
Page 1 of 10

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(6):284 | https://dx.doi.org/10.21037/atm-22-617

Original Article

The effects of LL-37 on virulence factors related to the quorum 
sensing system of Pseudomonas aeruginosa

Qian Xiao1,2^, Yanfen Luo1,2, Wen Shi1,2, Yang Lu1,2, Rui Xiong3, Xinggui Wu1,2, Haihao Huang1,2, 
Chanjing Zhao1,2, Jianming Zeng1,2, Cha Chen1,2

1Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China; 2The Second Clinical College of 

Guangzhou University of Chinese Medicine, Guangzhou, China; 3Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen 

University, Guangzhou, China

Contributions: (I) Conception and design: Q Xiao; (II) Administrative support: C Chen; (III) Provision of study materials or patients: Y Luo, W Shi; (IV) 

Collection and assembly of data: X Wu, H Huang, C Zhao; (V) Data analysis and interpretation: Y Lu, R Xiong, J Zeng; (VI) Manuscript writing: All 

authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Qian Xiao. Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou 510120, 

China; The Second Clinical College of Guangzhou University of Chinese Medicine, No. 55, Inner Ring West Road, College Town, Panyu District, 

Guangzhou 510006, China. Email: 15989028990@163.com or xiaoqian007@gzucm.edu.cn.

Background: Antimicrobial peptides (AMPs) have shown promise in the treatment of multi-resistant 
pathogens. It was therefore of interest to analyze the effects of the AMP LL-37 on the regulation of several 
virulence factors related to the quorum sensing (QS) system of Pseudomonas aeruginosa (P. aeruginosa) in vitro. 
Methods: The minimum inhibitory concentration (MIC) was evaluated by the micro broth dilution 
method. The expression of QS-related and QS-regulated virulence factor genes was also evaluated. Exotoxin 
A activity was measured with the nicotinamide adenine dinucleotide (NAD) (Coenzyme I) method; Elastase 
activity was detected with the elastin-Congo red (ECR) method; Pyocyanin detection was performed using 
the chloroform extraction method. The effects of LL-37 were assessed by measuring the expression changes 
of the virulence protein-encoding genes of the strains with quantitative polymerase chain reaction (PCR). 
Results: The MIC of LL-37 against both P. aeruginosa reference strain (ATCC 15692 PAO1) and PA-ΔlasI/
rhII was therefore determined to be 256 μg/mL. LL-37 at sub-minimum inhibitory concentrations (sub-
MICs) had no significant effects on P. aeruginosa bacterial growth (P>0.05), but significantly downregulated 
the expression of all 3 virulence factors. 
Conclusions: Interestingly, this effect appeared to be dose-related. These findings suggest that LL-37 
could be a potential candidate for QS inhibition against bacterial infection and may have significant clinical 
potential in the treatment of P. aeruginosa biofilms.
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Introduction

Pseudomonas aeruginosa (P. aeruginosa) is a complex Gram-
negative conditional pathogen that is responsible for both 
hospital-acquired and community-acquired infections (1-4). 
Quorum sensing (QS) is a cell density-based intercellular 
communication system. Pseudomonas has a QS system (5-7)  
and exhibits significant resistance to antibiotics and the 
innate immune system. The QS system of Pseudomonas 
is one of its most important signal transduction systems 
and is the key to its pathogenicity (8,9). QS has a cascade 
regulation mechanism. The Las system is located at the 
top of the regulatory network. It is initially activated after 
receiving a stimulus signal and can positively regulate 
the Rhl system (10,11). The synthesis of the Pseudomonas 
quinolone signal (PQS) (12) is positively regulated by 
the Las system. PQS regulates the expression of the rhlI-
associated genes that depend on the Rhl system, thus 
linking the Las system and the Rhl system. In this way, the 
QS system can regulate the expression of virulence factors 
and trigger biofilm formation (13,14).

The virulence of P. aeruginosa is closely related to its 
cellular structure (pili, lipopolysaccharides, and flagella) 
and secreted factors (exotoxins, elastases, pyocyanin, and 
extracellular polysaccharides). The QS system involves 
the cell-density dependent accumulation of signal 
molecules that enable bacteria to modulate the expression 
of virulence-associated genes (15,16) including elastase, 
alkaline protease, exotoxin A, rhamnolipid, pyocyanin, and 
exogenous lectins. A host of virulence factors are regulated 
by 2 acyl-homoserine lactone (AHL) QS systems: the LasI-
LasR (las system) and the RhlI-RhlR (rhl system) (17,18). 
Virulence factors can alter the balance between host 
defenses and bacterial virulence, leading to damaged blood 
vessels, exotoxin spread, systemic inflammatory response 
syndrome, and ultimately host injury or death (19). This 
means that the virulence factors in the QS system are key to 
the pathogenicity of P. aeruginosa. 

