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Introduction

Developing novel therapies in rare disorders is working to 
serve millions of lives and giving them access to therapies 
they need to live or thrive. While only a fraction of the 
worldwide population may have a particular rare disorder, 
at any time 260 million lives worldwide are affected across 
the over 6,000 identified rare disorders (1,2). This is an 
area of high unmet need as only 20% of rare disorders have 
approved therapies.

There are many obstacles to the endeavor of developing 
novel therapies in rare disorders (3). Compared to 
therapeutic development in more common indications, 

the small and heterogenous population in a rare disorder 
increases the logistical burden of recruitment and limits 
the statistical power of any study. Some of these disorders 
have poorly understood natural history with yet to be 
characterized fit-for-purpose biomarkers or endpoints 
measuring benefits or risks, and poorly understood timing 
for measurement of the impact of novel interventions. 
Finally, when therapies are limited or timing to assess 
benefit is long, randomizing subjects to a placebo arm may 
not be feasible or ethical. 

This paper reviews some existing and novel strategies 
to efficiently use available resources in therapeutic 
development in rare disorders. While several review of 
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design and analyses strategies already exist in the rare 
disease setting, including for example (4-6), this review 
updates these strategies with more recent innovations 
and guidelines. Section ‘General considerations’ discusses 
the role of natural history studies and endpoint selection 
as they remain critical features that apply across designs 
and disorders. Then, Section ‘Examples of novel study 
designs’ reviews recent design features including use of 
novel sources, external control, longitudinal designs, master 
protocol designs, and adaptive design. Additionally, Section 
‘Examples of novel analytical strategies’ reviews recent 
developments in analysis, such as the use of causal inference 
methods, and Bayesian methods. While we discuss each of 
the designs and the analyses separately, in practice some of 
these strategies are combined for added efficiencies, and this 
will be summarized in our conclusions.

General considerations

The role of natural history studies

Understanding the experience of subjects living with a 
rare disorder through natural history studies is critical 
to supporting development of new therapies (7). These 
data can be collected by different stakeholders including 
academic, government, or industry organizations. They 
vary in scope from a small set of volunteers with a rare 
disease diagnosis to a quasi-census of everyone diagnosed 
with the disorder. For example, the cystic fibrosis 
foundation patient registry (8) collects natural history data 
from volunteers. This registry is a poster-child of what 
these studies can accomplish in assessing the patient’s needs 
and the disease burden, and supporting and partnering 
in therapy development (9). Yearly reports from this 
longitudinal study present a snapshot of the incidence and 
prevalence of this disorder, and the population geographic 
and medical diversity. The report also includes population-
level longitudinal information on progression of signs, 
symptoms, and associated treatments, as a subject ages, and 
as new diagnostics or therapies enter the market. Mining 
this natural history study informs identification of risk 
factors, and development of guidelines for treatment and 
management of the disorder. Finally, a rare disorder natural 
history study itself can contribute data to comparative 
effectiveness and safety studies, as illustrated by the use 
of the urea cycle disorder natural history study to assess 
the effectiveness of liver transplantation (10) using causal 
inference methods discussed in Section ‘Causal inference 

and pharmacoepidemiology method’. 
Beyond being a data depository of medical history or 

current medical practice, natural history studies can help 
development of new therapies in rare disorders in multiple 
ways. For example, understanding the existing information 
can help identify the gaps in needs that a new therapy can 
fill and justify prospectively planned study design attributes 
such as population, endpoints, treatment comparators, 
and ideal duration of a study to characterize benefits and 
risks. Also, disorder-specific patient registries represent an 
existing infrastructure reuniting a community of patients, 
their families, and their physicians that can be leveraged to 
invite participants in new clinical trials. This infrastructure 
facilitates recruitment, access to data collected in the 
registry before and after the clinical trials, and dissemination 
of clinical trial results. Such infrastructure is exploited 
by master protocol studies discussed in Section ‘Master 
protocols’. Lastly, summary-level or subject-level data from 
natural history studies can themselves serve as an external 
control to prospectively planned single arm clinical trials as 
will be further discussed in Section ‘External or historical 
controls’.

