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Background: Obesity has been considered as a leading cause of multiple metabolic syndromes, such as 
type 2 diabetes and hypertension cardiovascular diseases. Jian Pi Tiao Gan Yin (JPTGY), a Chinese herb 
preparation, is used to treat obesity of liver qi stagnation and spleen deficiency. The mechanism of action of 
JPTGY in obesity remains unclear. This study evaluated the effect of JPTGY on obesity.
Methods: The mechanism of action of JPTGY on obesity was investigated in high-fat diet (HFD)-induced 
obese mice and palmitic acid-treated 3T3-L1 cells. Lipid droplet accumulation was detected using oil red O 
staining. Factors associated with lipid accumulation were detected by western blotting.
Results: Treatment with JPTGY reduced HFD-induced adiposity and body weight gain. JPTGY increased 
the levels of brown adipose tissue biomarkers in obese mice and palmitic acid-treated 3T3-L1 cells, including 
peroxisome proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α) and uncoupling protein-1 
(UCP-1). Meanwhile, the protein expression of white adipose tissue biomarkers, such as AGT, primary 
subtalar arthrodesis (PSTA), and endothelin receptor type A (EDNRA), was decreased in obese mice and 
palmitic acid-treated 3T3-L1 cells. JPTGY affects browning of 3T3-L1 cells through mechanistic target 
of rapamycin complex 1 (mTORC1) signaling. JPTGY decreased the expression levels of key adipogenic-
specific proteins and lipogenic enzymes, including peroxisome proliferator-activated receptor γ (PPARγ), 
CCAAT/enhancer binding protein α (C/EBPα), sterol regulatory element binding protein (SREBP), and 
FAS. Treatment with the mTOR activator MHY reversed JPTGY-mediated protein expression.
Conclusions: We concluded that JPTGY relieved obesity phenotypes through mTORC1/SREBP1 
signaling in vitro and in vivo. JPTGY may benefit the attenuation of obesity.
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Introduction

Obesity is a prevalent phenomenon in modern society and 
is characterized by the accumulation of body fat due to 
chronic excessive energy intake against energy expenditure 
(1,2). Obesity is considered a serious risk factor for multiple 
metabolic syndromes and chronic diseases, such as type 2 
diabetes (3), hypertension (4), cardiovascular diseases (5), 
and arthritis (6), and emerging evidence even implies a 
correlation between obesity and poor prognosis of cancer 
patients (7). Therefore, it is a primary issue to decipher 
mechanisms for obesity thoroughly and explore effective 
treatments.

Rapamycin (mTOR) mainly functions by interacting 
with different subunits, raptor and rictor, to form the 
mechanistic target of rapamycin complex 1 (mTORC1) 
and mTORC2 complexes, respectively (8). It has been 
reported that depletion of raptor abolishes mTORC1 
activity (9). Accumulating studies have revealed that 
mTORC1 participates in various metabolic processes, such 
as lipogenesis (10), protein synthesis (11), autophagy (12),  
and energy metabolism (13). Peterson and colleagues 
reported that inhibition of mTORC1 in the liver could 
impair SREBP (sterol regulatory element-binding protein) 
function and cause resistance to high-fat and high-
cholesterol diet-induced mouse hepatic steatosis and 
hypercholesterolemia (14). Notably, mTORC1 is notably 
activated in adipose tissues from high-fat diet (HFD)-fed 
and obese mice (15,16). Moreover, multiple studies have 
indicated that excessive activation of the mTORC1 complex 
leads to obesity (17,18), and inhibition of mTORC1 results 
in the browning of white adipose tissue (WAT), promotes 
thermogenesis and alleviates HFD-induced insulin 
resistance and obesity in a mouse model (19,20). Therefore, 
targeting mTOR signaling in adipose tissue is a promising 
approach for the treatment of obesity.

