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Background: This study aimed to explore the potential of a combination of 18F-fluorodeoxyglucose 
positron emission tomography (18F-FDG PET) and magnetic resonance imaging (MRI) to improve 
predictions of conversion from mild cognitive impairment (MCI) to Alzheimer’s disease (AD). The predictive 
performances and specific associated biomarkers of these imaging techniques used alone (single-modality 
imaging) and in combination (dual-modality imaging) were compared.
Methods: This study enrolled 377 patients with MCI and 94 healthy control participants from 2 medical 
centers. Enrolment was based on the patients’ brain MRI and PET images. Radiomic analysis was performed 
to evaluate the predictive performance of dual-modality 18F-FDG PET and MRI scans. Regions of interest 
(ROIs) were determined using an a priori brain atlas. Radiomic features in these ROIs were extracted from 
the MRI and 18F-FDG PET scan data. These features were either concatenated or used separately to select 
features and construct Cox regression models for prediction in each modality. Harrell’s concordance index 
(C-index) was then used to assess the predictive accuracies of the resulting models, and correlations between 
the MRI and 18F-FDG PET features were evaluated. 
Results: The C-indices for the two test datasets were 0.77 and 0.80 for dual-modality 18F-FDG PET/MRI, 
0.75 and 0.73 for single-modality 18F-FDG PET, and 0.74 and 0.76 for single-modality MRI. In addition, 
there was a significant correlation between the crucial image signatures of the different modalities.
Conclusions: These results indicate the value of imaging features in monitoring the progress of MCI in 
populations at high risk of developing AD. However, the incremental benefit of combining 18F-FDG PET 
and MRI is limited, and radiomic analysis of a single modality may yield acceptable predictive results.
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* Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database  
(adni.loni.usc.edu).
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Introduction

A l z h e i m e r ’s  d i s e a s e  ( A D )  i s  t h e  m o s t  c o m m o n 
neurodegenerative disease, and mild cognitive impairment 
(MCI) is a high-risk prodromal stage of AD (1,2). The 
neuropathological substrates of MCI can be heterogeneous: 
some patients with MCI may not experience disease 
progression, some may return to normal, while others may 
develop AD (3,4). This study aimed to make a significant 
contribution to the evaluation of risk factors used to predict 
MCI conversion to AD.

In recent years, neuroimaging modalities have been 
instrumental in solidifying our understanding of the 
clinical diagnosis of AD. These modalities include 
magnetic resonance imaging (MRI) and positron emission 
tomography (PET), which have attracted the attention 
of researchers focusing on MCI and AD (5,6). MRI-
based structural biomarkers that target gray matter 
atrophy or shape alterations are those most commonly 
used in the early biomarker-based detection of AD (7,8) 
18F-fluorodeoxyglucose PET (18F-FDG PET) imaging is 
relatively sensitive and can be used to assess brain glucose 
metabolism in patients with MCI (7). However, the need for 
dual-modality or even multimodality techniques to predict 
MCI conversion to AD has not been conclusively supported. 
While multimodality imaging can provide a more accurate 
evaluation of most brain diseases, false-positive results may 
hinder the implementation of hybrid techniques in the 
clinical setting, and thus dual-modality imaging for the 
prediction of MCI conversion to AD is a topic of ongoing 
research that has yet to be fully evaluated (9,10). 

Radiomic analysis aims to extract a large number of 
quantitative features from medical imaging data and 
establish statistical models that assist in disease diagnosis, 
prognosis, and treatment monitoring, thus enhancing 
the clinical decision-making process (11,12). In recent 
years, this methodology has been applied in early AD 
diagnosis and MCI conversion prediction (8,13-17). 
According to previous research, the accuracy of radiomics-
based classification is relatively stable but remains at 
an exploratory stage. For example, although different 
modalities provide complementary information for MCI 
prediction and classification (18,19), the predictive accuracy 
of a multimodality technique in hybrid imaging has only 

been partially investigated. 
The primary objective of the present study was to 

explore the potential of dual-modality 18F-FDG PET and 
MRI scans to predict MCI conversion to AD. We compared 
the predictive performance of both single-modality 
imaging techniques with a dual-modality approach. We 
also investigated the degree to which imaging-derived 
biomarkers were comparable between these modalities. 
We present the following article in accordance with the 
MDAR (Materials Design Analysis Reporting) reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-21-4349/rc).

Methods 

The experimental design framework used in this study is 
outlined in Figure 1. First, structural MRI and 18F-FDG 
PET scans were preprocessed. Eighty cortical regions from 
the automated anatomical labeling (AAL) atlas were used as 
regions of interest (ROIs). Radiomics features were extracted 
and selected using single or dual modalities, and the selected 
features were then used to construct a Cox proportional 
hazards model to compare the predictive performance of the 
different modalities. In addition, a correlation analysis was 
performed to assess the correlation between the features of 
the 18F-FDG PET and MRI models.