Despite the multiple benefits of these data, starting, 
growing, and maintaining natural history studies is 
resource intensive when the benefits may only materialize 
in the long run when sufficient information has accrued. 
Thus, leveraging existing networks of professional 
medical societies, patient interest groups, or healthcare 
organizations can facilitate the initiation, the success, and 
the sustainability of these studies. Such networks can help 
refine the questions of interest, the metrics of interest, and 
lower the burden to patients and providers of new measures 
in epidemiological studies or clinical trials. Examples of 
these networks include the US-National Institute of Health 
Rare Diseases Clinical Research Network (11), and the US-
National Organization of Rare Diseases (12). Additionally, 
retrospective chart reviews or mining data sources from 
electronic healthcare records (EHR) and claims, for example 
Patient-Centered Outcome Research Network (13),  
can be a starting point for a natural history study or can 
augment prospective data collection within the study with 
concurrently collected data in routine care. 

Endpoint

In therapeutic development in new disorders, the selection 
and justification of endpoints measuring how a patient feels 
or functions contribute to the success of clinical studies. 
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This selection is ideally informed by the natural history of 
the disease but also by the mechanism of action of the new 
therapy. The choice has also consequences on study power, 
duration, and ability to measure change (3).

In cases where existing clinical measurements used in 
routine care are not sufficient to measure benefits or risks, 
a clinical study may serve both to prove benefit but also to 
qualify new biomarkers, new digital endpoint, new patient 
reported outcomes, or new clinical outcome assessments. 
This typically entails proving that this new endpoint is fit-
for-purpose using standalone or embedded validation studies 
in the clinical program (14-16). For example, the clinical 
development for a gene therapy voretigene neparvovec to 
treat inherited retinal atrophy included investigation and 
validation of a novel endpoint measuring improvement in 
vision by rating each subject’s success navigating an obstacle 
course (17,18). 

The increased use of wearables, digital technology, 
and tele-health in clinical care has impacted the design 
and the conduct of clinical trials, including the choice and 
assessment of endpoints. Novel digital endpoints have 
the potential to decrease the burden of participation of 
patients in clinical trials while increasing the frequency 
of assessments and generalizability of results (19). Also, 
high-frequency data collection can potentially enable 
building disease progression models and predict individual 
trajectories.

Another strategy of endpoint selection is to develop or 
use a composite. Many rare disorders are multi-symptomatic 
and using a composite endpoint grouping clinically relevant 
signs and symptoms into one summary measure may 
be a useful strategy to boost study power and measure 
clinical benefit. For example, the development program 
for cerliponase alfa for CLN2 disease used the motor 
and language scales of a multi-item questionnaire (20).  
Important considerations when constructing the composite 
are to group elements that are expected to be similarly 
impacted by the therapy (go in the same direction), to 
explore the contribution of each element of the composite 
in the findings, and to address concerns of multiple testing 
in the analysis (21,22). 

Efficient use of information and duration of follow-
up is also critical in studies with dichotomous endpoints, 
such as toxicity in phase I and complete response in phase 
II oncology trials. In those situations, patients may not all 
have completed follow-up for endpoint evaluation at the 
time of a planned interim analysis. A traditional approach 
is to suspend the trial to wait for outcomes becoming 

available on the already enrolled patients. For example, in 
phase I trial the enrollment is suspended after each dose 
cohort, and in two-stage phase II trial the enrollment is 
suspended after reaching the sample size for the first stage. 
This may lengthen the trial, dampen the enthusiasm of 
participating investigators, and turn away eligible patients 
as the accrual is halted (23). An alternative strategy is to 
re-define the outcome as a time-to-event endpoint such 
as time to toxicity or time to response in earlier examples. 
In this way, the partial information observed from patients 
with incomplete follow up would contribute to the interim 
analysis. Examples of such designs include time-to-event 
continual reassessment method (TITE-CRM) (24) and 
time-to-event Bayesian optimal interval design (TITE-
BOIN) (25) in phase I settings, and time-to-event Bayesian 
optimal phase II (TOP) design in phase II settings (26). 

