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Introduction

Genomics and molecular biology have been revolutionized 
to interrogate human disease biology. It results in an 
extensive range of tools developed such as whole genome 
or exome sequencing and multi-omics technologies (1,2). 
With the increased availability in advanced technology, 
more opportunities for prevention and therapy at the 
individual patient level are opened by the promise of 
personalized medicine. For example, Tabrecta, approved 
on May 6, 2020 by FDA under fast track, breakthrough 
therapy, accelerated approval, and priority review, is the first 
targeted therapy to treat patients with non-small cell lung 
cancer with mutations leading to MET exon 14 skipping. A 

next generation sequencing called the FoundationOne CDx 
assay (F1CDx) can detect the mutations leading to MET 
exon 14 skipping based in vitro diagnostic device and was 
approved by FDA as a companion diagnostic for Tabrecta. 

To successfully and effectively translate the mechanistic 
findings through drug development process, it is critical to 
incorporate the biomarkers into clinical trials. Biomarker-
driven clinical trials integrate clinical practice with clinical 
research under the precision medicine paradigm. The 
premise of precision medicine is that there is a subgroup of 
patients who benefit from the treatment, and the key is to 
enrich the trial population to optimize disease management 
and enhance efficiency. Therefore, it is necessary to develop 
statistical methods and designs to integrate biomarkers 
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into the decision process and improve the clinical benefits 
of the targeted agents. Simon [2019] reviews the statistical 
methods for biomarker-driven clinical trials to deal with 
patient heterogeneity in the drug response (3). Optimal 
individualized treatment rules built on biomarkers identify 
a subgroup of patients who benefit from the experimental 
treatment and aid to determine personalized treatment 
decisions (4-9). Fixed or adaptive enrichment designs 
use the biomarkers in order to restrict enrollment to 
the patients who are expected to get more benefit from 
experimental treatment than the control, which magnifies 
the signal and improves the power to detect the treatment 
effect (10-16). Basket trials (e.g., NCI MATCH, NCI 
MPACT) or umbrella trials (e.g., BATTLE, I-SPY 2, Lung 
MAP) are implemented under the master protocol based 
on multiple tumor types for certain genetic mutations 
or different genetic mutations for a single type of tumor, 
respectively (17-22). 

This paper aims to discuss challenges and opportunities 
in biomarker-driven randomization. The biomarker-
driven randomization is a randomization strategy adapted 
based on biomarkers to identify patients who would 
respond better to the treatment and optimize the treatment 
allocation by adaptively randomizing more patients to the 
superior treatment based on biomarkers and accumulating 
information during the trial (23-28). We consider several 
types of biomarker-driven randomization, which are the 
covariate-adjusted versions of the existing response-adaptive 
randomization (RAR) and examine the performance of 
the covariate-adjusted RAR (CARA) in group sequential 
clinical trials allowing early stopping. We compare the 
biomarker-driven randomization with the traditional fixed 
randomization and RAR without incorporating biomarkers. 
We present the operating characteristics, such as rejection 
probability, estimated effect size at the final analysis, early 
stopping probability, the difference of the number of 
patients allocated to two treatments, and the number of 
failures, of the group sequential biomarker-driven trial 
designs through simulations and provide suggestions and 
considerations for the biomarker-driven randomization.

Biomarker-driven randomization in group 
sequential trials

In clinical trials, randomization is a typical strategy for 
removing potential bias and confounders in a patient 
group. Fixed randomization and adaptive randomization 
(e.g., response-adaptive randomization with/without using 

covariates) have been considered. Most clinical studies use 
fixed randomization, for example 1:1 or 2:1 is considered 
for two-arm randomized controlled trials (RCT), which 
means that the likelihood of individuals being randomly 
assigned to a treatment group remains constant throughout 
the trial. RCT with an equal allocation ratio randomizes 
the same number of patients to each treatment and yields a 
reasonable power to detect the treatment effect. However, 
RCT is criticized for ethical issues, and clinical investigators 
may deny RCT using the fixed randomization with an 
equal probability (29,30). They believe some patients 
with a particular type may not get potential benefits 
from the experimental treatment of interest against the 
control, and they do not want to randomize the patients 
without the restriction. To address the ethical issues of 
randomization and make more desirable in ethics, RAR 
is proposed to change a treatment allocation probability 
throughout the clinical trials and assign more patients to 
the treatment arm that is superior based on accumulating 
information. Specifically, for RAR in binary response 
experiments, Neyman allocation minimizes sample size 
(31), and Rosenberger et al. (32) proposes optimal allocation 
probability to minimize the expected number of failures. 
RAR is also implemented in the Bayesian framework 
(33,34). To incorporate patients’ biological covariates such 
as gene or protein expression, which may define the subset 
of patients who respond favorably to an experimental 
treatment, in RAR designs, CARA has been proposed. 
CARA estimates the response probability conditioning 
on the covariates for updating the treatment allocation 
probability (23-28). Thus, RAR and CARA designs increase 
ethically treating patients based on accumulating data (35-
38). However, they require time to collect the results and 
update for future randomization and lead to bias due to 
temporal trends in the clinical trials (39-41). 

We consider four different types of biomarker-driven 
randomization, which are the covariate-adjusted versions 
of the existing RAR method: Covariate-adjusted RAR 1 
(CARA1) using the allocation ratio proposed in Thall et al. 
[2015] (41), Covariate-adjusted RAR 2 (CARA2) using the 
allocation ratio proposed in Rosenberger et al. [2001] (32), 
Covariate-adjusted RAR 3 (CARA3) using the allocation 
target proposed in Rosenberger et al. [2001] (23), and 
Covariate-adjusted RAR 4 (CARA4) using the Neyman 
allocation described in Mattew et al. [2013] (42). The 
allocation ratio used in CARA1 is employed in the Bayesian 
approach without incorporating biomarkers in Thall  
et al. [2015] (41), and the allocation ratios used in CARA2-
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CARA4 are commonly considered in frequentist approach 
in CARA designs without monitoring at interims. In the 
following paragraphs, we first describe the group sequential 
trial design which shows the design structure we used, and 
then CARA1-CARA4 are described with the formula under 
the group sequential design. 

Suppose that we consider a two-arm comparative clinical 
trial with a maximum of N patients enrolled sequentially in 
K cohorts. The schema of the group sequential trial design 
is shown in Figure 1. The patients in the first cohort are 
equally randomized to either experimental treatment A 
or control B. When the first cohort’s patients are enrolled 
and complete the outcome evaluation, the biomarker-
driven probability of randomization is built to identify 
the patients who are expected to get benefit more from A 
than B and update the allocation probability for the second 
cohort. Also, at the first interim, the comparative tests are 
performed to determine go or no-go of the trial, which 
allows the trial to be terminated due to either superiority 
or futility. If the trial does not stop early, then additional 
patients are enrolled in the second cohort and adaptively 
randomized to the best performing treatment based on the 
patients’ biomarker profile and accumulating data. This 
process is repeated sequentially until the end of the trial. 

Let G be a treatment indicator taking 1 for receiving A 
and 0 for receiving B. Let Y be a binary response regarding 
1 as a success event and 0 as a failure event. Let x be a p 
dimensional vector of biomarkers available at enrollment. 
Let ( ) ( )Pr 1| 1,Ap Y G= = =x x  denote the probability of 
response for the patient with the biomarker profile x who 
is receiving treatment A and ( ) ( )Pr 1| 0,Bp Y G= = =x x  
denote the probability of response for the patient with the 

biomarker profile x who is receiving treatment B. For each 
k=1,2...,K−1, let Dk denote an accumulating data at the kth 
interim which is a set of Y, G, x over the k cohorts. Then 
four methods, CARA1-CARA4, define the following the 
biomarker-driven probability of randomization for the 
patient with a biomarker profile x in the kth cohort to the 
treatment A as 

CARA1:
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where ( ) ( ) ( )( )1 1Pr |k A B kp x p x p x D− −= > , ( ) ( )1, 1Pr 1| 1, ,k A kp x Y G x D− −= = = ,  
and ( ) ( )1, 1Pr 1| 0, ,k B kp x Y G x D− −= = = . The allocation probability 
of CARA1 uses the posterior probability denoted by ( )1kp x−  
that treatment A has higher response rate for the patient 
with the biomarker profile x than treatment B based on 
accumulating data with k−1 cohorts. CARA2-CARA4 use 
the estimated response rate of treatment A and B denoted 
by ( )1,k Ap x−  and ( )1,k Bp x−  for the allocation, where they are 
obtained by the posterior probability of the response for 
the patient with the biomarker profile x who is receiving 

Figure 1 Schema of the group sequential trials using the biomarker-driven randomization. 
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treatment A and B, respectively. 
We assume a probit regression model for (x,G,Y) given 

by ( ) ( )Φ T T
Gp x x Gxβ γ= +  , where ( )Φ ⋅  denotes the standard 

normal cumulative distribution function, ( )1,
TTx x=

, and 1R pβ +∈  and 1R pγ +∈  are the regression coefficient 
parameter vectors. Assuming normal priors on β and γ, the 
parameters are estimated by Bayesian posterior computation, 
i.e., the priors are used for the estimation of the posterior 
probabilities ( )1kp x− , ( )1,k Ap x− , and ( )1,k Bp x− . 

An example using biomarker-driven 
randomization

To il lustrate the application of biomarker-driven 
randomization, we consider stroke prevention in atrial 
fibrillation trials (43). The goal of the Stroke Prevention 
in Atrial Fibrillation (SPAF) study is to see how effective 
antithrombotic therapies are at preventing stroke in patients 
with nonvalvular atrial fibrillation. This was designed with 
RCT, but we use this study to provide how to re-design or 
use the biomarker-driven randomization. There are two 
arms for antithrombotic therapies such as warfarin (G=1, 
i.e., treatment arm A) and aspirin (G=0, i.e., treatment arm 
B). The binary response of success or failure denotes the 
absence of a stroke or the presence of a stroke. The SPAF 
study found that high-risk patients with atrial fibrillation 
get more benefit from warfarin against aspirin while the 
low-risk patients do not get benefit from warfarin compared 
to aspirin. Thus, the stroke risk subgroup (high and low) 
is a good biomarker. In addition, gender or age can be 
considered for designing the biomarker-driven trials 
because female patients are more likely to get benefit from 
the antithrombotic therapies than male patients and strokes 
are common in older adults with recurrent paroxysmal atrial 
fibrillation. Given the trial data, the parameter setting can 
be specified (i.e., true values of the regression coefficient 
can be estimated) and used for a preliminary simulation 
study. 