Participants and image preprocessing

Participants were recruited from 2 independent medical 
centers. Cohort A comprised 355 patients with MCI and 
94 healthy control participants (HCs) whose data were 
collected from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database (http://adni.loni.usc.edu/). 
Cohort B comprised 22 patients with MCI whose data 
were collected from the Department of Neurology at 
the Huashan Hospital in Shanghai, China. Demographic 
and clinical information, including education, age, sex, 
Mini-Mental State Examination (MMSE) scores, time for 
conversion to AD, and brain scans, were collected for the 
two cohorts. Patients with MCI were categorized into two 
groups: an MCI non-converter (MCI-nc) group (n=187), 
which included participants whose MCI did not convert 
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to AD during the 3-year follow-up, and an MCI converter 
(MCI-c) group (n=168), which included those whose MCI 
converted to AD within the 3-year follow-up. Participants 
who had a biphasic change in diagnosis during follow-
up in which MCI converted to AD and returned to MCI 
were excluded from the analysis. Cohort A contained MRI 
and 18F-FDG PET scan data from the 94 HCs obtained 
at 2 points in time with an average interval of 2 years. 
These data were used to perform a stability analysis of the 
radiomic features. In total, 355 patients with MCI were also 
included in cohort A. Cohort B comprised 10 MCI-c and 12 
MCI-nc participants. The participants had both MRI and 
18F-FDG PET imaging data. During the follow-up period, 
participants in the MCI-nc group remained clinically stable, 

while those in the MCI-c group converted to AD during 
an average follow-up period of 24.5±9.6 months. Data 
inclusion criteria and acquisition protocol information are 
detailed further in the Supplementary file (Appendix 1).

Once acquired, all 18F-FDG PET and MRI scans were 
preprocessed as described previously (17) (Figures S1,S2). 
This study was approved by the Research Ethics Committee 
of Huashan Hospital (No. KY2013-336) and was carried out 
in accordance with the Declaration of Helsinki (as revised in 
2013). Informed consent was obtained from all participants 
in Cohort B or their legal guardians prior to participation.

Image preprocessing was performed using Statistical 
Parametric Mapping 12 (SPM 12, https://www.fil.ion.
ucl.ac.uk/spm/). The original 18F-FDG PET scans were 
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Figure 1 The framework of the experimental design in our study. PET, positron emission tomography; MRI, magnetic resonance imaging; 
AAL, anatomical automatic labeling.
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registered to corresponding structural MRI scans and 
corrected for the partial volume effect (PVE) with the 
voxel-wise Muller-Gartner method. The MRI images were 
segmented using a unified segmentation method. Next, the 
MRI images, gray matter masks, and 18F-FDG PET images 
were warped to the Montreal Neurological Institute (MNI) 
space. Finally, the normalized PET images were smoothed 
using an isotropic Gaussian kernel of 8 mm.

Radiomic feature extraction and selection

In the feature extraction process, 80 cortical regions from 
the AAL atlas were defined as the ROIs (20). A radiomics 
tool developed by Vallières (21) (https://github.com/
mvallieres/radiomics) was used, and 430 radiomic features 
were extracted from each ROI for the MRI and 18F-FDG 
PET images. Finally, 68,800 features were extracted from 
the images of each participant. The extracted features 
included intensity and textural features, as described in the 
Supplementary file (Appendix 1).

Feature selection was preceded by 10-fold cross-validation, 
with 90% of the data included as the training dataset and 
10% included as the test dataset in each fold, and by the 
elimination of unit restriction for each feature value through 
normalization to zero mean and unit standard deviation. 

Feature selection was performed using the following 
steps: (I) feature reliability analysis; (II) statistical testing; 
and (III) top feature selection. The feature reliability 
analysis was based on the HCs from cohort A. Cronbach’s 
alpha coefficient was used to evaluate the stability of the 
features, and stable features with a coefficient greater than 
0.75 were selected. Each participant in the HC group 
had feature sets evaluated at 2 points in time. The most 
discriminative features between the MCI-c and MCI-
nc groups were selected for statistical testing. We used 
2-sample t-tests and rank-sum tests to identify the features 
with significant differences between participants in the 
MCI-c and MCI-nc groups (P<0.01). Finally, the top 
features were selected, and an L1-penalized Cox model was 
constructed from the training dataset using least absolute 
shrinkage and selection operator (LASSO) regression. 
LASSO is a robust method that is especially suitable for 
the regression of high-dimensional features in a radiomic 
strategy, and patient features were selected based on the 
associations with the survival endpoints and time (22). After 
feature selection, a prediction model was constructed, and 
10-fold cross-validation was performed with 200 repetitions 
in the feature selection stage.

Cox regression model construction

Our prediction model was an L1-penalized Cox regression 
model. Typical features were selected during the training 
phase and used to construct the final Cox model. Cox 
regression is a statistical analysis method that combines 
clinical outcomes and the time taken by an outcome to 
appear. In this study, the clinical outcome was conversion 
from MCI to AD. The time taken by the outcome to appear 
was the interval between baseline and endpoint. For each 
participant, the baseline was established as the date of their 
MRI and PET scans, and the endpoint was either the time 
of AD diagnosis (for the MCI-c group) or the last follow-up 
appointment (for the MCI-nc group).

The “glmnet” and “survival” packages (23-25) in R were 
used to construct the Cox model (http://www.R-project.org/). 
We used Harrell’s concordance index (C-index) to evaluate the 
model’s predictive performance. The C-index was calculated 
for the training and test datasets. The prognostic index 
(PI), a linear combination of the selected features and their 
coefficients, was calculated for each participant in the test 
dataset using the Cox model and used to calculate the C-index 
for that dataset. To evaluate the predictive performance of the 
Cox model in an unbiased manner, 10-fold cross-validation 
was repeated 20 times, and an average C-index (with the 
standard deviation values) was calculated. The number of 
times each feature was repeated in the model construction 
was counted, and those that repeated in the prediction model 
for more than two-thirds of the time were selected. These 
“conserved” features were used for further analyses.

To further compare the predictive performance of these 
features using single- and dual-modality PET and MRI, 
we calculated the PI of each participant according to the 
corresponding modality. Individuals were then stratified into 
high- and low-risk groups based on the median PI. Survival 
differences in the risk groups were examined using a log-rank 
test, and Kaplan-Meier survival curves were also plotted.