Previous study found that exotoxin A was a type II 
secreted extracellular enzyme encoded by the toxA gene. 
This enzyme alone or synergistically with other hydrolases 
causes cell death, severe tissue damage, and necrosis in 
humans (20). Elastase, which is encoded by the lasA gene 
(staphylolysin), lasB gene (pseudolysin), and secreted 
extracellularly (21,22), plays an important role in the 
infection process of P. aeruginosa. Pyocyanin is a redox-
active virulence factor that is produced by P. aeruginosa and 
can easily penetrate biological membranes. Pyocyanin has 

been shown to play a major role in animal models of acute 
and chronic infection caused by P. aeruginosa (23,24).

The unreasonable use of antibiotics makes bacteria 
resistant to these treatments, which can lead to repeated or 
persistent infections. P. aeruginosa resistance is an issue of 
public concern. As the prevalence of Pseudomonas bacterial 
resistance increases, it is critical to find new methods 
for treating infections. Interfering with the expression 
of virulence genes regulated by the QS system can 
effectively regulate the pathogenicity and drug resistance 
of P. aeruginosa, and may represent a new and promising 
direction for potential drug therapies. 

Since antimicrobial peptides (AMPs), also known as 
host defense peptides, were discovered in the 1980s, 
they have been viewed as a promising alternative to 
conventional antibiotics. AMPs show promise against multi-
resistant pathogens due to their combined antibacterial, 
immunomodulatory, and anti-biofilm effects (25,26). 
The AMP LL-37 is the only member of the Cathelicidin 
family that is produced by epithelial cells, macrophages, 
neutrophils, and lymphocytes in the human body (27,28). 
LL-37 has been shown to exhibit a broad-spectrum of 
antimicrobial and immunomodulatory activities, and 
promotes damage repair and other restorative functions. 
It is also involved in important physiological functions 
including cell proliferation, invasion, cell cycle regulation, 
and apoptosis. LL-37 is highly expressed at barrier sites, 
serving as an important first-line defense against pathogenic 
microorganisms (29). Like other AMPs, the primary 
mechanism of action is membrane disruption. Dorschner 
et al. (30) reported that LL-37 had an inhibitory effect on 
Escherichia coli, P. aeruginosa, Enterococcus, and Staphylococcus 
aureus (S. aureus) in vitro. LL-37 has also been found 
to inhibit the activity of Staphylococcus epidermidis (31), 
Pseudomonas (32), and Acinetobacter baumannii (33). The 
ability to form biofilms is a critical component of chronic 
P. aeruginosa infection (34,35). LL-37 can inhibit the 
formation of P. aeruginosa biofilms and destroy already 
formed biofilms, suggesting that it may be a potential 
therapy against chronic P. aeruginosa infection (36). 
Nagant et al. showed that not only LL-37 but also some 
of its fragments blocked the formation of a biofilm. LL-
37 also affected PAO1 within an established biofilm (37). 
Overhage et al. (38) demonstrated using microarrays that 
LL-37 can inhibit biofilm formation by reducing cell 
adhesion, stimulating the twitching motility of bacteria, and 
influencing the QS system to downregulate genes essential 
to biofilm development. However, how LL-37 affects the 
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QS system of P. aeruginosa to exert its antibacterial effects 
has not been well reported. Although several studies have 
provided promising evidence of the effectiveness of LL-37 in 
the treatment of infections, further studies are still needed. 
The goal of this work is to understand the influence of 
LL-37 on the virulence factors related to the QS of P. 
aeruginosa. We present the following article in accordance 
with the MDAR reporting checklist (available at https://
atm.amegroups.com/article/view/10.21037/atm-22-617/rc).

