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Introduction

Osteosarcoma (OS) is a common pediatric malignancy 
with high disability and mortality rates (1). With improved 
understanding of cancer pathogenesis and the updating of 
diagnostic methods, the 5-year survival rate of patients with 

OS has increased from <20% to 50–60% (2). So far, the 
prognosis still depends largely on tumor stage system and 
histopathological diagnosis. However, traditional methods 
are not enough to accurately evaluate the prognosis of OS 
patients (3). Therefore, it is necessary to develop accurate 
and reliable biological indicators to help doctors choose 
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optional treatment methods. In recent years, oncology 
biology has made significant progress in the field of OS (4). 
One of the achievements is that macroautophagy (referred 
to thereafter as autophagy) are involved in the therapeutic 
response of tumor (5,6).

Autophagy is a highly conservative catabolic cellular 
event degrading aggregated proteins and damaged 
organelles. The dynamic process includes induction, 
nucleation of the autophagosome, growth of the double-
membrane, sealing and merging with the lysosome, and 
the disintegration of engulfed materials (3). Typically, a 
basal level of autophagy exists everywhere in the cell to 
decompose and reuse non-functional cellular contents as 
a source of intracellular nutrition. In response to various 
stimuli and stresses, such as hunger, hypoxia and drugs, the 
extent of autophagy can increase dramatically to provide 
intracellular nutrients and remove harmful content (e.g., 
damaged mitochondria) (4). It suggests that autophagy is 
subject to highly orchestrated regulation. Several known 
signaling pathways for regulating key cellular events are 
also involved in autophagy, including AMPK/CaMKK, p53/
DRAM, PI3K/AKT/mTOR, JAK-STAT and RAS signaling 
pathways (3).

Autophagy is a double-edged sword in the carcinogenesis 
process. It inhibits or promotes the development of tumors 
in a situation-dependent manner, which depends on the 
tumor type, clinical stage, genetic background, and even 
treatment strategies. More and more studies have shown 
the significance of autophagy in OS (3). Autophagy is a 
pre-survival pathway used by OS tumor cells to increase 
their proliferation and development, resist cancer therapy, 
and preserve the cancer stem cell (CSC) pool within the 
tumor. However, autophagy may also be anti-tumor in 
OS and lead to cell death (7). Prominently, in tumors with 
mutations in the RAS pathway genes, hyperactivity of 
autophagy is indispensable to meet extraordinarily high 
demands of tumor cell metabolism (8). Numerous studies 
have proven that autophagy participates in the occurrence 
and development of OS by inhibiting the signaling pathway 
PI3K/AKT/mTOR (9-11). Besides, autophagy-related 
genes (ARGs) (CCL2, EGFR and MYC) were associated 
with a different prognosis in OS (12). 

During tumor development, cancer cells pathologically 
affect the tumor microenvironment (TME) by inducing 
various types of stress, including hypoxia, oxidative stress 
and acidosis (13). These effects cause abnormal reactions 
of adjacent immune cells and stromal cells that promote 

necrosis and metastasis (14). Therapeutic strategies 
targeting tumor-associated macrophages have been shown 
to significantly inhibit the metastasis of advanced OS 
(15,16). Although a large number of studies have been 
published, no effective immunotherapy has been developed 
to treat OS due to the rarity and heterogeneity of OS, the 
lack of specific tumor antigens, and the target effect of  
drugs (17-19).

These findings substantiate the involvement of 
autophagy in OS and suggest that ARGs may hold great 
promise as prognostic markers in OS. Hence, we considered 
that constructing and validating a risk score model of the 
ARGs of OS would benefit evaluation of both treatment 
and prognosis. 