Comparison classification

To compare the predictive performances of the different 
modalities, a single-modality Cox model was constructed 
using features solely from the MRI or 18F-FDG PET scans, 
while a dual-modality Cox model was constructed using their 
combined features. The traditional PET model was constructed 
by calculating the average FDG standardized uptake value ratio 
(SUVR), and the MRI model was constructed by calculating 
the global gray matter volume (GMV). In addition, we used 
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the participants’ demographic information (age, sex, number 
of years of education) and MMSE scores to construct a clinical 
Cox model to compare the effects imaging and basic clinical 
factors may have on the risk of MCI conversion to AD.

Correlation verification of crucial image signatures 
between different modalities

In this study, conserved features from the 18F-FDG PET and 
MRI models were considered crucial image signatures, and 
the relationship between the image signatures of different 
modalities was further explored. Correlation coefficients 
between the crucial PET and MRI features were calculated.

Statistical analysis

Descriptive statistics of the continuous variables are 

expressed as the mean ± standard deviation, and a 2-sample 
t-test was used to compare the differences between the 
two groups. A chi-squared test was used to illustrate the 
differences in qualitative variables. Partial correlation 
coefficients were used to evaluate the correlation between 
radiomic 18F-FDG PET and MRI features to adjust for 
age and sex effects. Survival differences in the different 
risk groups were evaluated using a log-rank test. P values 
were 2-tailed, and statistical significance was set at P<0.01. 
MATLAB 2016b (MathWorks Inc., Natick, MA, USA) was 
used to perform all the statistical tests.

Results 

Participants

Table 1 shows the demographic and clinical details of the 
two cohorts. Significant differences between the MCI-c and 

Table 1 Demographic and clinical characteristics of the study cohorts

Information

MCI HCs

MCI-c (n=168) MCI-nc (n=187)

P value

Time_1 (n=94) Time_2 (n=94)

P valueMedian 
(IQR)

Mean  
(SD)

Median 
(IQR)

Mean  
(SD)

Median 
(IQR)

Mean  
(SD)

Median 
(IQR)

Mean  
(SD)

Cohort A: ADNI

N 168 187 94 94

Sex (M/F) 95/73 109/78 0.740a 48/46 48/46 1a

Age (years) 74.4 (9.2) 74.0 (7.1) 72.3 (10.7) 72.1 (7.5) 0.018b* 72.5 (8.6) 72.8 (5.9) 74.5 (8.6) 74.8 (5.9) 0.022b*

Education (years) 16.0 (4.0) 16.0 (2.6) 16.0 (4.0) 16.0 (2.6) 0.910b 17.0 (3.0) 16.9 (2.4) 17.0 (3.0) 16.9 (2.4) 1b

MMSE 27.0 (3.0) 26.5 (2.2) 28.0 (2.0) 28.0 (1.6) <0.001b* 30.0 (1.0) 29.2 (1.2) 30.0 (1.0) 29.1 (1.3) 0.766b

MoCA 21.0 (3.7) 21.0 (2.8) 21.0 (4.3) 21.1 (2.7) 0.870b 26.0 (3.0) 25.9 (2.1) 26.0 (3.0) 25.8 (2.0) 0.873b

ADAS-Cog 13 20.3 (7.7) 20.7 (6.5) 20.5 (6.8) 20.9 (6.3) 0.641b 9.0 (6.0) 8.6 (3.9) 9.0 (6.0) 8.5 (3.7) 0.732b

Conversion time (months) 12.0 (18.0) 14.1 (8.9) – – –

Cohort B: Huashan Hospital

N 10 12

Sex (M/F) 6/4 5/7 0.392a

Age (years) 72.7 (7.6) 73.5 (4.1) 65.0 (10.0) 64.3 (5.7) <0.001b*

Education (years) 13.5 (4.0) 13.7 (2.3) 12.0 (4.0) 11.9 (2.9) 0.132b

MMSE 26.0 (1.0) 25.5 (2.2) 27.0 (2.0) 26.9 (1.6) 0.100b

MoCA 22.0 (4.0) 21.3 (3.2) 23.0 (3.0) 22.5 (2.4) 0.743b

Conversion time (months) 23.3 (11.9) 24.5 (9.6) – – –
a, Chi-square; b, 2-sample t-tests; *, P<0.05. MCI, mild cognitive impairment; ADNI, Alzheimer’s Disease Neuroimaging Initiative; MCI-c, MCI 
converters; MCI-nc, MCI non-converters; HCs, healthy control participants; IQR, interquartile range; SD, standard deviation; MMSE, Mini-
Mental State Examination; MoCA, Montreal Cognitive Assessment; ADAS-Cog 13, Alzheimer’s Disease Assessment Scale-Cognitive 13.
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MCI-nc groups in cohort A were observed in age (P=0.018) 
and MMSE scores (P<0.001), while significant differences 
were observed only with regard to age in cohort B (P<0.001). 
There were no significant differences in sex or education 
levels among the different groups.

Conserved features in different modalities 

Features included in the prediction model for more than 
two-thirds of the time were selected. The numbers of 
conserved features identified in the single-modality PET 
and MRI models and the dual-modality model were 13, 
12, and 14, respectively. The conserved features of the 
18F-FDG PET model were primarily derived from the 
textural features of the cingulate cortex, hippocampus, 
p a r a h i p p o c a m p a l  g y r u s ,  p r e c u n e u s ,  a n d  o t h e r 
temporoparietal regions. For the MRI model, the conserved 
features were mainly derived from the hippocampus, 
parahippocampal gyrus, and inferior parietal lobe. 
Overlapping regions of the conserved features included 
the bilateral hippocampus and the parahippocampal gyrus, 
indicating that these regions showed structural changes and 
metabolic abnormalities. 