Simulation study and results

We used computer simulations to evaluate the performance 
of the biomarker-driven randomization based on 1,000 
replications. Each replication indicates a two-arm 
randomized clinical trial enrolling 210 patients. Our sample 
size of 210 (i.e., 105 patients per group) yielded 80% power 
to detect the difference of 0.2 with the significance level of 
0.05 under the traditional randomized clinical trial using 

the fixed 1:1 randomization. 
We considered two binary biomarkers x1 and x2 

with values 1 (marker positive) or 0 (marker negative). 
Two biomarkers were independently generated from 
Bernoulli distributions with response probability P1 and 
P2, respectively. We considered P1=0.7,0.5,0.25 and P2=0.5 
for the simulation study. We generated Y from a Bernoulli 
distribution with response probability given by

[5]( ) ( )0 1 1 2 2 0 1 1 2 2Pr 1| , ΦY G x x Gx Gxβ β β γ γ γ= = + + + + +x

where G indicates the treatment indicator taking 1 for 
receiving A and 0 for receiving B, which is determined by 
the randomization methods. True model parameters are 
chosen to reflect patients’ heterogeneity and are described 
in Table 1. Figure 2 provides graphical presentations of the 
main effects and interaction effects of the intercept, x1 and 
x2 on the response for scenarios 1–20. Scenarios 1–6 and 12–
15 indicate the null case where the response rate of patients 
receiving A is the same as the response rate of patients 
receiving B, i.e., no one gets benefit from the experimental 
treatment A against control B. Specifically, scenarios 1 
and 12 have no any effect of biomarkers x1 and x2 and 
treatment G on the response, which describes the intercept 
only model for response probability, i.e., all patients have 
the same response rate regardless of patients’ biomarker 
profile or treatment assignment. However, scenarios 2–6 
have a biomarker main effect β1; scenarios 2–4 result in 
overall response rate influenced by the first biomarker 
through β1=0.3,1,2 while scenarios 5-6 have an intercept 
effect through β0=−1.4,−0.5 as well as the effect of the first 
biomarker on the response (i.e., β1=1). Also, scenarios 13-
15 have biomarker main effects β1 and β2 yielding the 
different response rate according to the biomarker profiles 
even though patients do not show difference between A 
and B. Scenarios 7–11 and 16–20 indicate the alternative 
case where the experimental treatment A has better 
efficacy in response than control B and there are some 
patients who get more benefit from A than B. Scenarios  
7 and 16 have main experimental versus control effect γ0 but 
do not have any effect of informative biomarkers. Scenarios 
8-9 have the main biomarker effect β1 additionally to the 
main experimental versus control effect γ0. Specifically, 
a prognostic biomarker x1 has a weak effect (i.e., β1=0.3)  
on response in scenario 8 while it has a relatively strong 
effect (i.e., β1=1) in scenario 9. Scenario 10 has no main 
biomarker effect but includes main experimental versus 
control effect γ0 and interaction effect between treatment 
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Table 1 Simulation study: True model parameters of the response probability ( ) ( )0 1 1 2 2 0 1 1 2 2Pr 1| , ΦY G x x Gx Gxβ β β γ γ γ= = + + + + +x  in the 
simulation study when x1 and x2 are independently generated from a Bernoulli distribution with response probability 0.5. Note that “sc” denotes 
scenario, ( )Pr 1| 1,AP Y G= = = x , and ( )Pr 1| 0,BP Y G= = = x

Sc. β0 β1 β2 γ0 γ1 γ2

(PA,PB)

All patients Patients with x1=1 Patients with x1=0

1 0 0 0 0 0 0 (0.50, 0.50) (0.50, 0.50) (0.50, 0.51)

2 0 0.3 0 0 0 0 (0.56, 0.57) (0.62, 0.63) (0.50, 0.51)

3 0 1 0 0 0 0 (0.70, 0.70) (0.85, 0.85) (0.50, 0.51)

4 0 2 0 0 0 0 (0.74, 0.74) (0.98, 0.98) (0.50, 0.51)

5 −1.4 1 0 0 0 0 (0.21, 0.21) (0.34, 0.33) (0.08, 0.08)

6 −0.5 1 0 0 0 0 (0.50, 0.51) (0.70, 0.70) (0.30, 0.31)

7 0 0 0 0.5 0 0 (0.70, 0.50) (0.70, 0.50) (0.70, 0.51)

8 −0.5 0.3 0 0.5 0 0 (0.56, 0.36) (0.62, 0.41) (0.50, 0.31)

9 −0.5 1 0 0.5 0 0 (0.70, 0.51) (0.85, 0.70) (0.50, 0.31)

10 0 0 0 0.5 0.2 0 (0.73, 0.50) (0.76, 0.49) (0.70, 0.51)

11 −0.5 1 0 0.5 0.2 0 (0.70, 0.51) (0.88, 0.70) (0.50, 0.31)

Patients with x1=x2=1 Patients without x1=x2=1

12 0 0 0 0 0 0 (0.50, 0.50) (0.50, 0.50) (0.50, 0.50)

13 −1 0.5 0.2 0 0 0 (0.30, 0.30) (0.38, 0.38) (0.23, 0.22)

14 −1 0.5 0.8 0 0 0 (0.46, 0.46) (0.62, 0.62) (0.29, 0.29)

15 −1 1.5 0.8 0 0 0 (0.66, 0.66) (0.90, 0.90) (0.42, 0.42)

16 0 0 0 0.5 0 0 (0.69, 0.50) (0.69, 0.50) (0.69, 0.49)

17 −1 0.5 0.8 0.5 0 0 (0.63, 0.46) (0.79, 0.62) (0.48, 0.29)

18 −1 0.5 0.8 0.5 0.2 0.3 (0.72, 0.46) (0.90, 0.62) (0.54, 0.29)

19 −2 0.5 0.8 0.5 0.2 0.3 (0.41, 0.16) (0.62, 0.24) (0.20, 0.07)

20 −2 0.5 0.8 0.5 0.5 0.8 (0.58, 0.16) (0.86, 0.24) (0.30, 0.07)

group and the first biomarker γ1, i.e., this scenario does not 
consider any prognostic biomarker but consider predictive 
biomarker x1. In scenario 11, x1 plays a role in both 
prognostic and predictive biomarker. Moreover, scenarios 
17–20 indicate the cases where patients’ responses are more 
heterogeneous compared to scenarios 8–11. Specifically, 
scenario 17 has two prognostic biomarkers x1 and x2 whose 
effects are so large that a certain subgroup x1=x2=1 yields a 
larger probability than the other subgroups regardless of 
the treatment assignment. In scenarios 18–20, both x1 and 
x2 are prognostic and predictive biomarkers. Compared to 
scenarios 18–19, scenario 20 has a relatively large effect 
of predictive biomarkers on the response so that patients 
receiving A show larger response than receiving B for the 

subgroup x1=x2=1.
We considered six randomization methods for the 

clinical trial design: traditional fixed 1:1 randomization 
(Trad),  response-adaptive randomization without 
incorporating biomarkers (RAR), and response-adaptive 
randomization incorporating biomarkers (i.e., biomarker-
driven randomization) CARA1-CARA4. Note that RAR and 
CARA1-CARA4 requires the calculation of the allocation 
ratio based on data and use the fixed 1:1 ratio to randomize 
the patients in the first cohort and update the allocation 
ratio sequentially to enroll and randomize the patients 
for the next cohort. For all designs (Trad, RAR, CARA1-
CARA4), we assumed a maximum sample size of 210 and 
performed in a group sequential manner we described in the 
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Figure 2 Main effects and interaction effects on response probabilities for scenarios 1–20. The radius of a circle is proportional to the 
magnitude of the true coefficient. Red and blue circles indicate positive and negative coefficients. Black dots indicate zero coefficient. 
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previous section. They include two interim analyses at 70 
and 140 patients with a final analysis when the last patient 
was enrolled and finished the outcome evaluation (i.e., K=3). 
The analysis time points were chosen by equal increments 
of information. We set the overall type I error rate to 0.05, 
and the O’Brien-Fleming alpha spending function (44) is 
used to specify the stopping boundaries for sequential tests. 
At interims, we monitored the superiority and futility of 
treatment A against B, which allows the early stopping of 
the trial. At the final analysis, we made a conclusion that A 
is superior to B or not. A chi-square test was used to analyze 
the outcome at interims and final analysis.

We fit the Bayesian probit regression model assuming 
normal priors with zero mean vector and diagonal 
covariance matrix with diagonal elements 108, 102, and 0.5. 