The dialectical mode of traditional Chinese medicine 
diagnosis of obesity includes stomach and intestine excess 
heat, spleen deficiency, liver qi stagnation, spleen and kidney 
yang deficiency, and liver and kidney yin deficiency (21). 
Jian Pi Tiao Gan Yin (JPTGY), a Chinese herb preparation, 
is used to treat obesity of liver qi stagnation and spleen 
deficiency. The JPTGY prescription consists of Huang-Qi 
[Radix Astragali, roots of Astragalus membranaceus (Fisch.) 
Bge. var. mongholicus (Bge.) Hsiao or Astragalus mem-
branaceus (Fisch.) Bge., 30 g], Chai-Hu (Radix Bupleuri, the 
root of Bupleurum falcatum Linne, 12 g), Fu-Ling [Poria cocos 
(Schw.) Wolf., 15 g], Bai-Shao (Radix Paeoniae Alba, the 

root of Paeonia lactiflora Pall, 15 g), Yi-Mi (Coix seed, seed 
of Coix lacryma-jobi, 15 g), Dan-Shen (Salvia miltiorrhiza, 
the root and rhizome of Salvia miltiorrhiza Bge, 15 g), Pei-
Lan (Herba Eupatorii, Eupatorium fortunei Turcz, 15 g), Jue-
Ming-Zi [Semen Cassiae, the seed of Senna obtusifolia (L.) 
H. S. Irwin & Barneby, 15 g], Ze-Xie [Rhizoma Alismatis, 
the tuber of Alisma orientale (Sam.) Juzep (Alismaceae),  
12 g], Shu-Da-Huang (Cooked Rhubarb, Radix et Rhizoma 
Rheum, the root and rhizome of Rheum palmatum, Rheum 
tanguticum and Rheum officinale, 6 g), and Shan-Zha 
(Crataegi Fructus, the fruit of Crataegus pinnatifida Bge. var. 
major N.E.Br., 12 g). In our previous study, JPTGY has 
a good weight loss effect on patients with simple obesity, 
which can increase the level of nesfatin-1 in serum and 
effectively improve lipid metabolism (22). JPTGY plays a 
therapeutic role by adjusting the intestinal flora in obese 
mice, its mechanism being related to the gut microbiota-
fat signal axis (23). The mechanism of action of JPTGY in 
obesity remains unclear.

In this work, we applied JPTGY to a HFD obesity 
mouse model and found that JPTGY promoted the 
browning of WAT and thermogenesis through mTORC1/
SREBP1 signaling, which led to alleviated obesity. Our 
work provides novel supporting evidence for applying 
traditional Chinese medicine in the prevention and therapy 
of obesity. We present the following article in accordance 
with the ARRIVE reporting checklist (available at https://
atm.amegroups.com/article/view/10.21037/atm-22-685/rc).

Methods

Mice model

To establish the obesity mouse model, C57BL/6J mice 
(3–4 weeks old, n=40) were obtained from Charles River 
Laboratory (Beijing, China). The experiment was carried 
out according to our previous study (24). Mice were 
randomly divided into 2 groups: the control group (n=10), 
which was fed a normal diet; and the obesity group (n=30), 
which was fed a standard HFD (60% HFD, Research Diet, 
D12492, USA). After eight weeks, a calculated obesity 
degree [(Wobesity − Wcontrol)/Wcontrol]] over 20% was regarded 
as a successful model. After that, the mice were divided 
into the following groups and treated as indicated for  
4 weeks: control (treatment with saline), obesity (treatment 
with saline), and JPTGY (treatment with JPTGY at  
12 g/6 mL/kg). JPTGY was obtained from Shandong 
Provincial Qianfoshan Hospital. Saline and JPTGY were 

https://atm.amegroups.com/article/view/10.21037/atm-22-685/rc
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administered by gavage twice a day at 8 am and 4 pm, 
respectively. Mice in the MHY group were intraperitoneally 
injected with mTOR agonist (MHY1485, MCE, USA) 
twice a week (2 mg/kg) at 12 am on Wednesday and Sunday. 
The experiment was performed in accordance with the 
National Research Council Guide for the Care and Use of 
Laboratory Animals (25) and was approved by Affiliated 
Hospital of Shandong University of Traditional Chinese 
Medicine (No. AWE-2020-046). A protocol was prepared 
before the study without registration.

Physiological observations

The body weight, food and water intake, and rectal 
temperature were recorded manually. Brown adipose tissue 
(BAT) and abdominal WAT were isolated from mice after 
euthanasia and weighed.