There  were  severa l  s imi lar  report s  about  the 
establishment of risk score model of the ARGs of OS in 
PubMed, but their researchs were limited to a separate 
model. We have integrated the data of OS in TARGET 
(Therapeutically Applicable Research To Generate Effective 
Treatments) database (https://ocg.cancer.gov/programs/
target) and GEO (Gene Expression Omnibus) database 
(www.ncbi.nlm.nih.gov/geo), whose sample size is more 
than these two studies. Secondly, the receiver operating 
characteristic (ROC) value of our model is 0.930, which is 
better than that of the models in these two studies, and can 
more accurately predict the survival rate of OS patients. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-166/rc).

Methods 

Data preparation

The TARGET database is a comprehensive database for 
pediatric tumors. It aims to identify the biological processes 
(BPs) in pediatric tumors using comprehensive genomics 
methods, using the data to help guide the development 
of less toxic and more effective therapies through the 
generation of useful drug targets and prognostic markers 
for researchers (20).

The gene sets information (85 patients: TARGET-
OS) was contained as a training set from the TARGET  
database (21). Clinical information included survival 
time, survival state, sex, age, disease at diagnosis, primary 
tumor site, specific tumor region and definitive surgery. 
The autophagy information used for selecting the ARGs 
was collected from the Human Autophagy Database  

https://atm.amegroups.com/article/view/10.21037/atm-22-166/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-166/rc
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(HADb) (22). Another dataset (GSE16091) was downloaded 
from the GEO database as the validation set (23). 

Model establishment

To establish our model, we combined univariate Cox-
LASSO–multivariate Cox regression with consideration 
of the clinical factors, and finally selected the ARGs to 
establish the risk score model. Univariate and multivariate 
Cox regression analyses were performed using R’s “survival” 
package, and P<0.01 was used as the filtering condition of 
univariate Cox. To prevent large variance, we performed 
LASSO regression analysis using R’s “GLMNET” package, 
and determined K value by minimum lambda (21). The 
gene at the minimum of the Akaike information criterion 
(AIC) was calculated and used as the variable to be included 
in the model, and each patient’s gene expression level 
were used in the model to calculate the risk score, with 

the algorithm as follows: ( )1

n

x
coefx Exprx

=
×∑ , where coefx 

is the regression coefficient obtained from multivariate 
Cox regression analysis, and Exprx represents the gene 
expression level of each variable (24,25). The median risk 
score of each patient was taken as the reference standard 
for dividing the high and low groups, and then the Kaplan-
Meier method (K-M method) was used to analyze the 
survival of the two groups and draw the survival curves (26). 
In order to avoid mutual influence between risk factors, 
we conducted principal component analysis (PCA) and 
dimension reduction. According to the key parameters 
and scores of the model, and in combination with various 
clinical factors, we drew a clinically relevant nomogram for 
predicting the 1-, 3-, and 5-year survival rates. The scales 
on the nomogram represented the numerical ranges of each 
variable. The total scores calculated for each variable could 
be used to predict the survival rate (27).

Model validation

We used the “Survival ROC” package to draw ROC curves 
and used the “RMS” package to obtain the calibration 
curve to evaluate the accuracy of the predicted 1-, 3- and 
5-year survival rates, and used the ROC curves to verify 
each grouping variable (28). The diagnostic value of key 
ARGs was validated by a dataset from the GEO database 
(34 patients), and the diagnostic value of each key ARG was 
evaluated by the area under the ROC. 

Gene enrichment analysis (GO and KEGG)

We investigated the cellular components (CC), BP and 
molecular function (MF) of the ARGs in the gene ontology 
(GO) database. And selected ARGs were utilized in the 
functional pathway analysis of Kyoto Encyclopedia of Genes 
and Genomes (KEGG). R software and ClusterProfiler 
package were used to conduct the functional enrichment 
analysis. We then used the “corrplot” package to analyse 
the relationships between ARGs by Pearson’s correlation 
coefficient. 