Most of the conserved features in the dual-modality 

model overlapped with those in the single-modality models. 
The conserved features from the MRI images were mainly 
distributed in the inferior temporoparietal regions. The 
repeated appearance of these features suggested that they 
could effectively predict MCI conversion with excellent 
reproducibility. Figure 2 shows the distribution of conserved 
features across the brain regions in the 3 models. All 
conserved features from the MRI, 18F-FDG PET, and dual-
modality models are listed in Table S1, with the crucial 
image signatures in Table S2. In addition, we have explained 
the meaning of these conserved features and the direction 
of changes in the Supplementary file (Appendix 1).

Radiomic analysis predicted MCI conversion to AD

Six prediction models, namely the SUVR_PET model, the 
GMV_MRI model, the radiomic PET model, the radiomic 
MRI model, the radiomic dual-modality model, and the 
clinical model, were constructed. Overall, in cohort A, 
image-based models (SUVR_PET, GMV_MRI, and the 
radiomic single- and dual-modality models) were superior 
to the clinical model, while the radiomic dual-modality 
model was superior to the radiomic single-modality imaging 
models. Conversely, the GMV_MRI model and SUVR_

PET model MRI model Dual-modality model
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Figure 2 The different brain regions of the features conserved by different radiomic models: (A) the radiomic PET model, (B) the radiomic 
MRI model, (C) the dual-modality model. PET, positron emission tomography; MRI, magnetic resonance imaging; L, left; R, right; MTG, 
middle temporal gyrus; HIP, hippocampus; PHG, parahippocampal gyrus; MFG, middle frontal gyrus; PCUN, precuneus; DCG, median 
cingulate and paracingulate gyrus; SMG, supramarginal gyrus; SFGmed, superior frontal gyrus, medial; IFGtriang, inferior frontal gyrus, 
triangular part; IPL, inferior parietal; SMA, supplementary motor area; ITG, inferior temporal gyrus; MOG, middle occipital gyrus.
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PET model had similar predictive performances. Similar 
results were also found in cohort B. Table 2 summarizes the 
evaluations of predictive performance for each model. 

As a result, some of the conserved features from 
the 18F-FDG PET and MRI models overlapped in the 
hippocampus and parahippocampal gyrus. To further evaluate 
the predictive performance of these crucial image signatures, 
they were used as predictors to construct an independent 
conventional Cox model for each of the following imaging 
modalities. Four crucial image signatures distributed in the 
hippocampus and parahippocampal gyrus on the 18F-FDG 
PET images were included, as were four crucial image 
signatures from the MRI images (Table S2). The results 
indicated that these conserved features could effectively 
predict the risk of conversion to AD in individuals with MCI.

Survival differences in the low-risk and the high-risk 
groups were significant in the training and test datasets 
(log-rank tests, P<0.01). Figure 3 shows the characteristics 
of each Cox model and the corresponding Kaplan-Meier 
survival curves. The Akaike information criterion (AIC) 
test was used to evaluate the quality of the Cox models 
(radiomic PET: 1,584.59; radiomic MRI: 1,603.48; dual-
modality: 1,572.27). For the validation dataset (cohort B), 
we evaluated whether the risk groups were better classified 
according to the PI derived from each model. The 3 models 
demonstrated good performance in differentiating between 
the groups with high and low risks of conversion to AD 
(PET model: P<0.001; MRI model: P=0.007; dual-modality 
model: P<0.001). 

Correlation between different model feature signatures

In this study, we obtained 13 conserved features in the 
radiomic PET model [Table S1 (a)] and 12 conserved 

features in the MRI model [Table S1 (b)]. We calculated the 
correlation coefficients and obtained a 13×12 correlation 
matrix. Of these paired correlation matrices, 83 showed 
significant correlations in cohort A (P<0.001; Figure 4A), 
and 4 showed significant correlations in cohort B (P<0.001; 
Figure 4B). Among them, there were 4 pairs of features 
that were related in all cohorts and modalities, as shown 
in the red box in Figure 4. On the 18F-FDG PET images, 
these features were in the parahippocampal (busyness), 
cingulum_mid [zone percentage (ZP)], large zone low 
gray-level emphasis (LZLGE), and cingulum_mid [large 
zone emphasis (LZE)]. On the MRI images, they were 
in the angular gyrus [run percentage (RP)], hippocampus 
(coarseness), and olfactory cortex (coarseness).

Discussion

This study used radiomic analysis to compare the 
capabilities of single-modality MRI and 18F-FDG PET and 
dual-modality MRI to predict the MCI conversion to AD. 
One strength of this study was that we used two separate 
cohorts from Western (ADNI) and Chinese (Huashan) 
populations. Although the sample size of the Huashan 
dataset was somewhat small as an external test dataset 
whose inclusion might have therefore led to overfitting and 
inconsistent results among the different modalities, our 
findings verified the feature stability across different ethnic 
cohorts.