Serum parameters

Blood samples were collected at the end of experiments. 
Blood glucose was measured by an automatic biochemical 
analyzer (AU5800, Beckman, USA). Serum insulin, total 
cholesterol (TC) and total triglyceride (TG) were measured 
using a mouse insulin ELISA kit (SEKM-0141, Solarbio, 
Beijing China), a mouse TC ELISA kit (SP14914, Saipei, 
Wuhan, China) and a mouse TG ELISA kit (SP14979, 
Saipei, Wuhan, China), respectively.

Histological analysis

Liver tissues were isolated from mice after experiments, 
fixed in 4% polyformaldehyde, dehydrated, embedded in 
paraffin, and dissected into 4-μm slices. The tissue slices 
were stained with hematoxylin and eosin for 30 sec and Oil 
Red O working solution (C0157S, Beyotime) for 30 min. 
Images of five randomly selected sections of each group were 
photographed using an optical microscope (Olympus, Japan).

Cell culture and treatment

3T3-L1 cells were obtained from Cobioer Biosciences 
Co., Ltd. (Nanjing, China) and maintained in Dulbecco’s 
modif ied Eagle’s  medium (DMEM, Gibco,  USA) 
supplemented with 10% NBCS (Gibco). To induce cell 
differentiation into adipocytes, cells were grown to 100% 
confluence and cultured with a mixture of hormones 
consisting of 0.5 mM 3-isobutyl-1-methylxanthine 

(Sigma-Aldrich, St. Louis, MO, USA), 1 mg/mL insulin 
(Sigma) and 1 mM dexamethasone (Sigma-Aldrich) for  
2 days. Subsequently, the cells were maintained in DMEM 
containing insulin (1 mg/mL) for another 6 days for absolute 
differentiation, and the medium was changed every 2 days. 
For cell transfection, differentiated 3T3-L1 cells were placed 
in 6-well plates and transfected with siSREBP, pcDNA3.1-
SREBP or the corresponding negative controls (Gene 
Pharma, China). Cells were treated with palmitic acid  
(0.6 mM, Sigma-Aldrich) for 24 h to induce lipid accumulation.

Western blotting

Proteins were extracted from cells and abdominal adipose 
tissue using ice-cold RIPA buffer. Total proteins (30 μg) 
were separated by SDS–PAGE and then transferred onto 
PVDF membranes. The protein bands were incubated with 
primary antibodies against the following proteins: PGC-
1α (ab188102, 1:1,000), UCP-1 (ab234430, 1:1,000), AGT 
(ab213705, 1:1,000), PSAT (ab232944, 1:1,000), EDNRA 
(ab117521, 1:1,000), mTOR (ab134903, 1:1,000), p-mTOR 
(ab109268, 1:1,000, Abcam), Raptor (ab40768, 1:1,000, 
Abcam), SREBP (ab28481, 1:1,000, Abcam), FAS (ab82419, 
1:1,000, Abcam), PRDM16 (PA5-20872, 1:1,000, Thermo), 
PPARγ (ab272718, 1:1,000, Abcam), C/EBPα (ab32358, 
1:1,000, Abcam), and GAPDH (ab8245, 1:1,000, Abcam). 
The next day, the bands were incubated with anti-mouse 
(ab6728) or anti-rabbit (ab6721) secondary antibodies for 
1 h at room temperature. The visualization of proteins was 
detected using an ECL kit and a gel imaging system (Tanon 
Science & Technology Co., Ltd., China).

Serum preparation

Serum containing JPTGY was prepared for the treatment of 
3T3L1 cells. In brief, male C57BL/6J mice (n=20) were fed 
a normal diet for two days and then randomly separated into 
two groups (control and JPTGY groups). The mice in the 
JPTGY group were administered JPTGY (12 g/6 mL/kg)  
through gavage at 8 am and 4 pm every day for 3 days, 
followed by fasting for 12 h. Thirty minutes after gavage 
with JPTGY again, the abdomen was opened, and aortic 
blood was collected. The blood samples were left to set for  
2 h, followed by centrifugation at 3,000 rpm for 10 min. 
Then, the serum was collected and stored at −70 ℃ for 
further experiments. For in vitro study, cells were treated with 
2.5%, 5%, or 10% JPTGY drug-containing serum (JPTGY 
serum) or serum obtained from control (control serum).
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Statistical analysis

All data are shown as the mean ± standard deviation (SD) 
of triplicate experiments. The statistical analysis was 
conducted using GraphPad Prism 7 (GraphPad Software, 
Inc.). Data were statistically analyzed using Student’s t-test 
and one-way analysis of variance (ANOVA). P values <0.05 
were considered significant.