Examples of novel study designs

This section reviews some novel design strategies or new use 
of these strategies in rare diseases. Graphic representations 
of these designs are shown in Figure 1. Considerations for 
use and benefit of each strategy are summarized in Table 1.

External or historical controls

In settings where randomizing to a control group is 
unfeasible or unethical, clinical development programs of 
new therapies in rare diseases have sometimes relied on 
single arm trials to evaluate benefits and risks. Interpreting 
the findings typically requires contextualization of the 
evidence from these trials compared to existing standard of 
care. Traditionally, this contextualization involved expert 
opinion, literature review, or meta-analyses of previous 
studies on standard of care. 

More recently, when subject-level data is available 
from the external control, a side-by-side comparison to a 
concurrent or historical external control arm is derived and 
presented (27-29). A recent application is the use of natural 
history data as an external control to the pivotal study of 
cerliponase alfa (30). Availability of subject-level data opens 
the possibilities for incorporating prior expertise as well 
as adjusting for known differences between the external 
control and the clinical study. This information can be used 
to derive a threshold or prior belief on the distribution 
of outcomes as in Bayesian methods for meta-analysis 
described in Section ‘Borrowing evidence’. Subject-level 
data can also be used for a direct side-by-side comparison to 
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Figure 1 Graphic representations of the novel designs. (A) Randomized studies (incorporating self-control): case-crossover, N-1, delayed 
treatment, or early withdrawal. (B) Non-random longitudinal studies: self-controlled case-series, case-crossover, longitudinal studies. (C) 
External controls. (D) Platform trials. (E) Basket trials. (F) Response adaptive randomization. (G) Phase I adaptive trials.
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the current study using causal inference methods described 
in Section ‘Causal inference and pharmacoepidemiology 
method’. 

Whichever methods are used, important considerations 
for a meaningful comparison are that of similarity of 
multiple attributes: cohort characteristics, inclusion and 
exclusion criteria into the cohort, outcome ascertainment, 
anchor time for start of follow-up, duration of follow-up, 
similarity of measurement and handling of intercurrent 
events .  When s tandard  o f  care  rap id ly  evo lves , 
concurrency of the external control to the clinical trial 
is also important. Lack of similarity or concurrency does 
not always preclude use of the external control data but 
may call for some discounting of the evidence either 
qualitatively or quantitatively using some of the methods 
described in Section ‘Borrowing evidence’ (e.g., robust 
prior or power prior). They could also call for additional 
sensitivity analyses, such as quantitative bias analyses in 
causal inference, to determine the impact of a potential 
dissimilarity on the comparison.

Designs incorporating longitudinal measures

Several designs can leverage longitudinal information, or 
repeated measures, on the same patient at different times to 
increase units of analysis and possibly reduce heterogeneity 
relative to a parallel arm study with a unique endpoint 
assessment for each subject. As discussed by several other 
authors including (4,31,32), longitudinal designs are 
particularly relevant in those rare diseases and therapies 
where a short observation period is sufficient to measure 
treatment effect and no strong carry-over effect. The 
analytical sample size in longitudinal studies is determined 
by the number of periods across subjects, rather than 
subjects (4,31,32). Heterogeneity can decrease when the 
variability within a subject is smaller than between subjects. 

These longitudinal designs include pure self-controlled 
studies where treatment responses are compared within 
each subject and more general repeated measures-designs 
augmenting between-subject comparison with within-
subject comparison. Pure self-controlled studies include 
crossover and N-of-1 studies. In a crossover design, each 
subject contributes multiple treatment periods separated 
by a washout period with a randomly assigned sequence of 
therapies. Thus, when comparing a new therapy to a control 
in a crossover design, patients are randomized to one of 
two groups, either receiving the new therapy first then the 
control, or receiving the control first then the new therapy. T
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The N-of-1 design includes only one subject contributing 
multiple periods with randomization of treatments to each 
period. 