The large diagonal elements of the prior covariance matrix 
indicate vague prior while the small diagonal element such 
as 0.5 indicates informative prior. We ran the algorithm 
under R version 4.1.2 using the package LearnBayes 
version 2.15.1 for 10,000 iterations and discarded the first 
5,000 iterations as burn-in. The source code is provided 
in Appendix 1. We considered the following measures to 
examine the performance of the designs:

(I) The rejection probability is the percentage of 
rejections of the null hypothesis supporting no 
difference of the response rate between two arms 
A and B based on 1,000 simulated trials. The 
rejection probability under scenarios 1–6 and 
12–15 indicate the estimated type I error rate, and 
the rejection probability under scenarios 7–11 and 

https://cdn.amegroups.cn/static/public/ATM-2021-CCT-03-supplementary.pdf
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Table 2 Simulation results: Estimated rejection probability of the designs assuming that two biomarkers x1 and x2 are independently generated 
from a Bernoulli distribution with response probability 0.5. “sc” denotes scenario: sc 1-6 and sc 12-15 indicate the null scenarios and sc 7-11 
and sc 16-20 indicate the alternative scenarios. The estimated rejection probability under the null scenario indicates the overall type I error rate, 
and the estimated rejection probability under the alternative scenario indicates the power. CARA1-CARA4 provide three estimated rejection 
probabilities with “Prr 1-3”. Prr 1-3 indicates the prior distribution with the covariance whose diagonal elements are 108, 102 and 0.5, respectively, 
to estimate the allocation probability. Prr 1 and Prr 2 are uninformative and Prr 3 is informative. Note that ( )Pr 1| 1,AP Y G= = = x  and 

( )Pr 1| 0,BP Y G= = = x

Sc. (PA,PB) Trad RAR
CARA1 CARA2 CARA3 CARA4

Prr 1 Prr 2 Prr 3 Prr 1 Prr 2 Prr 3 Prr 1 Prr 2 Prr 3 Prr 1 Prr 2 Prr 3

1 (0.50, 0.50) 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.04 0.04 0.04 0.05 0.05 0.05

2 (0.56, 0.57) 0.05 0.05 0.06 0.06 0.06 0.05 0.05 0.06 0.06 0.06 0.04 0.06 0.06 0.06

3 (0.70, 0.70) 0.05 0.05 0.11 0.11 0.08 0.04 0.04 0.05 0.19 0.18 0.10 0.10 0.14 0.08

4 (0.74, 0.74) 0.05 0.05 0.38 0.27 0.13 0.03 0.03 0.04 0.25 0.32 0.26 0.17 0.29 0.14

5 (0.21, 0.21) 0.05 0.05 0.18 0.14 0.11 0.14 0.16 0.06 0.21 0.21 0.09 0.13 0.13 0.06

6 (0.50, 0.51) 0.05 0.05 0.15 0.15 0.10 0.03 0.03 0.05 0.13 0.13 0.09 0.09 0.08 0.07

7 (0.70, 0.50) 0.80 0.79 0.77 0.78 0.78 0.80 0.80 0.78 0.76 0.79 0.79 0.80 0.80 0.79

8 (0.56, 0.36) 0.81 0.77 0.74 0.74 0.78 0.80 0.80 0.81 0.79 0.79 0.80 0.82 0.83 0.80

9 (0.70, 0.51) 0.70 0.68 0.62 0.63 0.75 0.66 0.66 0.70 0.68 0.66 0.77 0.78 0.77 0.76

10 (0.73, 0.50) 0.91 0.91 0.90 0.90 0.89 0.91 0.91 0.90 0.90 0.90 0.89 0.91 0.91 0.91

11 (0.70, 0.51) 0.80 0.81 0.79 0.81 0.88 0.77 0.76 0.81 0.82 0.81 0.89 0.88 0.90 0.88

12 (0.50, 0.50) 0.04 0.04 0.05 0.05 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.05 0.05 0.05

13 (0.30, 0.30) 0.06 0.06 0.07 0.08 0.08 0.06 0.06 0.06 0.04 0.04 0.04 0.05 0.05 0.05

14 (0.46, 0.46) 0.04 0.06 0.07 0.08 0.08 0.06 0.06 0.05 0.08 0.08 0.07 0.07 0.07 0.07

15 (0.66, 0.66) 0.05 0.05 0.28 0.26 0.20 0.09 0.09 0.04 0.35 0.37 0.18 0.16 0.15 0.11

16 (0.69, 0.50) 0.80 0.79 0.78 0.78 0.77 0.80 0.80 0.78 0.76 0.79 0.79 0.80 0.80 0.79

17 (0.63, 0.46) 0.75 0.70 0.64 0.67 0.80 0.66 0.66 0.71 0.65 0.64 0.79 0.75 0.76 0.75

18 (0.72, 0.46) 0.96 0.95 0.94 0.95 0.98 0.95 0.92 0.97 0.93 0.94 0.99 0.98 0.97 0.97

19 (0.41, 0.16) 0.96 0.92 0.85 0.91 0.96 0.83 0.80 0.96 0.84 0.81 0.98 0.95 0.93 0.93

20 (0.58, 0.16) 1.00 1.00 0.99 1.00 1.00 1.00 0.98 1.00 0.92 0.98 1.00 1.00 1.00 1.00

RAR, response-adaptive randomization; CARA, covariate-adjusted RAR.

16–20 indicates the power. 
(II) The estimated effect size is the difference of the 

response proportion between A and B at the final 
analysis based on 1,000 simulated trials. 

(III) Early stopping probability is the proportion of the 
early stopping due to superiority or futility based 
on 1,000 simulated trials. 

(IV) The average difference of the number of patients 
allocated to A and B across 1,000 simulated trials.

(V) The average number of failures across 1,000 
simulated trials. 

The estimated rejection probability presented in Table 2  
under the null scenarios, i.e., scenarios 1–6 and 12–15, 
indicates the overall type I error rate. Both Trad and RAR 
designs preserved the overall type I error rate at the target 
level for all null scenarios no matter what biomarker profiles 
are. All CARA1-CARA4 designs also preserved the overall 
type I error rate when both biomarkers and treatments have 
no effect on the response, i.e., scenarios 1 and 12. However, 
CARA1-CARA4 designs were influenced by the informative 
biomarkers under the null scenarios where there is no 
patient who gets benefit from A against B, i.e., there is no 
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treatment effect. We found serious error inflations due 
to the biomarker-driven randomization when there exists 
an effect of informative biomarkers. Using vague prior 
distribution, the overall type I error rates under scenarios 
2–6 and 13–15 were 0.17, 0.06, 0.18, and 0.11 on average 
for CARA1-CARA4 designs, respectively. Using informative 
prior distribution, they were 0.11, 0.05, 0.11, 0.08 on 
average for CARA1-CARA4 designs, respectively. We found 
that the performance of the group sequential design using 
the biomarker-driven randomization is sensitive to the prior 
choice, and informative prior helps to avoid huge inflation 
of the overall type I error rate. Specifically, under CARA2 
design, in scenarios 5 and 15 the estimated type I error rates 
were inflated at 10–15% when the uninformative normal 
prior was used while it seems controlled at 5% when the 
informative normal prior was used. In addition, regardless 
of the prior distribution, CARA4 design led to less inflation 
of the type I error rate compared to CARA1 and CARA3. 

The estimated rejection probability under the alternative 
scenarios, i.e., scenarios 7–11 and 16–20, indicates the 
power. Trad design yielded power 0.8 in scenarios 7, 8, 
11, and 16, 0.7 in scenarios 9, 0.75 in scenario 17, 0.91 in 
scenario 10, 0.96 in scenarios 18 and 19, and 1 in scenario 
20. The smaller or larger overall treatment effect difference 
(i.e., PA−PB) made the power different in scenarios. RAR 
design showed a little smaller power than Trad design in 
most cases. Using the biomarker-driven randomization, 
we observed that the estimated type II error rate could 
be inflated when uninformative prior was used, implying 
that CARA1-CARA4 designs could be less powerful than 
Trad and RAR designs. However, CARA1 CARA4 designs 
yielded similar or larger power compared to Trad and 
RAR designs when informative prior was used. From the 
simulation results in Table 2, it is recommended to consider 
informative prior rather than vague prior in the biomarker-
driven randomization to minimize both type I and II error 
rates. Therefore, we used the informative prior in the 
remaining to compare the performance of the designs. 

Figure 3 shows the estimated effect size at the final 
analysis computed as the difference of the response 
proportion between A and B at the final analysis. Trad, 
RAR, and CARA2 designs showed a similar pattern across 
the scenarios. Under the null scenarios (i.e., scenarios 1–6 
and 12–15), they showed that the average of the estimated 
effect size at the final analysis is almost the same as the true 
effect size. Under the alternative scenarios (i.e., scenarios 
7–11 and 16–20), they showed that the average of the 
estimated effect size is smaller than the true effect size. 

CARA1, CARA3, and CARA4 designs yielded a larger 
estimated effect size than the true effect size in some null 
scenarios in Figure 3. This explains the type I error rate 
inflation in Table 2. Specifically, CARA1 design led to more 
than 10% overall type I error rate in scenarios 4, 5, 6, 14, 
and 15, CARA3 design led to overall type I error rates 26% 
and 18% in scenarios 4 and 15, respectively, and CARA4 
design led to overall type I error rate14% in scenario 4. 
Under the alternative scenarios, CARA1, CARA3, and 
CARA4 designs showed a similar pattern to Trad, RAR, and 
CARA2 designs. 

As seen in Table 2 and Figure 3, CARA1, CARA3, and 
CARA4 designs yielded larger inflation of the type I error 
rate in scenario 4. We further investigated the distribution 
of biomarker status in each treatment arm under scenario 4. 
The results are given in Figure 4. Trad, RAR, and CARA2 
designs showed the almost same proportion between 
treatment arm A and B of subgroups classified by the status 
of the biomarker x1. For example, Trad design showed 
that 48.2% of patients with x1=1 received treatment arm 
A and 48.1% of patients with x1=1 received treatment B. 
However, CARA1, CARA3, and CARA4 designs showed 
an unbalanced allocation ratio for each subgroup. CARA1 
design showed that 55.2% of patients with x1=1 received 
treatment arm A and 44.3% of patients with x1=1 received 
the treatment B. CARA3 design showed that 55.8% of 
patients with x1=1 received treatment arm A and 41.8% 
of patients with x1=1 received the treatment B. CARA4 
design showed that 52.9% of patients with x1=1 received 
treatment arm A and 46.1% of patients with x1=1 received 
the treatment B. Since biomarkers have an influence on 
the response directly or indirectly, the distribution of the 
biomarker status affects the outcomes of the clinical trials.  

Figure 5 shows early stopping probability, the difference 
of the number of patients allocated to A and B, and the 
number of failures. For each null scenario, early stopping 
probability was not different across designs except scenarios 
4 and 15, where CARA1, CARA3, and CARA4 designs 
showed a larger difference compared to the Trad, RAR, 
and CARA2 designs. As noted above, in scenarios 4 and 15, 
CARA1, CARA3, and CARA4 designs were more stopped 
early from the wrong decision and led to inflation of the 
estimated type I error rate. In addition, early stopping 
probability was similar across designs in alternative 
scenarios except scenarios 11, 17–19. CARA1, CARA3, and 
CARA4 designs showed a larger early stopping probability 
in scenarios 11 and 17 resulting in a larger power compared 
to Trad, RAR, and CARA2 designs. The difference of the 
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Figure 3 Boxplots of the estimated effect size at the final analysis. The red dots indicate the true effect sizes of the scenarios. CARA1-
CARA4 use the informative prior with the diagonal covariance element 0.5. RAR, response-adaptive randomization; CARA, covariate-
adjusted RAR.

number of patients allocated to A and B and the number 
of failures are interesting to be investigated under the 
alternative scenarios (see the right panels of Figure 5). RAR 

and CARA1-CARA4 designs change the randomization 
ratio adaptively based on accumulating data so that more 
patients are likely to get better performing treatment. 
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Figure 4 Distribution of biomarker status in each treatment arm under scenario 4 for each design. CARA1-CARA4 use the informative 
prior with the diagonal covariance element 0.5. RAR, response-adaptive randomization; CARA, covariate-adjusted RAR.