Results

JPTGY treatment ameliorates HFD-induced fat 
accumulation and enhances the basal metabolic rate in mice

To assess the effect of JPTGY on obesity, we constructed 
an HFD-induced obesity mouse model and observed the 
enhanced body weight of obese mice compared with the 

control group (Figure 1A). We then validated that body 
weight (Figure 1B), food intake (Figure 1C), and water intake 
(Figure 1D) were slightly affected by JPTGY treatment in 
the mice. Interestingly, rectal temperature was increased 
in obese mice, and JPTGY treatment further induced this 
phenotype (Figure 1E). Blood glucose was enhanced in 
obese mice, and JPTGY attenuated the enhancement in the 
model (Figure 1F). Moreover, the levels of serum insulin  
(Figure 1G), TC (Figure 1H), and TG (Figure 1I) were 
increased in obese mice, while JPTGY treatment reversed 
these effects in the model. Similarly, the weight of 
abdominal adipose tissue was enhanced in obese mice, and 
JPTGY blocked this enhancement (Figure 1J). Consistently, 
fat degeneration, along with fat accumulation in liver 
tissues, was attenuated by JPTGY treatment in obese mice  
(Figure 1K,1L). Collectively, these results indicate 

Figure 1 JPTGY treatment ameliorates HFD-induced fat accumulation and enhances the basal metabolic rate in mice. (A) An HFD-
induced obesity mouse model was constructed and characterized by body weight. The mice in the established model were administered 
JPTGY or saline as a control, and the body weight (B), food intake (C), water intake (D) and rectal temperature (E) were recorded. (F) Blood 
glucose was detected using an automatic biochemical analyzer. (G-I) Serum insulin, TC and TGs were measured by ELISA. (J) The weight 
of abdominal adipose. (K,L) The HE (×400) and Oil Red O staining (×400) of liver tissues. *P<0.05 vs. control; #P<0.05 vs. obesity. JPTGY, 
Jian Pi Tiao Gan Yin; HFD, high-fat diet; TC, total cholesterol; TGs, total triglycerides; ELISA, enzyme linked immunosorbent assay.
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that JPTGY treatment ameliorates HFD-induced fat 
accumulation and enhances the basal metabolic rate in mice.

JPTGY treatment alters the protein expression levels of 
biomarkers in BAT and WAT in mice after treatment with 
JPTGY

Next, we further evaluated the impact of JPTGY on 
biomarkers of BAT and WAT. Significantly, the protein 
levels of BAT biomarkers, including PGC-1α and UCP-1  
(Figure 2A), were repressed in obese mice, and treatment 
with JPTGY rescued the levels of BAT biomarkers in 
the mice. Meanwhile, the protein expression of WAT 
biomarkers, such as AGT, PSTA, and EDNRA, was induced 
in obese mice, while JPTGY treatment attenuated this 
induction (Figure 2B).

JPTGY suppresses mouse obesity through mTORC1 
signaling in vivo

We then explored the potential mechanism of JPTGY-
mediated obesity in mice. Given that mTORC1 signaling 
has been identified to regulate obesity, we investigated 
the effect of cotreatment of JPTGY with the mTOR 
activator MHY on obesity-related phenotypes in an HFD-
induced obesity mouse model. The enhanced body weight 
of obese mice was repressed by JPTGY but increased by 
MHY (Figure 3A). Food intake (Figure 3B), water intake  
(Figure 3C), and rectal temperature (Figure 3D) were slightly 
affected by JPTGY treatment in the mice. Interestingly, 
the increased levels of fasting blood glucose (Figure 3E), 
serum insulin (Figure 3F), total cholesterol (Figure 3G), 
total triglycerides (Figure 3H), and abdominal adipose 