We showed that dual-modality imaging is useful but not 
necessary for the prediction of MCI conversion to AD. We 
constructed 6 LASSO models based on the sources of the 
features. Image-based prediction models showed superior 
performance to the clinical model. Notably, the radiomic 
PET/MRI models had better predictive performance 

Table 2 Predictive performance of each model

Model Cohort A training Cohort A testing Cohort B

Clinical 0.692 (0.0004) 0.684 (0.006) 0.685 (0.006)

SUVR_PET 0.791 (0.002) 0.751 (0.007) 0.700 (0.004)

GMV_MRI 0.803 (0.003) 0.749 (0.008) 0.702 (0.007)

Radiomic PET 0.871 (0.004) 0.753 (0.008) 0.734 (0.011)

Radiomic MRI 0.807 (0.004) 0.741 (0.007) 0.760 (0.009)

Radiomic dual-modality 0.884 (0.004) 0.766 (0.009) 0.798 (0.008)

C-indices are expressed as the mean (standard deviation) as derived from multiple 10-fold cross-validation in each model. SUVR, 
standardized uptake value ratio; PET, positron emission tomography; GMV,  gray matter volume; MRI, magnetic resonance imaging.
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Figure 3 Hazard ratios for different predictors and Kaplan-Meier survival curves for each model. (A) Hazard ratios for different predictors 
in the PET model with 4 features from the hippocampus and parahippocampal gyrus on PET images as predictors (Fea. 6, Fea. 7, Fea. 8, 
and Fea. 9, corresponding to features 6, 7, 8, and 9, respectively, in Table S2). Global P value (log-rank), 1.5514e-20; Akaike information 
criterion (AIC), 1,584.59; C-index, 0.75. (B) Risk stratification of the test dataset in the PET model (log-rank test, P=0.00027). (C) Hazard 
ratios in the MRI model with 4 features from the hippocampus and parahippocampal gyrus in MRI images as predictors (Fea. 20, Fea. 
21, Fea. 22, and Fea. 23, corresponding to features 20, 21, 22, and 23, respectively, in Table S2). Global P value (log-rank), 1.5955e-16; 
AIC, 1,603.48; C-index, 0.73. (D) Risk stratification of the test dataset in the MRI model (log-rank test, P=0.007). (E) Hazard ratios in the 
combined model. Global P value (log-rank), 4.4302e-22; AIC, 1,572.27; C-index, 0.77. Predictors were a combination of features from the 
hippocampus and parahippocampal gyrus on the PET and MRI images. (F) Risk stratification of the test dataset in the combined model 
(log-rank test, P=0.00073). **, P<0.01; ***, P<0.001. PET, positron emission tomography; MRI, magnetic resonance imaging.
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than did the traditional PET/MRI models. This may be 
due to the lower sensitivity and higher subjectivity of the 
neuropsychological scales (26). The C-indices of the dual-
modality model constructed using data from PET and MRI 
images were 0.766 for the ADNI participants (cohort A) 
and 0.798 for the Huashan participants (cohort B) (Table 2). 
These results demonstrate the reliability of the radiomic 
models for predicting MCI conversion to AD. However, 
comparison of the single- and dual-modality MRI and PET 
models revealed that MRI outperformed PET in cohort 
B (C-indices of 0.760 and 0.734, respectively; P<0.001), 
while the dual-modality model resulted in only a modest 
improvement over the single-modality models (C-index of 
0.798 for dual-modality vs. 0.760 for MRI, and 0.734 for 
PET; both P<0.001). The cohort A test dataset also showed 
a modest improvement with the dual-modality model, 
with PET marginally outperforming MRI in the single-
modality models (Table 2). The small discrepancies between 
these results may be attributable to ethnic differences 
between the Western and Chinese study populations or the 
uncertainty in the C-index values of cohort B because of the 
small sample size. Larger studies are required, and no clear 
recommendation can be made regarding the choice of which 
single-modality imaging technique to use. Nevertheless, our 
findings suggest only a modest improvement in predictive 
capacity can be expected when dual-modality imaging is 
performed. 

Consistent with our hypothesis, most of the conserved 
features were identified in regions significantly associated 
with AD, specifically, the medial temporal areas, inferior 

parietal lobe, precuneus, and cingulate gyrus, which are 
all brain regions that experience early pathological protein 
(amyloid-β and hyperphosphorylated tau) deposition (27). 
They also experience early atrophy, thickness reduction, 
and metabolic reduction (28-30). Our correlation analyses 
revealed that some features from different modalities have 
obvious correlations, indicating the importance of certain 
regions in the early diagnosis of AD. For example, there 
was a correlation between the hippocampal features in the 
2 modalities, and this region was also correlated with other 
areas, including the precuneus and the medial cingulate 
gyrus, which are typical areas of interest in patients with AD. 

A recent  mult icenter  study suggested that  the 
hippocampal radiomic features can serve as robust 
biomarkers for clinical application in predicting MCI 
conversion to AD (8). The brain regions identified in the 
present study are in concordance with the regions associated 
with AD development (13,14,31,32). Several studies have 
described changes in the hippocampal function as having an 
impact on the cingulate and precuneus gyrus (33,34). Our 
study showed a correlation between the textural features of 
the two regions, indicative of a corresponding pathological 
correlation. As a result, textural features extracted from 
these regions were more useful in differentiating between 
the MCI-c and MCI-nc groups. However, the large degree 
of overlap identified between the two modalities suggests 
a large degree of redundancy, with dual-modality imaging 
providing only a slight gain in information. This fact and 
the minor improvements in predictive ability indicate that 
only limited benefits can be expected from dual-modality 
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PET and MRI imaging. We believe that in resource-poor 
settings, where patients do not have access to more than  
1 imaging modality, or in cases of contraindication or 
concern about the additional radiation burden encountered 
in nuclear medicine imaging, single-modality imaging 
would be acceptable.