In most alternative scenarios, i.e., 7–11 and 16–20, we 
observed that a larger number of patients were assigned to 
the superior treatment A under RAR and CARA1-CARA4 
designs. Compared to RAR design, CARA1 and CARA3 
designs showed superior performance in the difference of 
the number of patients assigned to treatment between A 
and B while CARA2 and CARA4 designs performed worse. 
Moreover, CARA1-CARA4 designs led to a smaller number 
of failures than Trad and RAR designs, which implies that 
CARA1-CARA4 designs showed better improvement in 
patients’ clinical benefit. As the heterogeneity increases 
and the proportion of the treatment-sensitive subgroup is 
smaller than the insensitive subgroup, i.e., under scenarios 
17–20, CARA1 design showed superior performance in 
terms of the number of failures in our simulation study. 
CARA2 and CARA4 designs resulted in more failures than 
CARA1 and CARA3 designs, but CARA2 and CARA4 
designs were not worse than Trad and RAR designs. 

We also investigated the performance and compared 
the designs when the prevalence rate of the first biomarker 
varies. The results are provided in Tables 3,4. The estimated 
type I error rate was 0.09, 0.04, 0.09, and 0.06 on average 
for CARA1-CARA4 designs, respectively, when the 
proportion of having the first marker positive is 0.7; it was 

0.10, 0.05, 0.10, and 0.07 when the proportion of having the 
first marker positive is 0.5; and it was 0.08, 0.05, 0.09, and 
0.07 when the proportion of having the first marker positive 
is 0.25. We still observed the type I error inflation using the 
biomarker-driven randomization with the lower or higher 
prevalence rate, because x1 is a prognostic biomarker in 
most null scenarios. The power was 0.87, 0.86, 0.88, 0.87 on 
average for CARA1-CARA4 designs, respectively, when the 
proportion of having the first marker positive is 0.7; it was 
0.86, 0.85, 0.87, and 0.86 when the proportion of having 
the first marker positive is 0.5; and it was 0.84, 0.84, 0.86, 
and 0.85 when the proportion of having the first marker 
positive is 0.25. Since the first biomarker has a predictive 
effect on the response, the power shrunk for all CARA1-
CARA4 designs as the prevalence rate of the biomarker x1 
is lower. We also summarized in the following the measures 
of the clinical benefit under the alternative scenarios as the 
prevalence rate of x1 varies. When the proportion of having 
the first marker positive is 0.7, the difference of the number 
of patients allocated to A and B was 42.2, 8.1, 33.7, and 
3.5 on average for CARA1-CARA4 designs, respectively; 
when the proportion of having the first marker positive is 
0.5, it was 41.2, 8.7, 33.0, and 2.6; and when the proportion 
of having the first marker positive is 0.25, it was 41.4, 8.9, 
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assuming that two biomarkers are independently generated from a Bernoulli distribution with response probability 0.5. CARA1-CARA4 use 
the informative prior with the diagonal covariance element 0.5. 
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Table 3 Simulation results: Estimated rejection probability of the designs assuming that two biomarkers x1 and x2 are independently generated 
from a Bernoulli distribution with response probability 0.7 and 0.5, respectively. “sc” denotes scenario: sc 1-6 and sc 12-15 indicate the null 
scenarios and sc 7-11 and sc 16-20 indicate the alternative scenarios. The estimated rejection probability under the null scenario indicates the 
overall type I error rate, and the estimated rejection probability under the alternative scenario indicates the power. CARA1-CARA4 show the 
results obtained from using diagonal elements 0.5 of the prior covariance matrix to estimate the allocation probability. “RejP” indicates the 
rejection probability, “DiffA” indicates the difference of the number of patients allocated to two treatments, “NF” indicates the number of 
failures. Note that ( )Pr 1| 1,AP Y G= = = x  and ( )Pr 1| 0,BP Y G= = = x

Sc. (PA,PB) Trad RAR
CARA1 CARA2 CARA3 CARA4

RejP DiffA NF RejP DiffA NF RejP DiffA NF RejP DiffA NF

1 (0.50, 0.50) 0.06 0.05 0.06 1.9 104.7 0.05 1.0 105.1 0.05 −0.5 104.8 0.03 −0.2 105.3

2 (0.56, 0.57) 0.06 0.04 0.07 1.8 86.8 0.06 0.4 86.9 0.06 2.1 87.1 0.05 1.2 887.6

3 (0.70, 0.70) 0.06 0.05 0.08 5.6 54.5 0.04 0.3 54.6 0.10 6.9 54.5 0.07 3.9 54.7

4 (0.74, 0.74) 0.05 0.05 0.16 22.1 34.6 0.04 0.3 35.0 0.29 30.9 34.2 0.16 18.6 34.3

5 (0.21, 0.21) 0.05 0.05 0.09 −8.3 153.8 0.04 −4.9 153.7 0.06 −9.7 153.9 0.06 5.2 153.4

6 (0.50, 0.51) 0.04 0.07 0.11 −2.5 88.0 0.04 0.5 88.4 0.09 −2.3 87.8 0.06 2.2 88.7

7 (0.70, 0.50) 0.78 0.79 0.76 46.4 69.2 0.82 7.4 72.0 0.80 34.6 69.4 0.81 4.3 72.0

8 (0.56, 0.36) 0.82 0.79 0.79 43.8 89.1 0.80 8.5 91.0 0.79 32.4 90.4 0.81 −1.1 90.8

9 (0.70, 0.51) 0.67 0.70 0.78 43.6 59.1 0.68 6.1 63.4 0.76 36.5 59.7 0.75 10.4 61.1

10 (0.73, 0.50) 0.95 0.95 0.92 48.3 57.5 0.94 6.9 60.4 0.94 37.2 57.7 0.95 5.8 60.6

11 (0.70, 0.51) 0.86 0.83 0.92 47.8 51.0 0.83 6.5 57.3 0.91 41.1 51.8 0.89 13.0 54.9

12 (0.50, 0.50) 0.04 0.04 0.06 1.9 104.7 0.05 1.0 105.1 0.05 −0.5 104.8 0.03 −0.2 105.3

13 (0.30, 0.30) 0.05 0.06 0.06 −6.4 146.9 0.05 −2.3 147.2 0.06 −6.2 147.3 0.04 2.7 147.0

14 (0.46, 0.46) 0.06 0.05 0.10 −5.6 123.4 0.05 −2.0 123.4 0.08 −3.9 123.4 0.06 2.7 123.5

15 (0.66, 0.66) 0.07 0.05 0.16 1.0 73.9 0.05 −0.7 74.0 0.16 2.1 73.9 0.10 5.9 73.5

16 (0.69, 0.50) 0.80 0.79 0.76 46.4 69.2 0.82 7.4 72.0 0.80 34.6 69.4 0.81 4.3 72.0

17 (0.63, 0.46) 0.71 0.71 0.79 40.2 86.1 0.74 7.2 92.9 0.82 30.2 87.7 0.77 2.4 91.4

18 (0.72, 0.46) 0.97 0.95 0.99 43.0 63.2 0.98 8.3 68.4 0.99 36.5 63.8 0.98 6.2 68.5

19 (0.41, 0.16) 0.98 0.96 0.99 33.3 107.2 0.98 13.0 115.4 0.99 28.4 109.0 0.97 −7.8 119.0

20 (0.58, 0.16) 1.00 1.00 1.00 29.1 73.0 1.00 9.2 77.4 1.00 25.5 73.7 1.00 −2.9 80.0

RAR, response-adaptive randomization; CARA, covariate-adjusted RAR.

32.3, and 0.7. CARA4 design showed that the difference of 
the number of patients allocated to A and B decreases as the 
prevalence rate of the biomarker 1x  decreases while CARA1-
CARA3 designs did not change much the difference of the 
number of patients in the prevalence rate. The number 
of failures was 72.5, 77.0, 73.3, and 77.0 on average for 
CARA1-CARA4 designs, respectively, when the proportion 
of having the first marker positive is 0.7; it was 71.8, 83.9, 
80.0, and 84.5 when the proportion of having the first 
marker positive is 0.5; and it was 88.5, 92.8, 89.1, and 93.6 
when the proportion of having the first marker positive is 

0.25. Thus, CARA1-CARA4 designs showed the improved 
clinical benefit (i.e., the number of the failures decreases) as 
the prevalence rate of the biomarker x1 increases. 