Gene set enrichment analysis (GSEA)

GSEA is a method used for enrichment of gene sets to 
determine the distribution differences between whole 
gene sets and phenotypes, thereby achieving enrichment. 
The grouping file of the ARGs expression differences 
and the downloaded expression matrix f i le of OS 
common transcription group were input into GSEA4.0.3  
software (29). The data sets used for enrichment were C2 
and C5 molecular sets from the Molecular Characteristic 
Database (MSigDB), and the output results were adjusted 
to 100 sheets (30). Finally, the enrichment gene sets were 
screened according to | Normalized Enrichment Score | 
(|NES|) >1, False-DiscoveryRate (FDR) <0.25 and P<0.05.

Immune cell infiltration

We visualized the proportions of immune cell signatures 
in the training set. The single-sample GSEA (ssGSEA) 
algorithm was used to access the immune cell infiltration 
level and the stromal content for each OS sample. The 
ConsensuClusterPlus R package was used to perform 
consensus clustering.

Prediction of response to targeted therapy 

Half-maximal inhibitory concentrations (IC50) of targeted 
therapeutic drugs were plotted using R’s “ggplot2” and 
“pRRophetic” packages. The relationship between the 
IC50s and high- and low-risk groups were represented by 
box plots.

Immunohistochemistry

We obtained five OS and five paracancerous samples from 
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The First Affiliated Hospital of Guangxi Medical University 
for immunohistochemistry. All patients were diagnosed as 
OS by pathology. Clinicopathological data, such as sex and 
age, were collected. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). This 
study was approved by The First Affiliated Hospital of 
Guangxi Medical University Ethics Review Committee 
[approval No. 2021(KY-E-125)]. Because the information 
and privacy of the patients needed to be fully protected, the 
requirement for obtaining informed consent was waived.

The tissue slices were placed in xylene for 20 min, then 
fresh xylene was replaced and repeated once more. The 
dewaxed tissue slices were soaked in 100% ethanol for 5 min 
twice, then 95% ethanol, 80% ethanol and distilled water for 
5 min respectively. The alkaline antigen repair solution (Tri-
EDTA, pH=9) was heated to boiling in a pressure cooker, 
the tissue slices were placed in the solution for 2 min,  
then cooled to room temperature naturally (31). Next, they 
were incubated with 3% H2O2 at room temperature for  
10 min in the dark, then blocked with normal sheep serum 
solution at room temperature for 30 min. The primary 
antibody RP215 was added at 4 ℃ overnight and then 
treated with HRP-labeled secondary antibody at room 
temperature for 30 min. Then, diaminobenzidine (DAB) 
coloration and hematoxylin counterstaining was carried (31).

Ten high-power (×400) visual fields were randomly 
selected, and two researchers independently read the 
images. Hematoxylin stained the cell nucleus blue, and 
positive expression of DAB is brownish yellow.

Statistical analysis

All data were statistically analyzed using SPSS22.0 (IBM) 
and R 3.6.2 (https://www.r project.org/). Hazard ratio (HR) 
and 95% confidence interval (CI) were used to represent 
the relative risk between each variable and the prognosis of 
OS patients. All results P<0.05 were considered statistically 
significant.

Results

Collation of ARGs

The expression files of 85 patients (from TARGET-
OS, all diagnosed with OS) downloaded from TARGET 
and 232 autophagy genes in HADb were combined to 
find OS-related ARGs and their expression levels and 
clinical information. Expression files of 34 patients (from 

GSE16091, all diagnosed with OS) were used to validate 
the model’s stability. Based on univariate Cox analysis, 10 
survival-related ARGs were obtained (Figure 1A). We then 
used multivariate Cox regression and the LASSO method 
to generate a classifier to forecast OS according to the 
expression of ARGs (Figure 1B,1C). Finally, a combination 
of five genes (CCL2, AMBRA1, VEGFA, MYC and EGFR) 
remained as predictors in the model (Figure 1D).

