, such as drug 
efflux and DNA damage repair. This process requires a 
large amount of ATP consumption (6). Glucose is the 
main source of ATP. Since cancer cells cannot fully use 
glucose for energy supply, they will consume more glucose 
than normal cells, and high blood glucose just provides 
energy for self-repair and growth of cancer cells. Also, 
the expression of pro-inflammatory cytokines, such as 
interleukin-1, interleukin-6, and tumor necrosis factor-α 
can be increased in diabetic patients (7), which may up-
regulate and activate GC-associated pathways, such as the 
Wnt/β-catenin pathway. Long-term inflammation can lead 
to tumorigenesis. IL-6, as a cancer-related inflammatory 
cytokine, plays a key role in inflammatory effects and 
tumorigenesis. IL-6 binds to its receptor (IL-6R) to activate 

different signal transduction pathways, promoting tumor 
cell proliferation, survival and metastasis, and strongly 
inhibiting anti-tumor immune response. Studies have 
shown that IL-6 and tumor necrosis factor-α released by 
infiltrating macrophages in GC can induce programmed 
death protein ligand 1 (PD-L1) expression in GC cells by 
activating NF-κB and STAT3 signaling pathways. PD-L1 
helps GC cells avoid cytotoxic T cell killing and promotes 
the proliferation of GC cells (8). Studies have shown that 
insulin is a key regulator of many cancers, including GC (9).  
Persistent hyperinsulinemia caused by IR, which could 
inhibit insulin-like growth factor 1 (IGF-1) binding protein 
production and in turn increase the bioavailability of IFG-
1, could be a contributor to the pathogenesis of GC (10). 
IGF-1 can activate the insulin signaling pathway through 
insulin-like growth factor 1 receptor (IGF1R) to inhibit 
cell apoptosis, stimulate cell proliferation, and promote 
the occurrence of GC. However, most previous studies 
were focused on epidemiology, with only a few studies 
investigating the possible genetic relationships between 
GC, diabetes mellitus (DM), and type 2 diabetes mellitus 
(T2DM).

I n  t h i s  s t u d y,  w e  h i g h l i g h t e d  t h e  p o t e n t i a l 
pathophysiological link between DM, T2DM, and GC 
by bioinformatics methods. The GeneCards database was 
used to screen DM-, T2DM-, and GC-related genes, and 
a protein-protein interaction (PPI) network of the genes/
proteins associated with overlapping genes between DM, 
T2DM, and GC was constructed. Functional enrichment 
analysis was performed for the two gene clusters, and ten 
genes with high connectivity were identified as pivot genes. 
Prognostic analysis and gene expression analysis of hub 
genes were also performed. Finally, caspase 3 (CASP3), and 
tumor protein P53 (TP53) were identified as core genes. We 
explored whether diabetes or hyperglycemia are risk factors 
for the occurrence and development of GC, deeply revealed 
the molecular biological relationship between diabetes 
and GC for the first time, and provided theoretical basis 
for the prevention of the occurrence and development of 
GC. We present the following article in accordance with 
the STREGA reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-21-3635/rc).

Methods

Data collection

We searched for keywords such as “DM”, “diabetes 
mellitus”; “T2DM”, “type 2 diabetes mellitus”; and “gastric 

https://atm.amegroups.com/article/view/10.21037/atm-21-3635/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-3635/rc
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cancer”, “GC” in GeneCards(https://www.genecards.org/) 
to screen DM-, T2DM- and GC-related genes. Venny 
2.1 (http://bioinfogp.cnb.csic.es/tools/venny/) was used to 
overlap the screened DM-, T2DM-, and GC-related genes 
with restriction of the relevance score >10. The results were 
input into Agilent Literature Search software v. 3.1.1 (U.S., 
L2FProd.com) to screen genes/proteins associated with 
overlapping genes.

PPI network construction, module analysis, and hub gene 
identification

Firstly, the PPI information of the genes/proteins related 
to the overlapping genes was obtained by using the 
STRING online database (http://string-db.org). Cytoscape 
software (version 3.6.1) (U.S. National Institute of General 
Medical Sciences) was used to detect the PPI relationship  
network (11).  The Molecular Complex Detection 
(MCODE) plugin in Cytoscape was used to identify the 
most significant module in the network based on the graph-
theoretic clustering algorithm (12). Finally, CytoHubba, 
a Cytoscapeplugin, was utilized to explore hub genes in 
the PPI network, which provides a user-friendly interface 
to explore important nodes in biological networks and 
performs calculations using eleven methods (13).