This study had some limitations. First, we only used 
radiomic analysis to verify whether dual-modality imaging 
is necessary for predicting MCI conversion to AD. 
Exploration of other methodologies is required to confirm 
our findings. Second, the radiomic method indicated 
individual differences between the features. Although the 
stability of the radiomic features was studied using HCs, the 
stability of the radiomic features in patients with MCI could 
be the topic of an ongoing study. Third, the C-index values 
of cohort B may contain uncertainty in the external test 
dataset owing to the small sample size. Research must be 
furthered using external test data with a larger sample size 
and greater heterogeneity to confirm our findings. Lastly, 
considering that the ADNI data were used as the training 
dataset, differences in ethnicity between the training and 
testing groups should not be ignored. 

Conclusions

Comparison of a radiomic model for the prediction of 
MCI conversion to AD identified a large overlap between 
18F-FDG PET and MRI, with much redundancy in dual-
modality imaging. The present study showed that the 
incremental benefit of combining 18F-FDG PET and MRI 
was limited and that in radiomic models for predicting MCI 
conversion, single-modality imaging may be sufficient. 
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Participants

The inclusion criteria for participants with mild cognitive impairment (MCI) were as follows: (I) participants diagnosed with 
MCI at the time of data collection; (II) magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose positron emission 
tomography (18F-FDG PET) scans collected for each participant. Participants’ data were retrieved from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database (cohort A) and the Department of Neurology at Huashan Hospital in 
Shanghai, China (cohort B), and participants in both cohorts were categorized into 2 groups: an MCI nonconverter (MCI-
nc) group, whose MCI did not convert to Alzheimer’s disease (AD), and an MCI-converter (MCI-c) group, whose MCI did 
convert to AD. Cohort A consisted of 168 MCI-cs and 187 MCI-ncs, while cohort B comprised 10 MCI-cs and 12 MCI-ncs. 
Cohort A also contained the MRI and 18F-FDG PET data of 94 healthy control participants obtained at 2 points in time with 
an average interval of 2 years. The inclusion criteria for the healthy control participants were as follows: (I) a Mini-Mental 
State Examination (MMSE) score of between 24 and 30; (II) a clinical dementia rating (CDR) of 0; (III) and no diagnosis of 
depressions, MCI, or dementia. This data set was used to perform a stability analysis on the radiomic features.

Cohort B comprised 10 MCI-cs and 12 MCI-ncs. Participants in this cohort had both MRI and 18F-FDG PET imaging 
data. MCI-ncs remained clinically stable, while MCI-cs converted to Alzheimer’s disease (AD) during the average follow-up 
period of 24.5±9.6 months. MCI was diagnosed according to previously published criteria (1).

Acquisition protocol

ADNI (cohort A)

Detailed information on the structural MRI and 18F-FDG PET data acquisition for cohort A can be obtained by visiting 
the image protocol column of the ADNI dataset on the official website of the ADNI (http://adni.loni.usc.edu/). For the 
participants in the present study, 18F-FDG PET images were acquired in a resting state 30-35 minutes after the injection of 
185±18.5 MBq FDG.

Huashan Hospital (cohort B)

Structural MRI
MRI data for all participants in cohort B were obtained using a 3T MR750 scanner (General Electric Company, Boston, 
MA, USA). An inversion recovery prepared fast spoiled gradient recalled sequence was used to obtain T1 weighted, 
high-resolution, 3-dimensional (3D) anatomical brain images. The scanning range was from the cranial crest to the 
occipital foramen. The scan parameters were as follows: repetition time (TR) =11.1 ms, echo time (TE) =5.0 ms, flip 
angle =20°, matrix size =256×256, voxel size = 1×1×1 mm3, field of view (FOV) =240 mm2, slice thickness = 1.0 mm;  
146 slices without slice gap, and transverse acquisition.

http://adni.loni.usc.edu/
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18F-FDG PET
A Siemens Biograph 64 HD PET/CT scanner was used to perform 18F-FDG PET scanning in 3D mode at resting state  
(1.5 min/bed, 5 bed positions). All participants were required to have been fasting for at least 6 hours before the examination. 
Each participant received an intravenous injection of 185 MBq ±37 FDG and rested in a quiet and dark environment for 
45 minutes prior to the scan. Before PET scanning, we used low-dose CT transmission scanning to reduce the effects of 
attenuation.

Data preprocessing protocol

Data preprocessing for the PET and MRI images was performed using the Statistical Parametric Mapping  
12 package (SPM12, the Wellcome Department of Neurology, London U.K.) in MATLAB 2016b (MathWorks Inc., Natick, 
MA, USA).

First, dcm2nii software (http://www.nitrc.org/projects/dcm2nii/) was used to convert digital imaging and communications 
in medicine (DICOM) files to neuroimaging informatics technology initiative (NIFTI) files. Second, each original 18F-FDG 
PET scan was registered to a corresponding original structural MRI scan and corrected for partial volume effect (PVE) using 
the voxel-wise PVE method. Then, the MRI images were segmented using the unified segmentation method. Next, the 
forward parameters were estimated during the unified segmentation, and the original MRI scan, gray matter (GM) binary 
mask, and registered PET image were registered to the Montreal Neurological Institute (MNI) stereotaxic template. Finally, 
the normalized PET scans were smoothed.

18F-FDG PET: each original structural MRI scan was used to register a corresponding original 18F-FDG PET scan. PVE 
algorithms were used to correct PVE in the PET scans, using the PETPVE12 toolbox, after a voxel-wise method defined 
by Muller-Gartner et al. (2). Our study-specific settings included the specification of an isotropic PSF of 6 mm. The same 
transformation parameters were used to normalize the registered PET scan to the MNI template. Finally, an isotropic 
gaussian kernel of 8 mm was used to smooth the normalized PET scans to increase signal-to-noise ratios. Some of the 
processing results are shown as examples in Figure S1.