Methods

Bacterial strains, media, reagents, and instruments

The wild-type P. aeruginosa strain PAO1 was donated by 
Zou Lin from Children’s Hospital of Chongqing Medical 
University. The double mutant PA-ΔlasI/rhII (39) strain 
was constructed via gene homologous recombination and 
verified with polymerase chain reaction (PCR) sequencing, 
southern blot, and high performance liquid chromatography 
mass spectrometry (HPLC MS). PAO1 and PA-ΔlasI/rhII 
were grown at 37 ℃ in Luria-Bertani broth (LB). Total 
RNA was extracted using RNAiso Plus reagent (Takara, 
Dalian, Liaoning, China). Reverse transcription was 
performed with the PrimeScript RT Reagent Kit (Takara, 
Dalian, Liaoning, China; code No. RR047A). Azithromycin 
(AZM) (Guangdong Drug Inspection Institute, Guangzhou, 
China), and real-time PCR kit (Thermo Fisher Scientific, 
Waltham, MA, USA) were used. LL-37 (LLGDFFRKSK
EKIGKEFKRIVQRIKDFLRNLVPRTES; lot: JT69395) 
was purchased from Nanjing Jeptide Biotechnology Co. A 
Multiskan FC microplate reader (Thermo Fisher Scientific, 
Waltham, MA, USA) and Rotor-Gene Q real-time 
quantitative PCR (Thermo Fisher Scientific, Waltham, MA, 
USA) were used.

Determination of MIC

The MICs of LL-37 for the PAO1 and PA-ΔlasI/rhlI strains 
were measured using the micro broth dilution method in 
accordance with the Clinical and Laboratory Standards 
Institute (CLSI) M07-A9 guidelines: (I) MIC was measured 
during the logarithmic growth phase; (II) 100 μL of bacterial 
solution at a concentration of 1×105 CFU/mL was added to 
96-well microtiter plates; (III) two-fold serial dilutions of 
LL-37 ranging from 1,024 to 0.25 μg/mL were tested; (IV) 
the final culture concentrations of LL-37 were 1,024, 512, 
256, 128, 64, 32, and 16 μg/mL; (V) sterile physiological 

saline was used as a blank control and a bacterial solution 
well with no AMP was used as a negative control; (VI) the 
plates were incubated in a 35 ℃ carbon dioxide incubator 
for 18–20 h. Following the incubation period, the plates 
were visually evaluated for the presence of bacterial growth. 
The lowest concentration of LL-37 that inhibited bacterial 
growth was defined as the MIC value. Measurement of the 
MIC values of the QS inhibitor AZM was then performed 
in the same manner so that AZM could be used as a positive 
control.

P. aeruginosa growth curve 

Single colonies of PAO1 and PA-ΔlasI/rhlI were inoculated 
in 3 mL of LB medium and cultured overnight at 37 ℃ with 
continuous shaking (200 r/min). Various concentrations of 
LL-37 were combined with a range of P. aeruginosa cultures: 
(I) 20 μL of bacterial culture was added into 3 mL of LB 
medium and cultured with continuous shaking at 37 ℃; (II) 
the culture was then treated with LL-37 at concentrations 
of 250, 125, 62.5, and 31.25 μg/mL. OD600nm values 
(performed in triplicate) were measured 2, 4, 6, 8, 10, 12, 
14, and 16 h after treatment to draw growth curves. 

The detection of exotoxin A

Exotoxin A activity was measured with the NAD (Coenzyme I) 
method: (I) 1mL of the bacterial solution was centrifuged 
at 10,000 r/min at 4 ℃ for 1 h; (II) 10 μL of the supernatant 
and 2 μL of NAD solution was added to each Eppendorf 
tube and mixed via pipetting; (III) the mixture was 
incubated at 25 ℃ for 30 min; (IV) in order to prepare for 
the corresponding solution in each measuring tube of the 
color development system, 0.2 mL of nitrotetrazolium blue 
(NTB), 0.8 mL of phenazine dimethyl ester (PMS), 0.1 mL 
of lactate dehydrogenase (LDH), and 1.8 mL of sodium 
lactate were added in advance; (V) the mixture was then 
placed in a water bath at 37 ℃ for 10 min; (VI) supernatant-
treated NAD was then added to the corresponding test 
tubes of the color development system in addition to  
0.2 mL of 10 mmol/L phosphate buffered saline; (VII) after 
mixing each of the above measuring tube solutions with 
the previously prepared solution, the samples were placed 
in a water bath at 37 ℃ for 5 min; (VIII) finally, 0.1 mL of 
hydrochloric acid (2 mol/L) was added to each tube to stop 
the reaction. The experiment was set with negative and 
positive controls. The negative control tube did not contain 
NAD, while the positive control tube contained NAD but 

https://atm.amegroups.com/article/view/10.21037/atm-22-617/rc
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did not include a toxin. When the OD490nm colorimetric 
measurement was performed, the negative control tube was 
used as the zero, and the color inhibition rate was calculated 
according to the formula RI = 100 − (OD490nm value of 
toxin-treated tube/OD490nm value of positive reference tube) 
×100%. Three parallel experiments were performed for 
statistical analysis. 