Our simulation study provides several interesting results 
and challenges in the biomarker-driven randomization. 
First, all designs preserved the overall type I error rate at 
the target level under the null scenarios which have no 
any effect of informative biomarkers and treatment on the 
response. Trad and RAR designs did not use biomarkers and 
preserved the estimated type I error rate no matter what the 
biomarker profiles of patients are while CARA1-CARA4 
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Table 4 Simulation results: Estimated rejection probability of the designs assuming that two biomarkers x1 and x2 are independently generated 
from a Bernoulli distribution with response probability 0.25 and 0.5, respectively. “sc” denotes scenario: sc 1-6 and sc 12-15 indicate the null 
scenarios and sc 7-11 and sc 16-20 indicate the alternative scenarios. The estimated rejection probability under the null scenario indicates the 
overall type I error rate, and the estimated rejection probability under the alternative scenario indicates the power. CARA1 - CARA4 show 
the results obtained from using diagonal elements 0.5 of the prior covariance matrix to estimate the allocation probability. “RejP” indicates 
the rejection probability, “DiffA” indicates the difference of the number of patients allocated to two treatments, “NF” indicates the number of 
failures. Note that ( )Pr 1| 1,AP Y G= = = x  and ( )Pr 1| 0,BP Y G= = = x

Sc. (PA,PB) Trad RAR
CARA1 CARA2 CARA3 CARA4

RejP DiffA NF RejP DiffA NF RejP DiffA NF RejP DiffA NF

1 (0.50, 0.50) 0.06 0.05 0.05 −1.0 105.0 0.06 −0.1 104.7 0.05 −0.5 104.8 0.06 1.4 104.2

2 (0.56, 0.57) 0.06 0.04 0.05 −3.0 98.4 0.05 0.3 98.2 0.06 0.4 98.5 0.06 0.6 98.8

3 (0.70, 0.70) 0.06 0.05 0.06 1.8 86.7 0.05 0.7 86.4 0.09 3.6 86.1 0.06 2.5 86.6

4 (0.74, 0.74) 0.05 0.05 0.08 5.9 79.7 0.04 0.4 79.8 0.14 12.7 79.5 0.09 7.9 79.4

5 (0.21, 0.21) 0.05 0.05 0.10 −17.7 178.3 0.05 −9.4 178.8 0.09 −7.5 177.9 0.06 9.1 178.0

6 (0.50, 0.51) 0.04 0.07 0.07 −4.2 124.1 0.04 −2.7 124.2 0.09 −2.4 123.9 0.07 2.2 124.1

7 (0.70, 0.50) 0.78 0.79 0.78 46.7 68.1 0.81 7.5 72.7 0.79 35.3 70.2 0.81 5.1 72.7

8 (0.56, 0.36) 0.82 0.79 0.77 43.3 99.5 0.82 10.0 101.2 0.79 32.2 100.4 0.79 −2.4 102.4

9 (0.70, 0.51) 0.67 0.70 0.71 45.4 91.0 0.71 8.8 94.3 0.77 33.9 90.3 0.79 2.5 90.8

10 (0.73, 0.50) 0.95 0.95 0.82 46.7 65.3 0.87 6.8 67.0 0.85 35.9 65.6 0.85 4.7 68.4

11 (0.70, 0.51) 0.86 0.83 0.83 46.1 85.5 0.79 8.2 90.2 0.86 33.9 84.7 0.86 2.9 86.9

12 (0.50, 0.50) 0.04 0.04 0.06 −1.0 105.0 0.06 −0.1 104.7 0.05 −0.5 104.8 0.06 1.4 104.2

13 (0.30, 0.30) 0.05 0.06 0.05 −11.2 162.0 0.05 −4.1 162.2 0.07 −9.3 162.1 0.05 3.2 162.3

14 (0.46, 0.46) 0.06 0.05 0.11 −9.0 139.1 0.04 −4.0 139.3 0.08 −7.6 138.7 0.06 3.4 139.4

15 (0.66, 0.66) 0.07 0.05 0.16 −7.8 120.8 0.03 −3.8 122.4 0.16 −4.2 120.6 0.10 4.8 121.5

16 (0.69, 0.50) 0.80 0.79 0.78 46.7 68.1 0.81 7.5 72.7 0.79 35.3 70.2 0.81 5.1 72.7

17 (0.63, 0.46) 0.71 0.71 0.79 40.7 102.6 0.73 8.5 105.8 0.79 30.3 102.0 0.76 0.2 106.7

18 (0.72, 0.46) 0.97 0.95 0.98 41.2 80.6 0.93 9.0 87.4 0.98 32.0 80.1 0.95 2.9 87.0

19 (0.41, 0.16) 0.98 0.96 0.96 27.9 129.7 0.93 11.8 136.7 0.96 26.1 131.0 0.86 −8.6 145.4

20 (0.58, 0.16) 1.00 1.00 1.00 29.5 94.6 1.00 11.0 99.6 1.00 27.5 96.4 1.00 −5.9 103.0

RAR, response-adaptive randomization; CARA, covariate-adjusted RAR.

designs using biomarkers for adaptive randomization could 
lead to inflation depending on the effect of the informative 
biomarkers. We brought up the error inflation problem 
and showed the impact of the commonly used adaptive 
allocation methods incorporating biomarkers in the context 
of group sequential trials. Secondly, we observed in Table 
2 that CARA1-CARA4 designs resulted in the type I 
error inflation when we used vague prior distribution to 
fit the Bayesian probit regression model for the allocation 
probability. Using the informative prior led to smaller 
inflation of the estimated type I error rate. Therefore, 

considering the informative prior in the estimation of the 
response probability to update the allocation probability 
would help to minimize the error rates. Moreover, there are 
more opportunities to borrow information from previous 
trials and knowledge to specify the prior distribution. Third, 
as seen in Table 2 and Figure 5, there is a trade-off between 
statistical conservativeness (i.e., controlling error rates 
and attaining reasonable power) and clinical improvement 
(e.g., ethic and clinical benefits). CARA2 design using 
informative prior preserved the overall error rates but 
didn’t provide more clinical gain compared to RAR design, 
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which does not incorporate the biomarkers, i.e., it was 
less ethical and yielded more failures. Thus, we couldn’t 
get benefit from using the biomarkers under the CARA2 
design using informative prior. CARA1 and CARA3 designs 
using informative prior were more ethical and improved 
the clinical benefit compared to RAR design, but they still 
suffered from the type I error rate inflation. CARA4 design 
using informative prior led to type I error inflation in some 
scenarios and didn’t provide clinical gain compared to RAR 
and CARA2 designs. 

Discussion

We have investigated the biomarker-driven randomization 
in two-arm group sequential trials. We considered several 
types of biomarker-driven randomization, which are 
the covariate-adjusted version of the existing response-
adaptive randomization, and discussed the performance 
in terms of the type I/II error rates, the estimated effect 
size at the final analysis, early stopping probability, 
the difference of the number of patients allocated to 
two treatments, and the number of failures. A variety 
of scenarios were considered to see the impact due to 
incorporating biomarkers in adaptive randomization and 
learn the lessons from the simulation study. 

When there is no any effect of biomarkers or the 
treatment on the response,  the biomarker-driven 
randomization preserved the overall type I error rate. 
However, if prognostic biomarkers exist in null scenarios, 
our study showed the type I error rate inflation with the 
vague prior. Using the informative prior, the inflation 
shrunk for all methods we considered and even some 
methods (e.g., CARA2) preserved the type I error rate. 
However, the estimated type I error rates were still likely 
to be inflated under CARA1, CARA3, and CARA4 designs 
even when the informative prior was considered. The 
inflation of the overall type I error rate got worse seriously 
with the strong signal. Specifically, the error inflations were 
observed when there is an effect of prognostic biomarkers, 
which has a larger difference in response P than 0.1.

One of possible suggestions to control type I error rate is 
to use simulations to calibrate the appropriate critical values 
for group sequential testing based on the skewed patients 
to the favorable treatment due to the biomarker-driven 
randomization (45). We propose the cutoff calibration based 
on preliminary simulations to control type I error rate as 
follows:
 Step 1: Specify the null scenarios with certain 

response probabilities for the preliminary simulations, 
i.e., scenarios 1–6 and 12–15 in Table 1. 

 Step 2: Elicit the fine grid of ( ]* 0,iα α∈ , for i=1,...,M, 
with * * *

1 20 Mα α α α< < < < = . Start with the desirable 
type I error rate α to determine the critical values at 
each analysis using an error spending function. 

 Step 3: Given the critical values in Step 2, run the 
preliminary simulations for all prespecified null 
scenarios and obtain the estimated type I error rates.

 Step 4: If the estimated type I error rates obtained 
from the preliminary simulations are less than or 
equal to the α, we obtain the evidence that the type I 
error rate is adequately controlled and the identified 
critical values are ready to use for the sequential test 
and adaptive design. Otherwise, we replace *

Mα  with 
the next candidate *

1Mα − , which is the maximum of 
values being smaller than *

Mα , to repeat Step 3-4 until 
the estimated type I error rates are less than or equal 
to the target level of α.

Following the above procedure, we investigated the 
operating characteristics of the group sequential designs 
using CARA1, CARA3, and CARA4 designs. The results 
are presented in Tables 5,6, assuming the normal priors 
with zero mean vector and diagonal covariance matrix with 
diagonal elements 0.5 to fit the Bayesian probit regression 
model. Depending on situations (i.e., the difference of null 
response probability P between subgroups resulted from 
the effect of prognostic biomarkers), stringent cutoffs were 
identified to control the type I error rate, and we lost the 
power to detect the difference between treatment groups, 
i.e., the estimated type II error rate was inflated. Moreover, 
with the calibrated cutoff, the clinical benefit disappeared 
but designs were still ethical compared to RAR design. It 
seems unfair to calibrate the cutoffs preserving the type I 
error rate for all possible effects of prognostic biomarkers, 
because the design unnecessarily sacrifices the power. 
Rather, we need to study the maximum allowable difference 
between subgroups influenced by the prognostic biomarkers 
for the cutoff calibration. 

Before the clinical trial initiates, i.e., ideally when the 
protocol has developed for the trial, investigating the operating 
characteristics of the design has been recommended in 
practice. It means that we have a chance to see if the design 
preserves the overall type I error rate or not. If the type I error 
rate is not controlled at the nominal level, we recommend 
following the above procedure to calibrate the cutoff to use for 
the testing in the clinical trial. This will update stopping rules 
of the study at interims and final analysis. 
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Table 5 Discussion for the preservation of type I error rate using cutoff calibration based on preliminary simulations: Operating characteristics 
of the group sequential design when patients with x1=1 are expected to get benefit from the treatment. “sc” denotes scenario: sc 1-6 indicate the 
null scenarios and sc 7-11 indicate the alternative scenarios. CARA1 - CARA4 show the results obtained from using diagonal elements 0.5 of the 
prior covariance matrix to estimate the allocation probability. The critical values for CARA1, CARA3, and CARA4 designs are calibrated based on 
preliminary simulations in order to control the type I error rate. Note that ( )Pr 1| 1,AP Y G= = = x  and ( )Pr 1| 0,BP Y G= = = x

Sc. (PA,PB) Trad RAR CARA1 CARA2 CARA3 CARA4

Estimated rejection probability (i.e., overall type I error rate)

1 (0.50, 0.50) 0.05 0.05 0.02 0.06 0.00 0.01

2 (0.56, 0.57) 0.05 0.46 0.02 0.06 0.00 0.01

3 (0.70, 0.70) 0.05 0.05 0.02 0.05 0.01 0.02

4 (0.74, 0.74) 0.05 0.05 0.05 0.04 0.05 0.05

5 (0.21, 0.21) 0.05 0.05 0.05 0.06 0.01 0.01

6 (0.50, 0.51) 0.05 0.05 0.03 0.05 0.01 0.01

Estimated rejection probability (i.e., power)