Figure 2 JPTGY treatment alters the protein expression levels of biomarkers of BAT and WAT in mice after treatment with JPTGY. (A) 
Protein levels of the BAT biomarkers PGC-1α and UCP-1; (B) protein levels of WAT biomarkers, including AGT, PSTA, and EDNRA, 
in abdominal adipose tissue. The relative protein levels were calculated and are presented in histograms. *P<0.05 vs. control; #P<0.05 vs. 
obesity. JPTGY, Jian Pi Tiao Gan Yin; WAT, white adipose tissue; BAT, brown adipose tissue; PGC-1α, peroxisome proliferator-activated 
receptor gamma coactivator-1-alpha; UCP-1, uncoupling protein-1; AGT, angiotensinogen; PSTA, primary subtalar arthrodesis; EDNRA, 
endothelin receptor type A.
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tissue (Figure 3I) in obese mice were suppressed by JPTGY 
treatment but enhanced by MHY treatment, in which MHY 
reversed the effect of JPTGY in the model.

JPTGY regulates biomarkers of BAT and WAT through 
mTORC1 signaling in vivo

We also observed that the reduced expression of UCP-1 and 
PGC-1α was rescued by JPTGY treatment and was further 
inhibited by MHY treatment, in which MHY cotreatment 
attenuated the effect of JPTGY in the mice (Figure 4A). 
Meanwhile, the enhanced expression of AGT, PSTA, and 
EDNRA was inhibited by JPTGY treatment and was further 
increased by MHY treatment, while MHY cotreatment 
relieved the effect of JPTGY in the model (Figure 4A). In 
addition, mTOR phosphorylation and raptor, SREBP, and 

FAS expression levels were increased in obese mice, and 
JPTGY treatment inhibited but MHY upregulated the 
phenotypes of the mice, while MHY cotreatment blocked 
the impact of JPTGY in the model (Figure 4B).

Serum containing JPTGY affects browning of 3T3-L1 
cells

We then verified the function of JPTGY in the modulation 
of JPTGY in 3T3-L1 cells. To this end, 2.5%, 5%, or 10% 
serum containing JPTGY was used to treat 3T3-L1 cells, 
and the biomarkers of browning were analyzed in the cells. 
Significantly, the expression levels of UCP-1, PGC-1α, 
and PRDM16 were repressed and the expression levels of 
PARPγ and C/EBPα were enhanced in 3T3-L1 cells under 
palmitic acid treatment, while JPTGY treatment dose-

Figure 3 JPTGY suppresses mouse obesity through mTORC1 signaling in vivo. Mice were administered an HFD to induce obesity and 
were then treated with the JPTGY and/or mTOR agonist MHY. Body weight (A), food intake (B), water intake (C) and rectal temperature (D) 
were recorded. (E) Blood glucose was detected using an automatic biochemical analyzer. (F-H) Serum insulin, TC and TGs were measured 
by ELISA. (I) The weight of abdominal adipose. *P<0.05 vs. control; #P<0.05 vs. obesity; &P<0.05 vs. JPTGY; ^P<0.05 vs. MHY. JPTGY, 
Jian Pi Tiao Gan Yin; HFD, high-fat diet; TC, total cholesterol; TGs, total triglycerides, mTORC1, mechanistic target of rapamycin 
complex 1; mTOR, mechanistic target of rapamycin; ELISA, enzyme linked immunosorbent assay.
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dependently reversed these results in the cells (Figure 5).

Serum containing JPTGY affects browning of 3T3-L1 
cells through mTORC1 signaling

We found that the expression levels of UCP-1 and PGC-
1α were inhibited in palmitic acid-treated 3T3-L1 cells and 
that JPTGY treatment rescued the expression, but MHY 
further repressed the expression in the cells, in which MHY 
cotreatment attenuated the effect of JPTGY in the system 
(Figure 6A). In addition, the phosphorylation of m-TOR 
and the expression levels of raptor, SREBP, and FAS 
were upregulated in palmitic acid-treated 3T3-L1 cells; 
treatment with JPTGY blocked their expression, but MHY 
further enhanced their expression, while cotreatment with 
MHY relieved the impact of JPTGY in the cells (Figure 6B).

JPTGY regulates 3T3-L1 cell function via SREBP

Interestingly, we further observed that the overexpression 
of SREBP failed to affect the expression of UCP-1 and 
PGC-1α in control and palmitic acid-treated 3T3-L1 
cells, while the overexpression of SREBP blocked JPTGY-
induced expression of UCP-1 and PGC-1α in 3T3-L1 cells 
(Figure 7A). Moreover, overexpression enhanced SREBP 
and FAS expression in control and palmitic acid-treated 
3T3-L1 cells and rescued JPTGY-inhibited expression of 
SREBP and FAS in the cells (Figure 7B).