Gene Ontology (GO) function and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analyses

The Database for Annotation, Visualization, and Integrated 
Discovery (DAVID https://david.ncifcrf.gov/) provides 
practical annotation tools to recognize biological functions 
of genes (14). To ascertain the sophisticated functions of 
biological systems at the molecular level, the KEGG could 
be used a data resource. Meanwhile, enrichment analysis 
could be performed using the GO database. We performed 
KEGG pathway and enrichment analysis involving cellular 
component, biological process, and molecular function for 
the selected PPI networks and gene modules using DAVID. 

Analysis of hub genes

The Kaplan-Meier plotter (http://kmplot.com/analysis/) 
could evaluate the effect of 54,675 genes on survival using 
samples from 18,674 cancer patients (15). These include 
5,143 breast, 2,437 lung, 1,816 ovarian, 1,065 gastric, and 
364 liver cancer patients, with information concerning 
overall and relapse-free survival, which were predominantly 

retrieved from the Gene Expression Omnibus (GEO), The 
Cancer Genome Atlas (TCGA), and European Genome-
phenome Archive (EGA) databases (16). To determine 
the prognostic value of hub genes, Kaplan-Meier survival 
analysis of these genes was carried out using the Kaplan-
Meier plotter database. Analysis of hub genes’ expression 
and their expression profiles in human tissues was conducted 
using Gene Expression Profiling Interactive Analysis 
(GEPIA) (http://gepia.cancer-pku.cn), which is an internet-
based server offering cancer and normal gene expression 
profiling and interactive analysis. UALCAN (ualcan.path.
uab.edu), an accessible, interactive Internet resource for the 
analysis of cancer transcriptome data (17), was utilized to 
confirm the expression of hub genes and to analyze their 
clinicopathological characteristics.

Patients

To confirm and validate the expression of the 3 common 
hub genes, Tumor tissues from 3 GC patients and 3 GC 
complicated with type 2 diabetes patients were obtained 
during operation in Shanxi Bethune Hospital between July 
2022 and November 2022. The corresponding normal 
tissues were obtained from 5 cm away from the tumor 
tissue. The present study was approved by the Ethics 
Committee of Shanxi Bethune Hospital (No. YXLL-2021-
063). All participants in the study signed informed consent 
forms. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). 

Verification in the clinical samples: western blotting

We extracted proteins from normal and adjacent tumor 
tissues and tested their concentrations using BCA protein 
kits (Boster, Wuhan, China). Target proteins were isolated 
with SDS-PAGE (10%), and transferred to nitrate fiber 
membrane (4 ℃, 270 mA, 1.5 h). Then we sealed the 
nitrate fiber membrane with 5% skim milk powder for 3 
h. The membrane was incubated with rabbitanti-CASP3 
antibody (1:2,000; cat. no. ab184787; Abcam) or mouse 
anti‑glyceraldehyde‑3‑phosphate dehydrogenase (GAPDH) 
antibody (1:5,000; cat. no. ab8245; Abcam) orrabbit anti-
TP53 antibody (1:500; cat. no. M00001-4; Boster) orrabbit 
anti-β-actin antibody (1:500; cat. no. WL0002d; Wanleibio) 
at 4 ℃ over-night. Wash unbound protein 3 times with 5% 
TBST solution., and the membrane was incubated with 
HRP Goat Anti-Rabbit IgG (H+L) secondary antibody 
(1:4,000; AS014; Abclonal) or HRP Goat Anti-Mouse 

http://gepia.cancer-pku.cn


Liu et al. Core genes associated with type 2 DM and GCPage 4 of 12

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(5):247 | https://dx.doi.org/10.21037/atm-21-3635

IgG (H+L) secondary antibody (1:4,000; E-AB-1001; 
ELAbscience) for 1 h. Following washing with TBST  
(3 times). ECL western blot detection kit (Affinity 
Biosciences, USA) was used to visualize the protein bands. 
β-actin was used as internal references for protein. The 
molecular weight and net optical density of target band 
were analyzed by Image J. analysis software, and the results 
represented the relative content of target protein.