7 (0.70, 0.50) 0.80 0.79 0.56 0.78 0.34 0.56

8 (0.56, 0.36) 0.81 0.77 0.57 0.81 0.37 0.56

9 (0.70, 0.51) 0.70 0.68 0.59 0.70 0.40 0.51

10 (0.73, 0.50) 0.91 0.91 0.72 0.90 0.55 0.73

11 (0.70, 0.51) 0.80 0.81 0.75 0.81 0.57 0.70

Difference of the number of patients between A and B denoted by nA−nB

7 (0.70, 0.50) −0.2 18.0 58.4 8.2 45.9 6.2

8 (0.56, 0.36) −0.2 24.0 53.3 9.2 45.0 1.1

9 (0.70, 0.51) 0.1 16.9 53.9 7.0 47.6 8.1

10 (0.73, 0.50) −0.1 17.8 61.3 7.6 54.2 8.0

11 (0.70, 0.51) 0.1 17.7 56.4 6.8 53.6 11.3

Number of failures

7 (0.70, 0.50) 73.0 71.2 74.8 72.5 79.4 80.8

8 (0.56, 0.36) 96.2 95.3 102.2 96.2 107.6 108.2

9 (0.70, 0.51) 77.5 76.4 78.1 76.6 81.3 82.7

10 (0.73, 0.50) 64.6 63.1 67.0 63.9 72.6 73.8

11 (0.70, 0.51) 72.8 70.9 71.5 71.9 77.3 77.6

RAR, response-adaptive randomization; CARA, covariate-adjusted RAR.

It is also necessary to consider how to deal with the 
prognostic biomarkers. Prior to initiation of the clinical 
trials, knowledge of prognostic biomarkers will help to 
conduct stratified randomization and analyze the data along 
with the appropriate methods. However, if we have little 
information on prognostic biomarkers in the beginning, 
we need to check if there is an effect of prognostic 

biomarkers at interims. If there is a prognostic biomarker, 
the biomarker-driven randomization is likely to yield type 
I error inflation as we learned the lessons above. Thus, in 
order to minimize the errors, it is critical to consider the 
subgroups defined by the identified prognostic biomarkers 
and perform appropriately multiple testing based on 
the identified subgroups. Assuming that we do not have 
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Table 6 Discussion for the preservation of type I error rate using cutoff calibration based on preliminary simulations: Operating characteristics of 
the group sequential design when patients with x1=x2=1 are expected to get benefit from the treatment. “sc” denotes scenario: sc 12-15 indicate the 
null scenarios and sc 16-20 indicate the alternative scenarios. CARA1 - CARA4 show the results obtained from using diagonal elements 0.5 of the 
prior covariance matrix to estimate the allocation probability. The critical values for CARA1, CARA3, and CARA4 designs are calibrated based on 
preliminary simulations in order to control the type I error rate. Note that ( )Pr 1| 1,AP Y G= = = x  and ( )Pr 1| 0,BP Y G= = = x

Sc. (PA,PB) Trad RAR CARA1 CARA2 CARA3 CARA4

Estimated rejection probability (i.e., overall type I error rate)

12 (0.50, 0.50) 0.05 0.05 0.00 0.06 0.01 0.02

13 (0.30, 0.30) 0.04 0.05 0.01 0.05 0.01 0.01

14 (0.46, 0.46) 0.05 0.05 0.03 0.03 0.03 0.02

15 (0.66, 0.66) 0.05 0.05 0.05 0.04 0.05 0.06

Estimated rejection probability (i.e., power)

16 (0.69, 0.50) 0.80 0.80 0.46 0.78 0.56 0.66

17 (0.63, 0.46) 0.71 0.70 0.57 0.71 0.56 0.64

18 (0.72, 0.46) 0.97 0.97 0.91 0.97 0.92 0.94

19 (0.41, 0.16) 0.97 0.98 0.89 0.96 0.91 0.85

20 (0.58, 0.16) 1.00 1.00 1.00 1.00 1.00 1.00

Difference of the number of patients between A and B denoted by nA−nB

16 (0.69, 0.50) −0.2 17.8 60.1 8.2 44.9 5.6

17 (0.63, 0.46) −0.0 20.1 52.8 8.3 38.8 0.9

18 (0.72, 0.46) −0.2 16.7 60.0 7.9 45.8 5.4

19 (0.41, 0.16) 0.6 57.7 48.8 12.3 39.6 -10.4

20 (0.58, 0.16) 0.0 16.6 45.7 11.0 39.7 -5.4

Number of failures

16 (0.69, 0.50) 72.8 71.0 76.3 72.5 77.1 78.7

17 (0.63, 0.46) 84.8 83.2 103.7 98.9 104.1 104.4

18 (0.72, 0.46) 63.1 60.9 82.8 76.7 82.2 84.1

19 (0.41, 0.16) 105.6 103.1 143.9 122.3 140.5 144.1

20 (0.58, 0.16) 65.7 62.2 95.7 87.8 94.7 102.4

RAR, response-adaptive randomization; CARA, covariate-adjusted RAR.

information on the prognostic biomarkers at the beginning 
of the trial, we checked if there is an effect of biomarkers 
at interims and used the information to tailor the stratified 
testing. We performed the stratified testing without 
multiplicity adjustment and with multiplicity adjustment. 
We provided the results in Tables 7,8. CARA1 and CARA3 
designs still had at most 9% of the estimated type I error 
rate without multiplicity adjustment and preserved the error 
rate at 5% after the adjustment. However, we lost both 
power and clinical benefit from the multiplicity adjustment. 

CARA4 design without multiplicity adjustment showed that 
the type I error rate was controlled but its performance in 
terms of the ethic and clinical benefit was poor compared to 
RAR design. Thus, it was not necessary for CARA4 design 
to adjust the multiplicity, because it would unnecessarily 
sacrifice power after multiplicity adjustment.

Our investigation using simulations took a general 
methodological approach in group sequential trials (i.e., 
for time points to analyze the data, trial duration, and so 
on). We assumed that prognostic/predictive biomarkers 
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Table 7 Discussion for the preservation of type I error rate using the stratified tests: Operating characteristics of the group sequential design 
when patients with x1=1 are expected to get benefit from the treatment. “sc” denotes scenario: sc 1-6 indicate the null scenarios and sc 7-11 
indicate the alternative scenarios. CARA1 - CARA4 show the results obtained from using diagonal elements 0.5 of the prior covariance matrix 
to estimate the allocation probability. CARA1, CARA3, and CARA4 provide two estimated rejection probability with/without multiplicity 
adjustment: “No adj” indicates the results without multiplicity adjustment, and “Adj” indicates the results with multiplicity adjustment. Note that 

( )Pr 1| 1,AP Y G= = = x  and ( )Pr 1| 0,BP Y G= = = x

Sc. (PA,PB) Trad RAR
CARA1

CARA2
CARA3 CARA4

No adj Adj No adj Adj No adj Adj

Estimated rejection probability (i.e., overall type I error rate)

1 (0.50, 0.50) 0.05 0.05 0.05 0.05 0.06 0.04 0.02 0.05 0.02

2 (0.56, 0.57) 0.05 0.46 0.05 0.03 0.06 0.05 0.02 0.06 0.03

3 (0.70, 0.70) 0.05 0.05 0.05 0.03 0.05 0.06 0.03 0.06 0.02

4 (0.74, 0.74) 0.05 0.05 0.06 0.03 0.04 0.06 0.04 0.05 0.02

5 (0.21, 0.21) 0.05 0.05 0.05 0.03 0.06 0.05 0.03 0.05 0.02

6 (0.50, 0.51) 0.05 0.05 0.07 0.02 0.05 0.05 0.03 0.06 0.03

Estimated rejection probability (i.e., power)

7 (0.70, 0.50) 0.80 0.79 0.78 0.78 0.78 0.74 0.66 0.78 0.65

8 (0.56, 0.36) 0.81 0.77 0.74 0.61 0.81 0.75 0.63 0.77 0.66

9 (0.70, 0.51) 0.70 0.68 0.71 0.57 0.70 0.71 0.57 0.72 0.56

10 (0.73, 0.50) 0.91 0.91 0.89 0.89 0.90 0.89 0.79 0.88 0.81

11 (0.70, 0.51) 0.80 0.81 0.85 0.72 0.81 0.85 0.73 0.84 0.75

Difference of the number of patients between A and B denoted by nA−nB

7 (0.70, 0.50) −0.2 18.0 46.0 46.0 8.2 37.5 41.7 4.7 5.6

8 (0.56, 0.36) −0.2 24.0 47.0 54.0 9.2 34.8 39.7 0.1 −1.0

9 (0.70, 0.51) 0.1 16.9 45.8 50.4 7.0 38.6 40.1 7.3 7.5

10 (0.73, 0.50) −0.1 17.8 46.4 46.4 7.6 40.1 44.9 6.5 7.7

11 (0.70, 0.51) 0.1 17.7 49.6 54.6 6.8 42.3 46.9 8.8 10.8

Number of failures

7 (0.70, 0.50) 73.0 71.2 69.3 69.3 72.5 71.2 74.1 74.1 78.2

8 (0.56, 0.36) 96.2 95.3 97.6 101.2 96.2 98.0 102.4 100.1 105.0

9 (0.70, 0.51) 77.5 76.4 74.4 78.0 76.6 75.6 79.0 78.1 81.3

10 (0.73, 0.50) 64.6 63.1 60.3 60.3 63.9 63.0 66.8 66.7 71.1

11 (0.70, 0.51) 72.8 70.9 67.7 71.2 71.9 68.4 72.7 71.6 76.3

RAR, response-adaptive randomization; CARA, covariate-adjusted RAR.