MRI: the unified segmentation method was used to segment MRI images into gray matter (GM), white matter (WM), and 
cerebrospinal fluid (CSF) tissue probability maps. Then, the original MRI scan and GM binary mask were registered to the 
MNI stereotaxic template using the forward parameters. Some processing results are shown as examples in Figure S1. 

Individual GM binary masks were derived from 50% GM suprathreshold voxels plus those whose GM probability 
exceeded that of WM and CSF. The final positioning of the brain regions is shown in Figure S2. Individual GM binary masks 
were used to mask the corresponding normalized MRI, and the smoothed 18F-FDG PET scans in the MNI space.

Feature extraction

Texture features [9 from the gray-level co-occurrence matrix (GLCM), 13 from the gray-level run-length matrix (GLRLM), 
13 from the gray-level size zone matrix (GLSZM), and 5 from the neighborhood gray-tone difference matrix (NGTDM)] 
were used to measure tissue heterogeneity by quantitatively describing the spatial distribution of intensities within the regions 
of interest (ROIs). The first-order intensity features, including variance, skewness, and kurtosis, were calculated according to 
the intensity distribution of each ROI. All texture features were calculated using 3D analysis (26 neighborhoods). For each 
texture matrix, only 1 comprehensive texture matrix was calculated by simultaneously considering the adjacent attributes of 
voxels in 13 directions of 3D space. At the same time, considering discretization length differences, the 6 voxels at a distance 
of 1 voxel, the 12 voxels at a distance of √2  voxels, and the 8 voxels at a distance of √3 voxels around the center voxels were 
treated differently in the calculation of the matrices (3). 

The calculation of the texture matrices was dependent on the gray level quantization values since they quantify the 
relationship between the levels of gray. A reasonable gray level quantization value shortened the calculation time of the 
feature matrix and improve the signal-to-noise ratio of the texture outcome. Following previous texture analysis research, 
we selected the number of gray levels (i.e., the dynamic range) as 32 and 64. Wavelet band-pass filtering highlighted detailed 
information in images at different spatial frequencies. When performing wavelet band-pass filtering, we first performed 

http://www.nitrc.org/projects/dcm2nii/
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wavelet decomposition in ROIs on the images in 8 directions (LLL, LLH, LHL, LHH, HLL, HLH, HHL, and HHH), and 
then defined a coefficient R, indicating the ratio of the weight applied to band-pass sub-bands (LLH, HLH, LHL, HLL, 
HHL, and LHH) compared to the weight applied to low-frequency and high-frequency sub-bands (LLL and HHH). By 
adjusting R, and then performing the inverse wavelet transformation, a transformed ROI image was obtained, emphasizing 
detailed information at different spatial frequencies. Following previous research (4), we extracted wavelet features at 5 spatial 
frequencies, with R values of 1/2, 2/3, 1 (without wavelet filtering), 3/2, and 2. After selecting the gray level quantization 
range and wavelet band-pass filter weight (R), we extracted the same number of first-order intensity features and texture 
features for the processed image.

Finally, we extracted 430 radiomic features from each ROI for each participant’s MRI and 18F-FDG PET data. For 
participants with both MRI and PET scans, a total of 68,800 features were extracted (430×80×2 =68,800). The most basic 
features in each ROI included first-order intensity features (n=3) and textural features (n=40). By selecting different feature 
extraction parameters, more features were obtained. We combined different wavelet filter weights (5 levels) and quantization 
of gray levels (to 2 levels) to extract the features, with 430 features [(3+40)×5×2 = 430] extracted for each ROI.

Conserved features in different modalities

After removing duplicate features, 16 different conserved features remained. The meanings of these features are as follows: 
the variance feature extracted from the GLCM category is an indicator of dispersion of the unit values around the mean (5); 
the coarseness feature extracted from the NGTDM has been likened to granularity within an image—that is, coarseness is 
higher in images of larger granularity and lower in those with a smaller granularity (6); the contrast and busyness features are 
both derived from the NGTDM and define local texture features by describing the differences between each voxel and the 
neighboring voxels. Contrast relates to the difference between neighboring regions of voxel intensities, and high contrast in 
an image indicates that there is a significant difference in voxel intensity between adjacent voxels. Busyness correlates with 
the change rate between neighborhood intensities weighted by the difference in intensities, and the characteristic of a busy 
texture is that the intensity of adjacent voxels changes rapidly (7).
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Figure S2 Final positioning of brain regions. GM, gray matter; WM, white matter; CSF, cerebrospinal fluid.

Figure S1 An example of the PET and MRI preprocessing results. PET, positron emission tomography; MRI, magnetic resonance imaging; 
GM, gray matter; WM, white matter; CSF, cerebrospinal fluid. 
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Table S1 Conserved features in the different Cox models