Consistently, the depletion of SREBP by siRNA 
enhanced the expression of UCP-1 and PGC-1α in palmitic 
acid-treated but not control 3T3-L1 cells and increased 
JPTGY-induced expression of UCP-1 and PGC-1α in 3T3-
L1 cells (Figure 8A). In addition, the silencing of SREBP 
suppressed the expression of SREBP and FAS in control 
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and palmitic acid-treated 3T3-L1 cells and further inhibited 
JPTGY-repressed SREBP and FAS expression in the cells 
(Figure 8B).

Discussion

Multiple traditional Chinese preparations have been 
identified to modulate obesity. For example, Jiao-Tai-
Wan regulates insulin resistance and inflammation in an 
obesity rat model with chronic partial sleep deprivation (26).  
Shaofu Zhuyu decoction ameliorates obesity-induced 
systemic inflammation and hepatic steatosis by regulating 
inflammatory cytokine and adipokine levels in the 

circulation and various tissues (27). In the present work, 
JPTGY suppressed obesity in HFD-induced obese mice.

The mechanical investigation of this study showed that 
the enhanced levels of fasting blood glucose, serum insulin, 
TC, TG, and abdominal adipose tissue in obese mice were 
suppressed by JPTGY treatment. Adipose tissue mainly 
consists of WAT, BAT, and beige adipose tissue (28). Obesity 
occurs due to the accumulation of WAT (29). Lipogenesis 
involves fatty acid synthesis and TG synthesis (30). In BAT, 
PGC1-α, which coactivates members of PPARγ that modulate 
the expression of UCP1, enhances thermogenesis (31).  
A previous study showed that spirulina maxima 70% ethanol 
extract treatment reduces obesity by upregulating the 
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expression of proteins in the thermogenic program, including 
PRDM16, PGC-1α, and UCP1, in WAT and BAT (32). Our 
findings were consistent in vitro and in vivo. The increased 
expression levels of adipogenic-specific proteins, including 
SREBP, C/EBPα, and PPARγ, and the lipogenic enzyme 
FAS, are associated with HFD-induced obesity (33). In the 
present work, the expression levels of SREBP, PPARγ, C/
EBPα, and FAS were decreased in JPTGY-treated 3T3-L1 
cells. Similarly, muscat bailey A grape stalk extract attenuated 
adipogenic differentiation by downregulating C/EBPα and 
PPARγ (34). Diphlorethohydroxycarmalol regulates lipid 
metabolism by reducing the expression levels of adipogenic-
specific proteins and lipogenic enzymes, including PPARγ, C/
EBPα, SREBP-1c, FABP4, and FAS, in epididymal adipose 
tissue (35).

Targeting mTOR may potentially relieve the development 

of obesity (36). Empagliflozin relieves obesity-associated 
heart dysfunction by modulating sestrin2-regulated mTOR 
signaling in an HFD-induced obesity mouse model (37). 
Rapamycin attenuates age-related obesity by modulating 
mTOR signaling (38). Rubrofusarin-6-β-gentiobioside 
represses weight gain and lipid accumulation by targeting 
mTOR signaling (39). Maternal obesity is associated with 
the stimulation of mTOR signaling and placental insulin 
in a mouse model (40). In the present work, mTOR 
phosphorylation was increased in obese mice, and JPTGY 
treatment was inhibited, while MHY cotreatment blocked 
the impact of JPTGY in vitro and in vivo. Further research 
is needed to clarify the anti-obesity signaling pathway of 
JPTGY.

We identified that JPTGY relieved obesity phenotypes 
through mTORC1/SREBP1 signaling in vitro and in vivo. 
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Figure 8 JPTGY regulates 3T3-L1 cell function by SREBP. 3T3-L1 cells were transfected with si-SREBP and treated with palmitic acid 
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JPTGY may benefit the attenuation of obesity. We concluded 
that JPTGY possesses strong in vitro and in vivo anti-obesity 
activities and it could be used as a potential therapeutic agent 
for attenuating obesity.
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