are available to see their effects and investigate the impact 
on the operating characteristics of the group sequential 
designs. We also considered two independent binary 
biomarkers with the main effect and the interaction 
effect with the treatment group, but more complicated 

situations (e.g., categorical or continuous biomarkers, 
correlated biomarkers, or high dimensional biomarkers) 
can be considered. Of note, the signal of the prognostic 
biomarkers has an impact on the overall type I error rate, 
and biomarkers with a strong signal due to the complicated 
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Table 8 Discussion for the preservation of type I error rate using the stratified tests: Operating characteristics of the group sequential design 
when patients with x1=x2=1 are expected to get benefit from the treatment. “sc” denotes scenario: sc 12-15 indicate the null scenarios and sc 
16-20 indicate the alternative scenarios. CARA1 - CARA4 show the results obtained from using diagonal elements 0.5 of the prior covariance 
matrix to estimate the allocation probability. CARA1, CARA3, and CARA4 provide two estimated rejection probability with/without multiplicity 
adjustment: “No adj” indicates the results without multiplicity adjustment, and “Adj” indicates the results with multiplicity adjustment. Note that 

( )Pr 1| 1,AP Y G= = = x  and ( )Pr 1| 0,BP Y G= = = x

Sc. (PA,PB) Trad RAR
CARA1

CARA2
CARA3 CARA4

No adj Adj No adj Adj No adj Adj

Estimated rejection probability (i.e., overall type I error rate)

12 (0.50, 0.50) 0.05 0.05 0.06 0.06 0.06 0.08 0.02 0.09 0.03

13 (0.30, 0.30) 0.04 0.05 0.09 0.00 0.05 0.01 0.02 0.11 0.00

14 (0.46, 0.46) 0.05 0.05 0.09 0.02 0.03 0.09 0.02 0.09 0.02

15 (0.66, 0.66) 0.05 0.05 0.09 0.02 0.04 0.09 0.03 0.10 0.02

Estimated rejection probability (i.e., power)

16 (0.69, 0.50) 0.80 0.80 0.76 0.76 0.78 0.73 0.42 0.76 0.43

17 (0.63, 0.46) 0.71 0.70 0.72 0.40 0.71 0.69 0.39 0.72 0.38

18 (0.72, 0.46) 0.97 0.97 0.97 0.86 0.97 0.95 0.80 0.95 0.81

19 (0.41, 0.16) 0.99 0.98 0.97 0.81 0.96 0.90 0.62 0.94 0.77

20 (0.58, 0.16) 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00

Difference of the number of patients between A and B denoted by nA−nB

16 (0.69, 0.50) −0.2 17.8 47.8 47.8 8.2 39.9 46.0 5.2 4.9

17 (0.63, 0.46) −0.0 20.1 47.5 57.7 8.3 36.2 41.8 2.5 2.2

18 (0.72, 0.46) −0.2 16.7 53.2 68.6 7.9 43.0 55.5 5.7 6.8

19 (0.41, 0.16) 0.6 57.7 54.6 66.9 12.3 42.9 50.2 −10.4 −12.2

20 (0.58, 0.16) 0.0 16.6 47.2 59.7 11.0 42.9 52.2 −7.5 9.0

Number of failures

16 (0.69, 0.50) 72.8 71.0 69.3 69.3 72.5 73.2 78.5 76.4 83.0

17 (0.63, 0.46) 84.8 83.2 81.9 87.6 98.9 99.8 106.9 102.9 110.0

18 (0.72, 0.46) 63.1 60.9 57.8 64.6 76.7 77.9 87.7 82.7 95.2

19 (0.41, 0.16) 105.6 103.1 112.3 124.4 122.3 141.4 152.8 139.6 157.9

20 (0.58, 0.16) 65.7 62.2 72.2 79.8 87.8 98.2 107.9 105.9 115.5

RAR, response-adaptive randomization; CARA, covariate-adjusted RAR.

situations will make the type I error rate inflation worse. 
Moreover, deviations of the planned setting due to medical 
or environmental changes as well as different situations 
from our setting are allowed and are worth investigating the 
impact of the biomarker-driven randomization. 

In biomarker-driven trials, we assumed that investigators 
should have gone through a preliminary exploratory phase, 
including sufficient pre-clinical and clinical studies, to 

obtain a practical number of candidate biomarkers. It is not 
difficult from the statistical methodology perspective to add 
a burn-in stage performing variable selection, but it could 
make logistical difficulties in practice. 

Conclusions 

In this paper, we contributed to bringing the challenges 
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and opportunities in biomarker-driven trials, especially for 
adaptive randomization incorporating biomarkers in group 
sequential trials. We found the type I error rate inflation 
and provided suggestions and considerations to preserve 
the type I error rate. However, following the suggestions, 
we observed a trade-off between controlling type I error 
rate and attaining clinical benefit (e.g., the difference of the 
number of patients allocated to two treatments and number 
of failures). Our strategies can help to maintain the type 
I error rate at the nominal level but could unnecessarily 
lose both power and clinical benefits, which implies the 
advantages of the biomarker-driven randomization are 
eliminated. It is critical to develop the statistical methods 
and designs which address unmet needs (i.e., clinical trial 
designs preserve the overall type I error rate while they keep 
ethics and improve clinical benefit compared to traditional 
fixed randomization and RAR) in biomarker-driven trials 
using biomarker-driven randomization. 
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Appendix 1 Source code 

library(ldbounds)
library(dplyr)
library(LearnBayes)

N_total <- 210
n1=n2=n3=70; group <- c(70, 70, 70)
block_number <- 3
time <- c(1/3, 2/3, 1)
bounds <- bounds(time, iuse = c(1, 1), alpha = c(0.025, 0.025))
supbound <- bounds$upper.bounds 
futbound <- bounds$lower.bounds
px1 <- 0.5; betavec <- c(0, 2, 0); gammavec <- c(0, 0, 0)
nsample = 10000; nburn = 5000
rndmethod="cara1"
alternative="greater"
correct=FALSE

x1all <- rbinom(N_total, 1, px1)
x2all <- rbinom(N_total, 1, 0.5)
x1 <- x1all[1:n1]
x1.2 <- x1all[(n1+1):(n1+n2)]
x1.3 <- x1all[(n1+n2+1):N_total]
x2 <- x2all[1:n1]
x2.2 <- x2all[(n1+1):(n1+n2)]
x2.3 <- x2all[(n1+n2+1):N_total]

bound_index=1
G1 <- rbinom(n1, 1, 0.5)
onevec <- rep(1, n1)
xmat1 <- cbind(onevec, x1, x2)
pn <- dim(xmat1)[2]
p1 <- pnorm(xmat1%*%betavec + G1*xmat1%*%gammavec)
y1 <- rbinom(n1, 1, p1)
xdata1 <- cbind(onevec, x1, x2, G1, G1*x1, G1*x2)
fit <- glm(y1 ~ xdata1-1, family = binomial(link = probit))
mle_theta <- fit$coefficients
priorb = list(beta=rep(0, length(mle_theta)), 
              P=diag(rep(2, length(mle_theta))))
res1 = bayes.probit(y1, xdata1, nsample, priorb)
resbetag <- res1$beta[-(1:nburn),]
resbeta <- res1$beta[-(1:nburn),1:pn]
resbetahat <- apply(resbetag, 2, mean)
ndiff1 <- length(which(G1==1)) - length(which(G1==0)) 
nf1 <- length(y1)-sum(y1) 
data_total = data <- data.frame()
data <- data.frame(treatment=G1, outcome=y1)

Supplementary
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data_total <- rbind(data_total, data)
data_total$treatment <- as.factor(data_total$treatment)
data_total$outcome <- as.factor(data_total$outcome)
data_total <- data_total %>% mutate(time = fac-tor(rep(1:bound_index,group[1:bound_index])))
ctrl_prop <- mean(as.numeric(as.character(data_total$outcome[data_total$treatment == 0])))
trt_prop <- mean(as.numeric(as.character(data_total$outcome[data_total$treatment ==1])))
if (all(data_total$time == 1) | N_total/block_number < 2) {
  if (((ctrl_prop - trt_prop >= 0) & alternative == "less") | ((trt_prop - ctrl_prop >= 0) & alternative =="greater")) {
    p.val1 <- chisq.test(data_total$treatment, data_total$outcome,correct = cor-rect)$p.value/2
    test1 <- sqrt(as.numeric(chisq.test(data_total$treatment,data_total$outcome, correct = correct)$statistic))
  }
  else {
    p.val1 <- 1
    test1 <- 0
  }
}else {
  p.val1 <- mantelhaen.test(table(data_total), alternative = alternative,correct = cor-rect)$p.val
  test1 <- sqrt(as.numeric(mantelhaen.test(table(data_total), 
                                           alternative = alternative, correct = cor-rect)$statistic))
}
if (test1 > supbound[bound_index]) {
  ind <- bound_index
  ndiff <- ndiff1
  nf <- nf1
  ind.power <- 1
  next
}else if (test1 < futbound[bound_index]) {
  ind <- bound_index 
  ndiff <- ndiff1
  nf <- nf1
  ind.power <- 0 
  next
}else{
  bound_index <- 2
  onevec.2 <- rep(1, n2)
  newxdata2 <- cbind(onevec.2, x1.2, x2.2, onevec.2, x1.2, x2.2)
  newxdatas2 <- newxdata2[,1:pn] 
  