Top Times Modality Labeled number Labeled region R Gray level Feature name

(a) Single-modality PET model

1 196 PET 64 SupraMarginal_R 2.00 32 SZHGE

2 194 PET 37 Hippocampus_L 1.50 32 GLV

3 194 PET 39 ParaHippocampal_L 1.00 64 Busyness

4 185 PET 68 Precuneus_R 1.50 64 Correlation

5 181 PET 33 Cingulum_Mid_L 1.50 32 ZP

6 179 PET 33 Cingulum_Mid_L 1.50 32 LZLGE

7 176 PET 67 Precuneus_L 2.00 32 ZSV

8 157 PET 8 Frontal_Mid_R 0.50 32 Skewness

9 144 PET 18 Rolandic_Oper_R 2.00 64 Contrast

10 144 PET 38 Hippocampus_R 1.00 64 Correlation

11 144 PET 68 Precuneus_R 2.00 64 Variance

12 139 PET 34 Cingulum_Mid_R 0.50 64 LZE

13 137 PET 85 Temporal_Mid_L 0.67 64 Contrast

(b) Single-modality MRI model

1 200 MRI 65 Angular_L 0.50 32 RP

2 198 MRI 39 ParaHippocampal_L 2.00 32 Coarseness

3 196 MRI 90 Temporal_Inf_R 2.00 32 Skewness

4 195 MRI 19 Supp_Motor_Area_L 1.00 64 Strength

5 192 MRI 38 Hippocampus_R 0.50 32 ZP

6 165 MRI 13 Frontal_Inf_Tri_L 0.50 64 Skewness

7 163 MRI 37 Hippocampus_L 1.00 64 Coarseness

8 160 MRI 62 Parietal_Inf_R 1.50 32 Busyness

9 156 MRI 23 Frontal_Sup_Medial_L 0.50 64 Contrast

10 153 MRI 62 Parietal_Inf_R 1.00 64 Skewness

11 147 MRI 21 Olfactory_L 1.50 32 Coarseness

12 134 MRI 38 Hippocampus_R 2.00 32 RLN

(c) Dual-modality model

1 197 PET 33 Cingulum_Mid_L 1.50 32 ZP

2 191 PET 68 Precuneus_R 1.50 64 Correlation

3 190 MRI 19 Supp_Motor_Area_L 1.00 64 Strength

4 190 MRI 62 Parietal_Inf_R 1.00 64 Skewness

5 188 PET 64 SupraMarginal_R 2.00 32 SZHGE

6 180 PET 67 Precuneus_L 2.00 32 ZSV

7 179 PET 37 Hippocampus_L 1.50 32 GLV

8 174 PET 39 ParaHippocampal_L 1.00 64 Busyness

9 162 PET 34 Cingulum_Mid_R 0.50 64 LZE

10 155 MRI 90 Temporal_Inf_R 2.00 32 Skewness

11 154 PET 52 Occipital_Mid_R 0.50 64 GLN

12 146 PET 39 ParaHippocampal_L 1.00 32 RP

13 146 PET 68 Precuneus_R 2.00 64 Variance

14 138 PET 38 Hippocampus_R 1.00 64 Correlation

Times: the number of times each feature repeated in the 10-fold cross-validation with 200 repetitions of the model construction, R: 
weights to band-pass subbands in wavelet filtering, gray level: gray level quantization value. SZHGE, small zone high gray-level emphasis; 
GLV, gray-level variance; ZP, zone percentage; LZLGE, large zone low gray-level emphasis; ZSV, zone-size variance; LZE, large zone 
emphasis; RP, run percentage; RLN, run-length nonuniformity; GLN, gray-level nonuniformity.
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Table S2 Crucial image signatures from three image-based models

Top Modality Labeled number Labeled region R Gray level Feature name

1 PET 8 Frontal_Mid_R 0.50 32 Skewness

2 PET 18 Rolandic_Oper_R 2.00 64 Contrast

3 PET 33 Cingulum_Mid_L 1.50 32 ZP

4 PET 33 Cingulum_Mid_L 1.50 32 LZLGE

5 PET 34 Cingulum_Mid_R 0.50 64 LZE

6 PET 37 Hippocampus_L 1.50 32 GLV

7 PET 38 Hippocampus_R 1.00 64 Correlation

8 PET 39 ParaHippocampal_L 1.00 32 RP

9 PET 39 ParaHippocampal_L 1.00 64 Busyness

10 PET 52 Occipital_Mid_R 0.50 64 GLN

11 PET 64 SupraMarginal_R 2.00 32 SZHGE

12 PET 67 Precuneus_L 2.00 32 ZSV

13 PET 68 Precuneus_R 1.50 64 Correlation

14 PET 68 Precuneus_R 2.00 64 Variance

15 PET 85 Temporal_Mid_L 0.67 64 Contrast

16 MRI 13 Frontal_Inf_Tri_L 0.50 64 Skewness

17 MRI 19 Supp_Motor_Area_L 1.00 64 Strength

18 MRI 21 Olfactory_L 1.50 32 Coarseness

19 MRI 23 Frontal_Sup_Medial_L 0.50 64 Contrast

20 MRI 37 Hippocampus_L 1.00 64 Coarseness

21 MRI 38 Hippocampus_R 0.50 32 ZP

22 MRI 38 Hippocampus_R 2.00 32 RLN

23 MRI 39 ParaHippocampal_L 2.00 32 Coarseness

24 MRI 62 Parietal_Inf_R 1.00 64 Skewness

25 MRI 62 Parietal_Inf_R 1.50 32 Busyness

26 MRI 65 Angular_L 0.50 32 RP

27 MRI 90 Temporal_Inf_R 2.00 32 Skewness

Times: the number of times each feature repeated in the 10-fold cross-validation with 200 repetitions of the model construction, R: 
weights to band-pass subbands in wavelet filtering, gray level: gray level quantization value. ZP, zone percentage; LZLGE, large zone low 
gray-level emphasis; LZE, large-zone emphasis; GLV, gray-level variance; RP, run percentage; GLN, gray-level nonuniformity; SZHGE, 
small zone high gray-level emphasis; ZSV, zone-size variance; RLN, run-length nonuniformity.
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