

Comparison between trabectedin and doxorubicin in soft-tissue sarcomas-reply letter

Jing-Yi Dang*, Jun Fu*, Zhao Zhang, Dong Liu, Debing Cheng, Hongbin Fan

Department of Orthopedic Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, China

Correspondence to: Hongbin Fan. Department of orthopedic surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China. Email: fanhb@fmmu.edu.cn.

Response to: Wu J, Zhang M, Chen C, et al. Do patients with soft-tissue sarcomas treated with trabectedin have better clinical effects and a longer survival time than those treated with doxorubicin? Ann Transl Med 2022. doi: 10.21037/atm-21-7018.

Submitted Jan 19, 2022. Accepted for publication Mar 15, 2022.

doi: 10.21037/atm-2022-1

View this article at: https://dx.doi.org/10.21037/atm-2022-1

We thank for the comments from Wu et al. (1) on our research (2), comparison between trabectedin and doxorubicin in soft-tissue sarcomas. Reviewer Wu et al. said that in Table 1, we reported that 80 patients were included, which was inconsistent with the original study (3). In addition, Figure 6 showed the wrong data that the disease control rate of 54 of 75 patients in the experimental group and 41 of 39 patients in the control group lead to the inability to estimate the odds ratio (OR). We appreciate the suggestions. In *Table 1*, we listed the Hartmann's study (3) and we corrected the samples in Table 1 from (2). We now

correct the Figure 6 of our research (2) since the mistake in typing the number (*Figure 1*).

They also said that the authors conducted the sensitivity analysis only by omitting Schöffski *et al.*'s study (4) and did not further exclude the other included studies. Since the sensitivity was conducted by removing each study in term and selecting the most obvious change one, we only reported the result omitting Schöffski *et al.*'s study, which is the most obvious change article. Other included researches had smaller influence on the I² value than Schöffski *et al.*'s study.

Table 1 Characteristics of included trials (2)

Author	Year	Year Type of study Country		Intervention	n	Mean age (years)	
Cesne	2021	RCT	France	Trabectedin	52	66.5	
				Best supportive care	51	63.7	
Chawla	2015	RCT	USA	Trabectedin	83	54	
				Doxorubicin	40	54	
Demetri	2016	RCT	USA	Trabectedin	345	57	
				Dacarbazine	173	56	
Hartmann	2020	RCT	Germany	Trofosfamide	75	70	
				Doxorubicin	39	70.5	

Table 1 (continued)

^{*}These authors contributed equally to this work.

Table 1 (continued)

Author	or Year Type of study Co		Country	Intervention	n	Mean age (years)
Hensley	2015	RCT	UK	Gemcitabine-docetaxel + trabectedin	53	54.8
				Gemcitabine-docetaxel + placebo	54	56.2
Jones	2019	RCT	UK	Trabectedin + G/D	139	55
				Placebo + G/D	70	54
Martin-Broto	2016	RCT	Spain	Trabectedin + doxorubicin	54	53
				Doxorubicin	59	52
Schöffski	2021	RCT	Belgium	Trabectedin	40	59.5
				Dacarbazine	40	56
Seddon	2017	RCT	UK	Trabectedin	129	56
				Dacarbazine	128	55
Tian	2020 RCT		China	Trabectedin	24	38.58±14.01
				Doxorubicin standard- dose	146	43.30±12.10

	Experimental		Control			Risk Ratio	Risk Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C		M-H, Fi	kęd, 95°	% CI	
Cesne 2021	25	32	18	28	12.3%	1.22 [0.87, 1.69]	l		+		
Chawla 2015	45	83	25	40	21.5%	0.87 [0.64, 1.18]		-	╅		
Hartmann 2020	54	75	27	39	22.7%	1.04 [0.81, 1.34]			†		
Schoffski 2021	23	40	18	40	11.5%	1.28 [0.83, 1.97]			+		
Seddon 2017	70	129	50	128	32.0%	1.39 [1.06, 1.82]	l		-		
Total (95% CI)		359		275	100.0%	1.16 [1.01, 1.34]			♦		
Total events	217		138								
Heterogeneity: Chi ² = 6.11, df = 4 (P = 0.19); I^2 = 35%							0.01	0.1	+	10	100
Test for overall effect:	F		o. i experimental	 Favo	10 urs [cont	100 rol]					

Figure 1 Forest plot of relative risks (RRs) with corresponding 95% confidential intervals (CIs) in disease control rate (DCR) (2).

Acknowledgments

Funding: None.

Footnote

Provenance and Peer Review: This article was commissioned by the editorial office, Annals of Translational Medicine. The article did not undergo external peer review.

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at https://atm. amegroups.com/article/view/10.21037/atm-2022-1/coif). The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the noncommercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license).

See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

- Wu J, Zhang M, Chen C, et al. Do patients with soft-tissue sarcomas treated with trabectedin have better clinical effects and a longer survival time than those treated with doxorubicin? Ann Transl Med 2022. doi: 10.21037/atm-21-7018.
- Dang J, Fu J, Zhang Z, et al. Comparison between trabectedin and doxorubicin in soft-tissue sarcomas: a systematic review and meta-analysis. Ann Transl Med

Cite this article as: Dang JY, Fu J, Zhang Z, Liu D, Cheng D, Fan H. Comparison between trabectedin and doxorubicin in soft-tissue sarcomas-reply letter. Ann Transl Med 2022;10(7):426. doi: 10.21037/atm-2022-1

- 2021;9:1764.
- 3. Hartmann JT, Kopp HG, Gruenwald V, et al. Randomised phase II trial of trofosfamide vs. doxorubicin in elderly patients with untreated metastatic soft-tissue sarcoma. Eur J Cancer 2020;124:152-60.
- 4. Schöffski P, Toulmonde M, Estival A, et al. Randomised phase 2 study comparing the efficacy and safety of the oral tyrosine kinase inhibitor nintedanib with single agent ifosfamide in patients with advanced, inoperable, metastatic soft tissue sarcoma after failure of first-line chemotherapy: EORTC-1506-STBSG "ANITA". Eur J Cancer 2021;152:26-40.