Elastase detection

Elastase activity was detected with the elastin-Congo red 
(ECR) method (40,41): (I) 1 mL of bacterial solution was 
centrifuged at 12,000 r/min at 4 ℃ for 1 h; (II) 100 μL of 
the supernatant was added into a new Eppendorf tube; 
(III) 900 μL of ECR and ECR buffer was added and mixed 
by pipetting to achieve an ECR concentration of 20 g/L;  
(IV) the reaction was placed in a 37 ℃ incubator for 16 h;  
(V) the reaction was stopped by adding 100 μL of 
ethylenediaminetetraacetic acid (EDTA), then centrifuging 
at 10,000 r/min at 4 ℃ for 20 min. OD495nm absorbance was 
measured with a microplate reader. LB medium was used 
as a negative control. All experiments were performed in 
triplicate.

Pyocyanin detection 

Pyocyanin detection was performed using the chloroform 
extraction method (42): (I) 5 mL of bacterial solution 
was centrifuged at 5,000 r/min at 4 ℃ for 1 h; (II) 3 mL 
of chloroform was added to 3 mL of the supernatant for 
extraction; (III) the blue layer was re-extracted into 1 mL of 
0.2 mol/L hydrochloric acid for the extract, yielding a red 
layer on the top. Absorbance was measured at 520 nm with 
a microplate reader, and the concentration of pyocyanin in 
the absence and presence of LL-37 was recorded.

Quantitative PCR (qPCR)

The RNA of P. aeruginosa strains was extracted for qPCR 
analysis according to the RNA reagent instructions 
(Promega, Madison, WI, USA): (I) 1 μg of the extracted 
RNA was reverse transcribed into cDNA with a reverse 
transcription reagent kit (TaKaRa, Dalian, Liaoning, 
China); (II) following the instructions of the SYBR Green 
qPCR Master Mix (Thermo Fisher Scientific, Waltham, 
MA, USA), relative real-time PCR was performed with 
the ABI ViiATM 7Dx system (Applied Biosystems, Foster, 
CA, USA) to detect cDNA; (III) the housekeeping gene 
ribosomal protein rpoD was used as an internal control for 
normalization. Relative changes in gene expression levels 
were calculated with the 2−ΔΔCt method. Primer sequences 
are shown in Table 1.

Statistical analysis

All treatments were performed in triplicate to confirm 
reproducibility. SPSS 16.0 (IBM, Armonk, NY, USA) 
statistical software was used for analysis. Data are expressed 
as mean ± standard deviation. Comparisons between two 
groups were performed using grouped t-tests. Comparisons 
between three groups were performed using one-
way ANOVA. Differences were considered statistically 
significant at P<0.05.

Results

Minimum inhibitory concentration (MIC) of LL-37 
against P. aeruginosa 

A sub-minimum inhibitory concentration (sub-MIC) was 
used to test the effect of LL-37 on the virulence factors 
regulated by the QS system. The wells exposed to LL-37  

Table 1 Primer sequences

Gene Forward (5'-3') Reverse (5'-3')

lasA CTGCTGGCTTTCAAGGTTTC CCAGCAAGACGAAGAGGAAC

lasI CGTGCTCAAGTGTTCAAGGA AAAACCTGGGCTTCAGGAGT

rhlA AGCTGGGACGAATACACCAC GACTCCAGGTCGAGGAAATG

rhlB GAGCGACGAACTGACCTACC CGTACTTCTCGTGAGCGATG

toxA TGCTGCACTACTCCATGGTC ACACCTTGATGTTCGAAGGC

rpoD CTGATCCAGGAAGGCAACAT TGAGCTTGTTGATCGTCTCG
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concentrations of 1,024, 512, and 256 μg/mL were 
transparent, while turbidity appeared in wells treated 
with a concentration of 128 μg/mL, as shown in Table 2. 
The MIC of LL-37 against both PAO1 and PA-ΔlasI/rhII 
was therefore determined to be 256 μg/mL. As a positive 
control, the MIC of azithromycin (AZM) was 128 μg/mL, 
and the concentration of AZM used against all of the strains 
in this study was 2 μg/mL.