With repeated measures, one can also augment between-
subject comparison in parallel randomized studies with 
within-subject comparison. These designs can also have a 
period as the unit of analysis and compare treatment and 
controls cross-sectionally and within a subject. Thus, these 
designs have typically more power than a parallel control 
arm of the same number of subjects because each subject 
contributes more than one analysis unit and the within-
subject variability is typically lower than the between-
subject variability. 

A recent example of exploiting repeated measures and 
their use include a randomized withdrawal designs in the 
Phase III study investigating the efficacy of pegvaliase in 
treating Phenylketonuria (33). This study randomized 
responders to therapy, determined after an assessment 
period, to either discontinue or continue therapy for 
eight weeks. Another example is the randomized study 
investigating the efficacy of N-carbamylglutamate in 
reducing ammonia levels in subjects with urea cycle 
disorders (34). In that study, each subject could contribute 
multiple hospitalization periods and treatments were 
randomized to each period. Analyses adjusted for 
correlation of measures using a subject random effect in the 
mixed effect outcome model.

While less well known or used in rare disorders, natural 
history studies can also leverage repeated measures to assess 
comparative safety or effectiveness (35). These designs include 
self-controlled case series (36), or case crossover designs (37,38) 
often used in comparative safety for rare outcomes. These 
designs also include causal inference methods adjusting for 
time-varying confounding (39). For example, a previously 
mentioned study leveraged a natural history study to assess 
comparative effectiveness of liver transplantation compared to 
medical management in urea cycle disorder (10).

Master protocols

In contrast to traditional clinical trials that focus on one 
experimental therapy in one disease population, master 
protocol is a new type of study design that attempts to 
evaluate multiple experimental therapies in one or multiple 
indications, under one overarching protocol (40-42). A 
platform trial is one type of master protocol that randomizes 
patients to a common control arm and many different 
experimental arms, where new experimental arms could be 

added over time. Futility and/or efficacy stopping rules are 
often built in the design to allow the experimental agents to 
enter and exit the trial based on the interim analyses results 
(43,44). Because a shared control arm is used for efficacy 
evaluations of each experimental therapy, such a design can 
reduce the overall sample size substantially and be much 
more efficient for finding effective therapies than multiple 
stand-alone trials (45,46). This feature is particularly useful 
for rare diseases where patient numbers are very limited. As 
the experimental agents could enter the study at different 
times, it is important to consider the time that the treatment 
arm was active for recruitment. When the control arm data 
are outside of this period, the validity of the comparison 
needs to be evaluated carefully, considering potential 
temporal change in the control data. Examples of platforms 
trials include I-SPY2 (47) in breast cancer, BATTLE (48)  
and LUNG-MAP (49) in lung cancer, DIAN-TU in 
Alzheimer’s disease (50), and NTUITT-NF2 in patients 
with neurofibromatosis type 2 (51). 

Another type of master protocol is basket trials, whose 
study population is defined by the presence of a particular 
biomarker or molecular alteration, rather than a particular 
disease type as in a traditional trial (40-42). A basket trial 
could have multiple baskets, each defined by a distinct set 
of biomarkers and treated with a matched targeted therapy. 
Because basket trials are disease agnostic, they provide 
great potential for patients with rare diseases to be eligible 
to participate in clinical trials and enable the evaluation 
of rare mutations that are difficult to study solely within 
a disease-specific context (52). Examples of basket trials 
include NCI MATCH (53), BRAF-vemurafenib trial (54), 
and DART trial for rare cancers (55). One important issue in 
designing basket trials is how to utilize information collected 
across disease types, and multiple designs have been proposed 
in the literature, such as Bayesian hierarchical model (BHM) 
(56), calibrated BHM (57), Bayesian latent subgroup 
trial (BLAST) design (58), and robust exchangeability-
nonexchangeability (EXNEX) design (59). While BHM 
could lead to inflated type I error rate, the rest of the 
designs were able to obtain desired type I error control. 