Statistical analysis

SPSS 20.0 was used for statistical analysis of the data. 
Measurement data were expressed as mean ± standard 
deviation, conforming to normal distribution and 
homogeneity of variance. t-test was used to compare the 
mean values of two samples, and P<0.05 was considered 
statistically significant.

Results 

Identification of overlapping DM-, T2DM-, and GC-
related genes

We screened 1,152 DM-related genes, 466 GC-related 
genes, and 531 T2DM-related genes obtained from 
GeneCards, with restriction of the relevance score >10. A 
total of 59 overlapping genes were identified in the three 
diseases (Figure 1). Next, we screened 401 genes/proteins 

associated with these 59 overlapping genes using Agilent 
Literature Search software v. 3.1.1 (U.S., L2FProd.com).

Construction of the PPI network, module analysis, and 
identification of hub genes

PPIs of the 401 genes/proteins associated with the 59 
overlapping genes were constructed with a confidence score 
of ≥0.4. Subsequently, the PPI network was identified using 
Cytoscape software (version 3.6.1) (U.S. National Institute 
of General Medical Sciences). The PPI network maps 
yielded 359 nodes and 8,104 edges. Whole PPI network 
analysis was carried out with MCODE (U.S. National 
Institute of General Medical Sciences), and two significant 
modules (module 1 and 2), which had higher scores, were 
later chosen (Figure 2A,2B). Module 1 yielded 52 nodes 
and 898 edges, while module 2 yielded 69 nodes and  
1,101 edges. The 10 genes with the highest degree of 
connectivity (using the Degree method) were selected by 
the CytoHubba plugin and were arranged in a sequence as 
follows: TNF, MAPK14, EGFR, CXCL8, BCL2L1, MAPK8, 
MMP9, ESR1, PTGS2, FOS were hub nodes with higher 
node degrees in module 1; and IL6, MAPK3, AKT1, TP53, 
GAPDH, STAT3, JUN, CASP3, VEGFA, and MYC were 
hub nodes with higher node degrees in module 2.

GO function and KEGG pathway analyses

GO analysis revealed PPI network genes that are involved 
in numerous biological processes (BP), including positive 
regulation of transcription from ribonucleic acid (RNA) 
polymerase II promoter, negative regulation of apoptosis, 
and positive regulation of gene expression. Concerning 
cellular components, the PPI network genes were enriched 
in the cytosol, nucleoplasm, and extracellular space, and 
were primarily associated with protein binding, enzyme 
binding, and transcription factor activity with regards 
to molecular functions (Figure 3A). The PPI network 
genes were enriched in three KEGG pathways, including 
Pathways in cancer, Proteoglycans in cancer, and the 
hypoxia inducible factor-1 (HIF-1) signaling pathway 
(Figure 3B, Table 1).

GO analysis revealed module 1 genes involved in 
numerous BP, including positive regulation of nitric oxide 
biosynthetic process, the cellular response to mechanical 
stimulus, and positive regulation of gene expression. 
Regarding cellular components, module 1 genes were most 
probably enriched in the extracellular space, cytosol, and cell 

345 62 560

59

0

0

471

T2DM

GC DM

Figure 1 Identification of overlapping DM-, T2DM-and GC-
related genes. GC, gastric cancer; DM, diabetes mellitus; T2DM, 
type 2 diabetes mellitus.
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A B

Figure 2 The significant module identified from the PPI network using the MCODE method. (A) Module 1 with an MCODE score of 
35.216; (B) module 2 with an MCODE score of 32.382. The yellow nodes stand for hub genes. PPI, protein-protein interaction; MCODE, 
Molecular Complex Detection. 

surface, and were mainly associated with enzyme binding, 
protein binding, and protein N-terminus binding in terms of 
molecular functions (Figure 3C). The module 1 genes were 
enriched in three KEGG pathways, including Pathways in 
cancer, Hepatitis B, and bladder cancer (Figure 3D, Table 2).