The growth curves of P. aeruginosa strains in the setting of 
sub-MIC LL-37

Four different concentration levels of LL-37 sub-MIC were 
selected as the treatment group, and PAO1, PA-ΔlasI/rhII, 
and PAO1 + AZM without LL-37 were used as controls. 
Since AZM is a QS inhibitor, it was used as a positive 
control. A concentration of 2 μg/mL of AZM did not affect 
the growth of the strains. PA-ΔlasI/rhII had a complete 
deletion of the coding domain. As shown in Figure 1, there 
were no significant differences in proliferation between the 
groups at any timepoint (P>0.05).

Influence of LL-37 on the expression of P. aeruginosa 
virulence factors

To confirm the expression of P. aeruginosa virulence factors, 
we examined exotoxin A, elastase, and pyocyanin expression 
induced by LL-37. As shown in Figure 2, the expression 
of exotoxin A, elastase, and pyocyanin was significantly 
reduced in the PA-ΔlasI/rhII strain compared with the 
wild-type PAO1 strain (P<0.05). There were no significant 
differences between the PA-ΔlasI/rhII strain and the negative 
control group. Notably, all of the different concentrations 
of LL-37 influenced the expression of exotoxin A, 
elastase, and pyocyanin, as shown in Figure 2A-2C.  
After interference with LL-37, the PAO1 strain exposed 
to a different sub-MIC concentration of LL-37 showed a 
significant decrease in exotoxin A, elastase, and pyocyanin 
expression compared with the PAO1 control group (P<0.05). 
With increasing concentrations of LL-37, reduced 
activity of exotoxin A, elastase, and pyocyanin were again 
demonstrated, but differences between the groups were not 
significant (P>0.05).

Table 2 Identifying the minimum inhibitory concentration of LL-37 

Group 1 2 3 4 5 6 7 Negative control Blank

LL-37 concentration (μg/mL) 1,024 512 256 128 64 32 16 0 0

PAO1 − − − + + + + + −

PA-ΔlasI/rhII − − − + + + + + −

“+”: turbidity and bacterial growth; “−”: clear fluid and bacterial inhibition. PAO1, wild-type P. aeruginosa strain; PA-ΔlasI/rhII, double 
mutant P. aeruginosa strain; P. aeruginosa, Pseudomonas aeruginosa; Negative control, untreated group; Blank, sterile saline.
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Figure 1 Growth curves of PA-ΔlasI/rhII and their parent strain PAO1. The relationship between OD600nm to viable cell count was equivalent 
for all strains examined. Each point represents the mean OD600nm value. PAO1, wild-type P. aeruginosa strain; PA-ΔlasI/rhII, double mutant P. 
aeruginosa strain; P. aeruginosa, Pseudomonas aeruginosa.
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Influence of LL-37 on the expression of PAO1 virulence 
genes 

The expression of the QS-related virulence genes of P. 
aeruginosa were significantly decreased compared with 
the PAO1 strain at a sub-MIC concentration of LL-37 
(Figure 3A,3B). With increased LL-37 concentrations, 
the expression levels of lasA, lasI, toxA, rhlA, and rhlB 
genes significantly decreased (P<0.05) to a degree that 
was consistent with the expression of virulence factors at 
sub-MIC concentrations of LL-37. Low QS-related gene 
expression of the PA-ΔlasI/rhII group further suggested 
that a double gene deletion strain model was successfully 
constructed (P<0.01).

Discussion

This study sought to understand whether the antibacterial 
effects of LL-37 are through the regulation of virulence 
factors associated with the QS system. Human cathelicidin 
was found to be more potent than conventional antibiotics 
at killing extra- and intracellular S. aureus (43). LL-37 was 
previously found to inhibit the inflammatory pathway by 
reducing the release of IL-6 and TNF-α and inhibiting 
the phosphorylation of Akt and JNK (44). Furthermore, 
Uhlmann et al. showed that LL-37 affected the virulence 
factors of Streptococcus pyogenes (45). It was therefore of 
interest to determine whether the potency of LL-37 
translated to the treatment of P. aeruginosa, which commonly 
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develops multidrug resistant strains and would therefore 
benefit from novel adjunct treatments.