Data preprocessing and risk score model establishment

According to the median risk score of the training set, the 
patients in the training and validation sets were divided into 
low- and high-risk groups. Survival analysis between groups 
showed that a low-risk score significantly correlated with 
good prognosis of OS patients (Figure 2A,2B). A heatmap 
to demonstrate the expression level of the five genes from 
their signatures was plotted (Figure 2C). Similar results were 
observed in the validation set (Figure 2D-2F). According 
to the results, the expression levels of CCL2, AMBRA1 and 
EGFR were relatively lower in the high-risk group. On the 
other hand, patients in the high-risk group tended to have 
a higher VEGFA and MYC expression levels. The survival 
rates and gene expression levels of each hub ARG are shown 
in Figure 3. 

Nomogram development and verification

After PCA, a risk score combined with five independently 
related risk factors (sex, age, disease at diagnosis, definitive 
surgery and risk score) was used to form an OS risk 
estimation nomogram (Figure 4). K-M curves indicated that 
over time, the survival rate of the low-risk group was higher 
than that of the high-risk group (Figure 5A). The C-index 
(0.853 in the training set) and calibration curve were plotted 
to assess prediction accuracy (Figure 5B,5C). The validation 
group C index (0.879) and calibration curve also showed 
high prediction of actual survival rate (Figure 5D-5F). 

KEGG and GO analysis

To clarify the biological pathways and processes related to 
the five ARGs, we carried out KEGG signaling pathway 
and GO functional process analysis. The results indicated 
that these ARGs were functional in autophagy-related 
processes such as the PI3K-Akt signaling pathway and 
MAPK signaling pathway (Figure 6). 
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GSEA

The patients were stratified according to their median 
of risk scores. GSEA results revealed that the five ARGs 
were favorably enriched in the biocarta-TOB1 pathway, 
antigen-receptor mediated signaling pathway, inflammatory 
response to antigenic stimulus, membrane invagination, 
phagocytic vesicle membrane, regulation of lymphocyte 
activation, T cell receptor signaling pathway, reactome 
costimulation by the CD28 family and reactome signaling 
by the B cell receptor, and natural killer (NK) cell-mediated 
cytotoxicity (Figure 7). 

Immune infiltrating 

Except for actived dendritic cells (aDCs) and immature 

dendritic cells (iDCs), the numbers of other immune cells and 
immune functions in the low-risk group were significantly 
higher than in the high-risk group (Figure 8A-8C).

Response to targeted therapy

According to the predicted IC50s, the high- and low-risk 
groups had different responses to various targeted drugs, 
and the difference was statistically significant. The high-risk 
group had lower IC50s, which indicated that the group was 
more sensitive to targeted drugs (Figure 9).

Immunohistochemistry

The expressions of the hub genes were more obvious in the 
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OS group than in the paracancerous group (Figure 10).

Discussion 

Autophagy is a “self-digesting” metabolic process of cell 
renewal, which has been proven to continue the growth of 
tumor cells by maintaining cell energy production (32). In 
addition, inhibition of autophagy enhances the effectiveness 
of anticancer therapy (33). These findings substantiate the 
involvement of autophagy in OS and suggest that ARGs 
may hold great promise as prognostic markers in OS. 
Hence, we constructed and validated a risk score model of 
the ARGs of OS to benefit evaluation of both treatment and 
prognosis. 

We screened OS-related ARGs to obtain five key genes 
that are potential targets for new molecular therapies. A risk 
prediction model was constructed for these five key ARGs, 
and it demonstrated that the survival curves of the high- 
and low-risk groups were significantly separated (31). In the 

time-dependent model, the risk score and number of deaths 
increased significantly with time, indicating that these 
five key ARGs have great significance in predicting OS 
prognosis. From the ROC prediction results of 1-, 3-, and 
5-year survival rates, the five key ARGs could predict the 
prognosis of OS patients well. Similarly, the five key ARGs 
also showed satisfactory results in the study of clinical traits. 

Four of the five key ARGs have been previously 
identified. Chen et al. reported that high-grade OS 
cells highly express CCL2, and that OS cells with high 
expression of CCL2 are more closely related to proliferation 
and invasion (34). Another study found that microRNA 
(miR)-150-5p weakens the proliferative and invasive 
potential of OS cells by downregulating the VEGFA level, 
and knockdown of VEGFA remarkably weakened the 
proliferative and invasive capacities of OS cells (35).