GO analysis identified module 2 genes that play a part in 
numerous BP, including positive regulation of transcription, 
deoxyribonucleic acid (DNA) templating, positive regulation 
of transcription from RNA polymerase II promoter, aging, 
and positive regulation of cell proliferation. In terms of 
cellular components, module 2 genes were mostly enriched 
in the cytosol, cytoplasm, nucleoplasm, extracellular 
space, and were mainly associated with protein binding, 
protein heterodimerization activity, and kinase activity 
(Figure 3E). The module 2 genes were enriched in three 
KEGG pathways, including the HIF-1 signaling pathway, 
Proteoglycans in cancer, and acute myeloid leukemia  
(Figure 3F, Table 3).

Analysis of hub genes

The Kaplan-Meier survival plot was used for the analysis of 
overall survival (OS) in 876 patients with GC. The 10 hub 

genes (IL6, MAPK3, EGFR, AKT1, TP53, GAPDH, STAT3, 
CASP3, VEGFA, and MYC) were uploaded to the database, 
and Kaplan-Meier curves were plotted. The results of 
the prognostic analysis showed that GAPDH [hazard rate 
(HR) =1.84 (1.55−2.18), P=1.6e−12], CASP3 (apopain) [HR 
=0.5 (0.42−0.6), P=7.2e−14], MYC [HR =0.65 (0.55–0.78), 
P=2.7e−06], TP53 [HR =1.7 (1.41−2.05), P=1.9e−08], 
AKT1 [HR =2.33 (1.91−2.86), P<1E−16], EGFR [HR =1.35 
(1.08−1.7), P=0.0092], MAPK3 [HR =1.58 (1.33−1.88), 
P=1.2e−07], and VEGFA [HR =1.53 (1.27−1.84), P=7.6e−06] 
were considerably associated with OS in patients with GC 
(Figure 4). IL6 and STAT3 expression was not related to 
survival. The results of GEPIA analysis showed that the 
messenger RNA (mRNA) expression levels of GAPDH, 
CASP3 and TP53 were significantly elevated in tumor 
tissues compared to normal tissues (Figure 5). Therefore, 
according to the differential expression, GAPDH, CASP3 
and TP53 were selected as key factors. To verify the above 
results, the expression profiles of GAPDH, CASP3, and 
TP53 in tumor tissues higher than that in normal tissues, 
and their associations with patients’ clinical characteristics 
were determined using UALCAN (Figure 6A-6F). The 
UALCAN results were consistent with those of GEPIA. 
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Figure 3 GO function and KEGG pathway analyses. (A,B) GO function and KEGG pathway analyses for PPI network genes; (C,D) GO 
function and KEGG pathway analyses for module 1 genes; (E,F) GO function and KEGG pathway analyses for module 2 genes. GO, Gene 
Ontology; ERK, extracellular regulated protein kinases; MAPK, mitogen-activated protein kinase; HIF-1, hypoxia-inducible factor 1; FoxO, 
Forkhead boxO; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein-protein interaction. 
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Validation by western blotting

In the present study, to confirm protein expression levels of 
3 hub genes, western blotting was performed on GC patient 
and GC complicated with type 2 diabetes samples. Figure 7  
and Figure 8 showed the protein expression results of all 
the key genes. We observed that the protein expression of 
TP53, CASP3 in normal tissues was significantly lower than 
that in tumor tissues (P<0.05).

Discussion

In the current study, a total of 59 overlapping genes were 

identified among DM, T2DM, and GC. We then screened 
401 genes/proteins associated with 59 overlapping genes, 
and the PPIs of the 401 genes/proteins associated with 
these 59 overlapping genes were constructed. We analyzed 
the entire PPI network using MCODE, and two significant 
modules, which had higher scores, were chosen. To obtain 
a more in-depth understanding of these genes, DAVID was 
used for both KEGG pathway and GO enrichment analyses 
of the selected PPI networks and module genes. Ten 
genes with the highest degree of connection were chosen 
as follows: IL6, MAPK3, EGFR, AKT1, TP53, GAPDH, 
STAT3, CASP3, VEGFA, and MYC. In order to confirm 
the results of the bioinformatics analysis, the Kaplan-Meier 

Table 1 Top 5 of pathway enrichment analyses for genes in the PPI network

Category Term Count % P value

KEGG_PATHWAY hsa05200: Pathways in cancer 78 21.36986 1.28E-33

KEGG_PATHWAY hsa05205: Proteoglycans in cancer 53 14.52055 1.10E-28

KEGG_PATHWAY hsa04066: HIF-1 signaling pathway 39 10.68493 1.33E-28

KEGG_PATHWAY hsa04068: FoxO signaling pathway 42 11.50685 1.09E-25

KEGG_PATHWAY hsa05161: Hepatitis B 43 11.78082 3.03E-25

PPI, protein-protein interaction; KEGG, Kyoto Encyclopedia of Genes and Genomes; HIF-1, hypoxia-inducible factor 1; FoxO,  
Forkhead boxO.