To develop an accurate model to evaluate the impact of 
LL-37 on Pseudomonas function, it was necessary to confirm 
that sub-MIC concentrations of this vector did not affect 
the growth characteristics of the PA-ΔlasI/rhII and wild-
type PAO1 strains. The present work showed that LL-37 at 
concentrations below 256 μg/mL did not affect the growth 
curve of P. aeruginosa in its early stages (0–16 h in culture) 
of proliferation. It is therefore possible to attribute changes 
in virulence factor expression to the effects of LL-37 alone, 
not altered proliferation.

Patients with P. aeruginosa have increased expression 
of virulence factors. Inhibiting their activity is one of the 
main targets for P. aeruginosa treatment. The present work 
suggests that LL-37 has an inhibitory effect on P. aeruginosa 
exotoxin A, elastase, and pyocyanin. P. aeruginosa possesses 
the ability to form biofilms to facilitate the colonization of 
medical devices, thereby contributing to the spread of drug-
resistant strains in the hospital environment (46). Pyocyanin 
is one of the primary virulence factors responsible for 
biofilm formation (47). In addition to biofilm development, 

QS has been linked to the regulation of other physiological 
processes, including virulence factor production, metabolic 
adjustment, and host-microbe interactions (48). The 
expression of pyocyanin was significantly inhibited by  
LL-37. Mishra and Wang (49) in their study of P. aeruginosa 
emphasized the importance of antibiofilm peptides for early 
infections. 

The results of the present work suggest that LL-37 plays 
a vital role in the antibiofilm process. It is also possible that 
the antibiofilm effects of LL-37 shown against P. aeruginosa 
may be similarly effective against other bacteria that produce 
biofilms (50). LL-37 significantly reduced Pseudomonas-
associated QS virulence factors, and as the concentration 
of LL-37 increased, its absorbance gradually decreased and 
its toxicity was reduced. This may suggest that the anti-
infective effect of LL-37 can only be achieved by inhibiting 
the production of P. aeruginosa virulence factors. The effects 
of LL-37 on other virulence factors may be of importance as 
well, and will be evaluated in future work. 

Using PAO1 as a control group, the mRNA transcription 
levels of the virulence factor genes lasA, lasI, toxA, rhlA, and 
rhlB, which are involved in QS systems, were significantly 
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reduced by LL-37. The transcription level of these factors 
also decreased with increased concentrations of LL-37, 
suggesting that there is a dose-dependent antibacterial 
effect. This change is consistent with the altered phenotype 
of virulence factors caused by LL-37. As these virulence 
factors are Las (lasA, lasI, toxA) and Rhl (rhlA, rhlB) system-
related genes (51), it is possible that if both the Las and rhl 
cell-to-cell signaling systems are congested, P. aeruginosa 
may not be able to re-establish the production of cell-to-cell 
signaling-dependent virulence factors. This approach may 
efficiently reduce virulence factor production and the high 
death rates associated with P. aeruginosa.

In agreement with published data (52), the present work 
demonstrates that LL-37 can downregulate the expression 
of P. aeruginosa QS system virulence factors in vitro, and 
that these inhibitory effects are dose-dependent. Our study 
emphasizes the importance of LL-37 in the pathogenesis of 
P. aeruginosa. LL-37 may therefore be of clinical potential in 
the future.

There are several limitations to this study. For example, 
it only focused on a single bacterial species and tested a 
relatively small number of virulence factors. Future work 
should include S. aureus, Klebsiella pneumoniae, and other 
biofilm-producing bacteria. However, the experimental data 
presented in this work provides valuable insights into the 
function of LL-37, especially on P. aeruginosa.

Conclusions

In conclusion, the AMP LL-37 is a potential inhibitor of 
the QS system and the pathogenicity of P. aeruginosa. The 
newly uncovered therapeutic potential of LL-37 against this 
challenging pathogen merits further investigation (53,54). 
In-depth study of the QS system will not only help to 
enrich our understanding of the mechanism of P. aeruginosa 
resistance, but also how to optimize the antimicrobial 
properties of LL-37, which may improve our ability to 
treat bacterial resistance. Future work will seek to further 
evaluate the effects of sub-antimicrobial concentrations of 
LL-37 on other regulatory pathways under the control of 
the lasRI/rhlRI system, clarify the regulatory pathway that 
contributes to this drug’s efficacy, and identify additional 
new therapeutic targets for treating clinical bacterial 
infections.
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