Moreover, researchers have applied multi-region whole-
genome sequencing to identify that amplification of the 
MYC oncogene is the main cause of paediatric OS (36). A 
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previous study also revealed that the miR-7/EGFR pathway 
is significant in the metastasis of OS cells and indicated that 
EGFR has the potential to become a prognostic marker 
and a promising therapeutic target for OS (37). To date, 
AMBRA1 has not been directly related to OS, but it has 
been related to prostatic cancer (38).

According to our enrichment analyses, OS autophagy 
was associated with the PI3K–Akt and MAPK signaling 
pathways. Jin et al. demonstrated that miR-1224-5p 
targeted PLK1 and mediated autophagy by blocking the 
PI3K/Akt/mTOR signaling pathway (39). Previous studies 
demonstrated that PEITC could induce autophagy in 
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Figure 6 Significantly enriched GO annotations and KEGG pathways. (A) Bar plot and (B) bubble plot of GO enrichment pathway. (C) Bar 
plot and (D) bubble plot of KEGG enrichment pathway. KEGG, Kyoto Encyclopedia of Genes and Genomes, GO, gene ontology.

K7M2 OS cells and eventually activated the ROS-related 
MAPK signaling pathway (40); moreover, escin was proved 
to be an activator of the ROS/p38 MAPK signaling pathway 
to counteract OS by inducing autophagy (41). These 
studies show that our results were credible. The GSEA 
results suggested that autophagy in OS is favorably related 
to immune and inflammatory responses. Related pathways 
including B cells, T cells and NK cells may be the potential 
direction of targeted therapy. 

The predicted IC50s indicated that the high-risk group 
was more sensitive to targeted drugs. Previous research 
has proved the importance of these targeted drugs in 
biological tumor cytology. For example, axitinib (AG-
013736) is a potent and selective inhibitor of VEGFR-1–3. 
In transfected or endogenous RTK-expressing cells, axitinib 
potently blocked growth factor-stimulated phosphorylation 

of VEGFR-2 and VEGFR-3 (42,43). AZD8055 showed low 
activity against all PI3K subtypes (α, β, γ, δ) and other near-
PI3K kinase families (ATM and DNA-PK). AZD8055 inhibits 
the phosphorylation of mTORC1 (p70S6K and 4E-BP1), 
mTORC2 (AKT), and downstream proteins (44). BIRB 796 is 
one of the most effective and slowest-separating inhibitors 
of human p38 MAPK (45). The combination of BIRB0796 
with p38 MAPKs or JNK1/2 decreased phosphorylation 
of upstream kinase MKK6 or MKK4, but did not enhance 
dephosphorylation (46). The results of these drug sensitivity 
analyses coincided with those for the pathway analyses 
mentioned above.

The tumor-associated immune response is integral in 
the TME, whereas autophagy is of great significance in 
regulating tumor-related immune responses (47). Immune 
cell infiltration analyses showed that both immune cells and 
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Figure 7 Gene set enrichment analysis results for CCL2, AMBRA1, VEGFA, MYC and EGFR.
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immune functional processes were obviously significant in 
the low-risk group, demonstrating that the high-risk group 
had less autophagy-related immune response.

Some limitations exist in this study. For example, the 
sample size is relatively small. Further research with more 
samples is needed to better evaluate the performance of 
the model and elucidate the underlying mechanism in the 
future.

Conclusions

In summary, we identified a 5-autophagy-gene-based 
prognostic signature in OS. We created a risk score model 
according to five ARGs associated with OS and verified 
its accuracy and stability. This risk score model shows 
commendable performance to predict the prognosis of OS 
at 1, 3, and 5 years for OS patients independently, which 
will provides potential guidance of OS targeted therapy.
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