Table 2 Top 5 of pathway enrichment analyses for genes in module 1

Category Term Count % P value

KEGG_PATHWAY hsa05200: Pathways in cancer 26 50 2.36E-18

KEGG_PATHWAY hsa05161: Hepatitis B 17 32.69231 2.53E-15

KEGG_PATHWAY hsa05219: Bladder cancer 12 23.07692 3.11E-15

KEGG_PATHWAY hsa05140: Leishmaniasis 13 25 6.41E-14

KEGG_PATHWAY hsa05142: Chagas disease (American trypanosomiasis) 14 26.92308 2.97E-13

KEGG, Kyoto Encyclopedia of Genes and Genomes.

Table 3 Top 5 of pathway enrichment analyses for genes in module 2

Category Term Count % P value

KEGG_PATHWAY hsa04066: HIF-1 signaling pathway 19 27.53623 5.40E-19

KEGG_PATHWAY hsa05205: Proteoglycans in cancer 23 33.33333 5.85E-18

KEGG_PATHWAY hsa05221: Acute myeloid leukemia 15 21.73913 8.53E-17

KEGG_PATHWAY hsa05200: Pathways in cancer 27 39.13043 1.04E-15

KEGG_PATHWAY hsa05215: Prostatecancer 16 23.18841 3.01E-15

KEGG, Kyoto Encyclopedia of Genes and Genomes; HIF-1, hypoxia-inducible factor 1. 
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Figure 4 Prognostic curve of eight hub genes. The prognostic significance of GAPDH, CASP3, MYC, TP53, AKT1, VEGFA, MAPK3, and 
EGFR in patients with GC, according to the Kaplan-Meier plotter database. The red lines represent patients with high gene expression, and 
the black lines represent patients with a low gene expression. GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HR, hazard rate; MYC, 
MYC  proto-oncogene; TP53, tumor protein P53; AKT, also known as protein kinase B; VEGFA, vascular endothelial growth factor A; 
MAPK, mitogen-activated protein kinase; EGFR, epidermal growth factor receptor; GC, gastric cancer. 

Figure 5 mRNA expression of hub genes. mRNA expression of hub genes in GC tissue (red; n=408) and normal tissues (black; n=211). 
* represents P value <0.05. GAPDH, glyceraldehyde-3-phosphate dehydrogenase; CASP3, caspase 3; TP53, tumor protein P53; mRNA, 
messenger RNA; GC, gastric cancer. 
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plotter database was used to predict the prognostic value 
of these hub genes, and analysis of their expression levels 

was carried out using GEPIA and UALCAN. Finally, we 
identified CASP3, and TP53 as core genes.
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Figure 6 Relative expression of three hub genes in normal and GC tissues with different tumors stages. (A-C) Expression of GAPDH, 
CASP3, and TP53 in STAD based on the sample. (D-F) Expression of GAPDH, CASP3, and TP53 in STAD based on individual cancer 
stages types. * represents P value <0.05; *** represents P value <0.01. GAPDH, glyceraldehyde-3-phosphate dehydrogenase; STAD, stomach 
adenocarcinoma; CASP3, caspase 3; TP53, tumor protein P53; TCGA, The Cancer Genome Atlas; GC, gastric cancer.
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Figure 7 Western blot analysis of GAPDH, CASP3, and TP53 
protein expression in normal tissues and tumor tissues of GC 
patients. β-actin was used as a loading control. N represents normal 
tissues; T represents tumor tissues. P value <0.05. GAPDH, 
glyceraldehyde-3-phosphate dehydrogenase; CASP3, caspase 3; 
TP53, tumor protein P53; GC, gastric cancer. 