Some considerations with master protocol designs are 
that the potential gains in recruitment and sample size 
require an upfront investment in the infrastructure for 
setting up recruitment, randomization, and analyses. As 
with longitudinal designs, master protocol designs are also 
best suited for outcomes assessed within a short time frame 
of therapy, so that interim analyses and decisions rules can 
be updated frequently enough to be useful. Platform trials 
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also are suited for therapeutic areas where multiple products 
are developed in a specific indication. Similarly, Basket trials 
are suited for those indications where the therapy and the 
disorder biological mechanism are well understood.

Adaptive designs

Adaptive designs are the type of designs that allow 
alterations to trial procedures and/or statistical procedures 
of an on-going trial after its initiation, without undermining 
the validity and integrity of the intended study. Such designs 
provide flexibility and efficiency and thus could be very 
useful for studies of rare diseases (60). While there are many 
different types of adaptive designs, the common element is 
to perform interim analysis to make decisions on adjustment 
of trial procedure(s) so that the overall trial efficiency 
could be improved. However, the specific decisions and 
adjustments need to be pre-planned and clearly described at 
the design stage. Those include when the interim analysis 
will occur, what kind of observed data will trigger a change, 
what aspects of the trial will change, and the impact of these 
modifications on statistical power and type 1 error. 

One type of adaptive design is through use of adaptive 
randomization, to allow adjustment of randomization 
procedure based on accumulated information during the 
trial. In contrast to a traditional design that randomizes 
pat ients  to  treatment  arms with equal  and f ixed 
probabilities, adaptive randomization could change the 
randomization probability to be treatment-adaptive, 
covariate-adaptive, or response-adaptive. Specifically, 
response adaptive randomization (RAR) modifies the 
randomization probability to allocate more future patients 
to the drug that are empirically superior to others, based 
on the observed outcome data from the patients already 
enrolled in the trial. It improves the collective outcomes of 
trial participants and increases the available information for 
the most effective treatment(s) (61,62). RAR has been used 
in various contexts and is also recently used in platform 
trials (44,48). The feature of RAR that adaptively assign less 
patients to the inefficacious treatment(s) is naturally aligned 
with the objective of platform trials to adaptively drop 
inefficacious agent(s) from the study platform. Limitations 
of RAR include the requirement of the response being 
evaluable in a short time, potential non-concurrency of the 
controls due to the shifting of randomization probabilities, 
and in some cases the issue of lower power than the 
standard 1:1 randomization design.

Another type of adaptive design is adaptive dose-finding 

(phase I) trials in early phase drug development to identify 
maximum tolerable dose (MTD) of the new drug. The 
traditional 3+3 dose-finding design enrolls three patients to 
a dose cohort and determine the dose for the next cohort 
according to a pre-specified algorithm. Despite its simplicity, 
this design may lead to wrong selection of MTD, require a 
large number of patients and take a long time to complete, 
especially when many doses are being explored (63).  
In rare diseases such as pediatric cancer, it could take several 
years to finish one dose-finding trial. Many adaptive designs 
have been proposed to improve the efficiency of phase I 
trials, such as continuous reassessment method (CRM) (64),  
Bayesian optimal interval (BOIN) design (65) and 
modified toxicity probability interval (mTPI) design (66).  
For example, CRM assumes a statistical model for the 
dose-toxicity curve and uses all the observed toxicity data 
across dose cohorts to update the model parameter and 
the estimate of MTD. In addition, traditional phase I trials 
only focus on the toxicity outcome and wait until phase II 
trials to evaluate the treatment response. However, a better 
strategy could be characterizing patient outcome in terms 
of both toxicity and response, in a hybrid phase I/II design. 
This produces both dose-finding rules and early stopping 
rules with respect to toxicity and response, combines 
elements of typical phase I and phase II designs, and 
therefore could shorten the timeline of drug development. 
We refer to Thall 2004 (67), Yin 2006 (68), Houede  
2010 (69), and Guo 2015 (70) for examples of hybrid phase 
I/II designs. 