  G2 <- c()
  if(rndmethod=="cara1"){
    exppart2 <- pnorm(newxdata2%*%t(resbetag)) - pnorm(newxdatas2%*%t(resbeta))
    postp  <- c()
    for (l in 1:n2){
      postp[l] <- length(which(exppart2[l,]>0))/length(exppart2[l,])
    }
    pip2 <- sqrt(postp)/(sqrt(postp)+sqrt(1-postp))
    for(l in 1:n2){
      G2[l] <- sample(1:2, 1, prob=c(pip2[l], 1-pip2[l]))
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    }
    G2[which(G2==2)] <- 0
  }
  if(rndmethod=="cara2"){
    for(l in 1:n2){
      p0z.x <- c(1, x1.2[l], x2.2[l], 1, x1.2[l], x2.2[l])
      p1z.x <- c(1, x1.2[l], x2.2[l], 0, 0, 0)
      p0z <- pnorm(p0z.x%*%resbetahat)
      p1z <- pnorm(p1z.x%*%resbetahat)
      pip2 <- sqrt(p0z)/(sqrt(p0z)+sqrt(p1z))
      G2[l] <- sample(1:2, 1, prob=c(pip2, 1-pip2))
    }
    G2[which(G2==2)] <- 0
  }
  if(rndmethod=="cara3"){
    for(l in 1:n2){
      p0z.x <- c(1, x1.2[l], x2.2[l], 1, x1.2[l], x2.2[l])
      p1z.x <- c(1, x1.2[l], x2.2[l], 0, 0, 0)
      p0z <- pnorm(p0z.x%*%resbetahat)
      p1z <- pnorm(p1z.x%*%resbetahat)
      pp1 <- p0z/(1-p0z)
      pp2 <- p1z/(1-p1z)
      pip2 <- pp1/(pp1+pp2)
      G2[l] <- sample(1:2, 1, prob=c(pip2, 1-pip2))
    }
    G2[which(G2==2)] <- 0
  }
  if(rndmethod=="cara4"){
    for(l in 1:n2){
      p0z.x <- c(1, x1.2[l], x2.2[l], 1, x1.2[l], x2.2[l])
      p1z.x <- c(1, x1.2[l], x2.2[l], 0, 0, 0)
      p0z <- pnorm(p0z.x%*%resbetahat)
      p1z <- pnorm(p1z.x%*%resbetahat)
      pp1 <- p0z*(1-p0z)
      pp2 <- p1z*(1-p1z)
      pip2 <- sqrt(pp2)/(sqrt(pp2)+sqrt(pp1))
      G2[l] <- sample(1:2, 1, prob=c(pip2, 1-pip2))
    }
    G2[which(G2==2)] <- 0
  }
  
  xmat2 <- cbind(onevec.2, x1.2, x2.2)
  p1.2 <- pnorm(xmat2%*%betavec + G2*xmat2%*%gammavec)
  y2 <- rbinom(n2, 1, p1.2)
  xdata22 <- cbind(onevec.2, x1.2, x2.2, G2, G2*x1.2, G2*x2.2) 
  xdata2 <- rbind(xdata1, xdata22)
  y2a <- c(y1, y2)
  G2a <- c(G1, G2)
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  fit2 <- glm(y2a ~ xdata2-1, family = binomial(link = probit))
  mle_theta2 <- fit2$coefficients
  priorb = list(beta=rep(0, length(mle_theta2)), 
                P=diag(rep(2, length(mle_theta2))))
  res2 = bayes.probit(y2a, xdata2, nsample, priorb)
  resbetag2 <- res2$beta[-(1:nburn),]
  resbeta2 <- res2$beta[-(1:nburn),1:pn]
  resbetahat2 <- apply(resbetag2, 2, mean)
  ndiff2 <- length(which(G2==1)) - length(which(G2==0)) 
  nf2 <- length(y2) - sum(y2)
  data <- data.frame(treatment=G2, outcome=y2)
  data_total <- rbind(data_total[,1:2], data)
  data_total$treatment <- as.factor(data_total$treatment)
  data_total$outcome <- as.factor(data_total$outcome)
  data_total <- data_total %>% mutate(time = fac-tor(rep(1:bound_index,group[1:bound_index])))
  ctrl_prop <- mean(as.numeric(as.character(data_total$outcome[data_total$treatment ==0])))
  trt_prop <- mean(as.numeric(as.character(data_total$outcome[data_total$treatment ==1])))
  if (all(data_total$time == 1) | N_total/block_number < 2) {
    if (((ctrl_prop - trt_prop >= 0) & alternative == "less") | ((trt_prop - ctrl_prop >= 0) & alternative =="greater")) {
      p.val2 <- chisq.test(data_total$treatment, data_total$outcome, 
                          correct = correct)$p.value/2
      test2 <- sqrt(as.numeric(chisq.test(data_total$treatment, 
                                          data_total$outcome, correct = cor-rect)$statistic))
    }
    else {
      p.val2 <- 1
      test2 <- 0
    }
  }else {
    p.val2 <- mantelhaen.test(table(data_total), alternative = alternative, 
                             correct = correct)$p.val
    test2 <- sqrt(as.numeric(mantelhaen.test(table(data_total), 
                                             alternative = alternative, correct = correct)$statistic))
  }
  if (test2 > supbound[bound_index]){
    ind <- bound_index
    ndiff <- ndiff1+ndiff2
    nf <- nf1+nf2
    ind.power <- 1
    next
  }else if (test2 < futbound[bound_index]){
    ind <- bound_index 
    ndiff <- ndiff1+ndiff2
    nf <- nf1+nf2
    ind.power <- 0 
    next
  }else{
    bound_index <- 3
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    onevec.3 <- rep(1, n3)
    newxdata3 <- cbind(onevec.3, x1.3, x2.3, onevec.3, x1.3, x2.3)
    newxdatas3 <- newxdata3[,1:pn] 
    
    G3 <- c()
    if(rndmethod=="cara1"){
      exppart3 <- pnorm(newxdata3%*%t(resbetag2)) - pnorm(newxdatas3%*%t(resbeta2))
      postp  <- c()
      for (l in 1:n3){
        postp[l] <- length(which(exppart3[l,]>0))/length(exppart3[l,])
      }
      pip3 <- sqrt(postp)/(sqrt(postp)+sqrt(1-postp))
      for(l in 1:n3){
        G3[l] <- sample(1:2, 1, prob=c(pip3[l], 1-pip3[l]))
      }
      G3[which(G3==2)] <- 0
    }
    if(rndmethod=="cara2"){
      for(l in 1:n3){
        p0z.x <- c(1, x1.3[l], x2.3[l], 1, x1.3[l], x2.3[l])
        p1z.x <- c(1, x1.3[l], x2.3[l], 0, 0, 0)
        p0z <- pnorm(p0z.x%*%resbetahat2)
        p1z <- pnorm(p1z.x%*%resbetahat2)
        pip3 <- sqrt(p0z)/(sqrt(p0z)+sqrt(p1z))
        G3[l] <- sample(1:2, 1, prob=c(pip3, 1-pip3))
      }
      G3[which(G3==2)] <- 0
    }
    if(rndmethod=="cara3"){
      for(l in 1:n3){
        p0z.x <- c(1, x1.3[l], x2.3[l], 1, x1.3[l], x2.3[l])
        p1z.x <- c(1, x1.3[l], x2.3[l], 0, 0, 0)
        p0z <- pnorm(p0z.x%*%resbetahat2)
        p1z <- pnorm(p1z.x%*%resbetahat2)
        pp1 <- p0z/(1-p0z)
        pp2 <- p1z/(1-p1z)
        pip3 <- pp1/(pp1+pp2)
        G3[l] <- sample(1:2, 1, prob=c(pip3, 1-pip3))
      }
      G3[which(G3==2)] <- 0
    }
    if(rndmethod=="cara4"){
      for(l in 1:n3){
        p0z.x <- c(1, x1.3[l], x2.3[l], 1, x1.3[l], x2.3[l])
        p1z.x <- c(1, x1.3[l], x2.3[l], 0, 0, 0)
        p0z <- pnorm(p0z.x%*%resbetahat2)
        p1z <- pnorm(p1z.x%*%resbetahat2)
        pp1 <- p0z*(1-p0z)
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        pp2 <- p1z*(1-p1z)
        pip3 <- sqrt(pp2)/(sqrt(pp2)+sqrt(pp1))
        G3[l] <- sample(1:2, 1, prob=c(pip3, 1-pip3))
      }
      G3[which(G3==2)] <- 0
    }
    
    xmat3 <- cbind(onevec.3, x1.3, x2.3)
    p1.3 <- pnorm(xmat3%*%betavec + G3*xmat3%*%gammavec)
    y3 <- rbinom(n3, 1, p1.3)
    xdata33 <- cbind(onevec.3, x1.3, x2.3, G3, G3*x1.3, G3*x2.3) 
    xdata33ab <- cbind(onevec.3, x1.3, x2.3, onevec.3, x1.3, x2.3) 
    xdata3 <- rbind(xdata1, xdata22, xdata33)
    y3a <- c(y1, y2, y3)
    G3a <- c(G1, G2, G3)
    fit3 <- glm(y3a ~ xdata3-1, family = binomial(link = probit))
    mle_theta3 <- fit3$coefficients
    priorb = list(beta=rep(0, length(mle_theta3 )), 
                  P=diag(rep(2, length(mle_theta3 ))))
    res3 = bayes.probit(y3a, xdata3, nsample, priorb)
    resbetag3 <- res3$beta[-(1:nburn),]
    resbeta3 <- res3$beta[-(1:nburn),1:pn]
    ndiff3 <- length(which(G3==1)) - length(which(G3==0)) 
    nf3 <- length(y3)-sum(y3)    
    data <- data.frame(treatment=G3, outcome=y3)
    data_total <- rbind(data_total[,1:2], data)
    data_total$treatment <- as.factor(data_total$treatment)
    data_total$outcome <- as.factor(data_total$outcome)
    data_total <- data_total %>% mutate(time = fac-tor(rep(1:bound_index,group[1:bound_index])))
    ctrl_prop <- mean(as.numeric(as.character(data_total$outcome[data_total$treatment ==0])))
    trt_prop <- mean(as.numeric(as.character(data_total$outcome[data_total$treatment ==1])))
    if (all(data_total$time == 1) | N_total/block_number < 2) {
      if (((ctrl_prop - trt_prop >= 0) & alternative == "less") | ((trt_prop - ctrl_prop >= 0) & alternative == "greater")) {
        p.val3 <- chisq.test(data_total$treatment, data_total$outcome, 
                            correct = correct)$p.value/2
        test3 <- sqrt(as.numeric(chisq.test(data_total$treatment,data_total$outcome, correct = correct)$statistic))
      }
      else {
        p.val3 <- 1
        test3 <- 0
      }
    }else {
      p.val3 <- mantelhaen.test(table(data_total), alternative = alternative, 
                               correct = correct)$p.val
      test3 <- sqrt(as.numeric(mantelhaen.test(table(data_total), 
                                               alternative = alternative,correct = correct)$statistic))
    }
    if (test3 > supbound[bound_index]){
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      ind <- 3
      ndiff <- ndiff1+ndiff2+ndiff3
      nf <- nf1+nf2+nf3
      ind.power <- 1
    }else{
      ind <- 3
      ndiff <- ndiff1+ndiff2+ndiff3
      nf <- nf1+nf2+nf3
      ind.power <- 0
    }
  }
}
earlyst1 <- sum(ind==1)+sum(ind==2)
earlyst2 <- sum(ind==1)+sum(ind==2) + sum(ind==3)
earlyst <- earlyst1/earlyst2
power <- sum(ind.power, na.rm=T)/ earlyst2 
nf
ndiff