Figure 8 Western blot analysis of GAPDH, CASP3, and TP53 
protein expression in normal tissues and tumor tissues of GC 
complicated with type 2 diabetes patients. β-actin was used as a loading 
control. N represents normal tissues. T represents tumor tissues. P 
value <0.05. GAPDH, glyceraldehyde-3-phosphate dehydrogenase; 
CASP3, caspase 3; TP53, tumor protein P53; GC, gastric cancer. 

The tumor suppressor gene, TP53, encodes p53, a key 
transcription factor with a wide target gene pool. P53 is 
activated and stabilized during DNA damage and oncogene 
activation functions, leading to cell cycle arrest, apoptosis, 
or senescence. Altered TP53 is the most frequent mutation 

in GC, and is associated with unfavorable clinical outcomes. 
The findings of Jiang et al. (18) suggested that p53 may play 
an important role in activating tumor immunity in some 
tumor types, including GC. Mansouri et al. (19) identified 
that TP53 was a common remarkable gene between GC and 
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chronic gastritis. In addition, disruption of p53 function is 
closely associated with several key BP leading to diabetes, 
including loss of pancreatic beta cells, interference with 
glucose homeostasis at the body level, and IR in peripheral 
tissues. Studies have shown that oxidative stress and elevated 
levels of free fatty acids lead to activation of p53, which 
leads to pancreatic beta cell death (20-25). Meanwhile, 
p53 can affect peripheral glucose metabolism by directly 
regulating glucose uptake, glycolysis and gluconeogenesis. 
P53-mediated changes in glucose homeostasis can lead to 
elevated circulating glucose levels (26). Feng et al. showed 
that p53 activity and insulin-PI3K-Akt signaling pathway 
are interwoven in various cell types, especially in peripheral 
tissues such as skeletal muscle, heart, WAT, liver and kidney, 
which respond to insulin to regulate glucose metabolism (27).  
In the other side, p53 can influence insulin sensitivity 
through the autocrine cycle. Therefore, overnutrition 
stimulates the pro-inflammatory activity of P53 in AT and 
weakens insulin sensitivity (28,29). Another study showed 
that increased p53 in white adipose tissue increases aging 
and chronic inflammation, which aggravates systemic IR (30).  
Sliwinska et al. (31) found that the serum level of TP53 in 
T2DM patients was significantly higher than that of non-
diabetic healthy controls (1.69 vs. 2.07 ng/mL, P<0.001). 
The serum level of TP53 in T2DM patients was increased 
with age, diabetes course, and waist-to-hip ratio (WHR). 
Logistic regression analysis showed that elevated serum 
levels of TP53 were considerably related to family history of 
diabetes, age, and WHR (31).

CASP3 is the main mediator of apoptosis activation 
during cytotoxic drugs, radiotherapy, or immunotherapy. It 
is frequently used to assess the efficacy of cancer treatment. 
However, recent reports have shown that CASP3 also has 
non-apoptotic effects, such as promoting tumor recurrence 
and tumor angiogenesis. Ni et al.’s (32) current findings 
suggest that the polymorphism of CASP3 rs12108497 might 
be associated with the risk of GC. A study by Zhou et al. (33)  
also showed that CASP3 knockout of HCT116 cells were 
markedly less clonogenic in soft agar assays. Moreover, 
they were considerably less invasive and more sensitive to 
radiation and mitomycin C compared to control cells.

However, there are some limitations to our study that 
should be noted. Firstly, the expression and prognostic roles 
of the core genes requires further investigation. Secondly, 
the lack of functional experiments limits our mechanical 
analysis to be merely descriptive, and we still need to verify 
the role of hub genes in vitro and in vivo. Thirdly, due to 
the lack of relevant data sets, we were unable to verify the 

expression changes of core genes during anti-diabetic drug 
therapy.

In conclusion, in order to study whether hyperglycemia 
or type 2 diabetes is a risk factor affecting the occurrence 
and development of GC, and the potential molecular 
biological relationship between type 2 diabetes and GC, our 
study identified two genes that may play key roles in T2DM 
and GC: CASP3, and TP53 by bioinformatics. Our study 
will contribute to further understanding of the possible 
mechanism of diabetes progression to GC and provide 
useful information to identify a new biomarker for GC.
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