Other examples of adaptive designs include group 
sequential designs that allow for stopping a trial early due 
to futility and/or efficacy (71,72), sample size re-estimation 
at interim analysis to achieve the desired statistical power 
(73,74), seamless phase II/III design that consists of a 
learning stage (phase II) and a confirmatory stage (phase 
III) with an interim analysis following the learning stage 
to make a selection decision (on treatment arm or study 
population) (75), and small n sequential multiple assignment 
randomized trial (snSMART) design where individuals are 
randomized to a set of treatment options and may be re-
randomized at an interim timepoint in the trial (76,77). 
Lastly, a design could be multiple-adaptive, combining the 
elements of various adaptive designs. For example, Li et al. 
proposed a platform trial design combining the concepts of 
hybrid phase I/II trial and the RAR for treatment and dose 
prioritization in the context of platform trials (78). Although 
careful planning (both logistical and statistical) is required 
and implementation challenges exist, appropriate use of 
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adaptive designs has great potential to reduce costs and 
increase efficiency in clinical development of rare diseases.

Examples of novel analytical strategies

The analytical strategies that we discuss in this section are 
often used with the design strategies discussed in the earlier 
section. The overlap is illustrated in Table 2.

Causal inference and pharmacoepidemiology method

In the absence of randomization, causal inference methods 
can control for biases and result in valid inference when 
comparing a new therapy to a control group (84,85). These 
methods are playing an increasingly important role as real-
world data is incorporated in evaluation of benefit-risk 
evidence throughout the therapeutic development process 
(86,87). They are particularly relevant in the rare disease 
setting to evaluate comparative safety or effectiveness in an 
epidemiological study. They are also relevant when using an 
external or historical control to contextualize evidence of a 
single arm study.

Conceptually, causal inference estimates the treatment 
effect by comparing a subject’s observed outcome under 
treatment received to the counterfactual outcome if the 
subject had received an alternate treatment. Potential threats 
to internal validity of this comparison include selection 
bias, outcome ascertainment bias, and confounding. These 
result in lack of comparability of the two treatment groups 
in observed baseline characteristics that impact the outcome 
independently of the treatment. 

A useful framework in designing and analyzing 
observational study to control or minimize some of these 
biases is that of the target trial framework (88). Under this 
framework, one designs and analyze an epidemiological 
study to mimic the design and analysis of a randomized trial, 

if that trial were possible. Thus, by putting the emphasis on 
incident cohort designs, similarity of inclusion and exclusion 
criteria, and suitable choice of index date, one can control 
or minimize multiple biases. Additional confounding can 
be further controlled by matching or weighting such as 
use of propensity score matching or inverse probability 
treatment weighting (89). Several examples exist of 
these method’s use in rare disorders. For example, the 
cerliponase alfa pivotal study (20) mentioned above used 
exact matching as a secondary analysis to compare clinical 
trial subjects to historical control subjects, then a logistic 
regression outcome model estimated the treatment effect. 
Additionally, the study evaluating the effectiveness of 
warfarin in pulmonary arterial hypertension used propensity 
score matching to minimize confounding in the analytical 
cohort before using Bayesian methods to measure treatment  
effect (82). Also, the study evaluating effectiveness of 
aggressive corticosteroid therapy versus standard therapy 
in treating juvenile dermatomyositis used propensity score 
matching to reduce confounding by indication (83).

Causa l  in ference  methods  can  mi t iga te  some 
observational study biases by design or analysis. In rare 
disorders, these methods were especially successful in 
mitigating bias in observational data when the treatment 
effect size is large. Application of these methods may not 
be feasible when effect sizes and sample sizes are small. 
While the comparative performance of different causal 
inference methods is well understood in studies of at least 
a few hundred patients, for example using simulation 
results from Austin under different settings (90-93), to our 
knowledge, no simulation studies explored their feasibility 
and performance of causal inference with small samples. 

Current best practices in pharmacoepidemiology 
recommend for pre-specification of design and analysis 
methods prior to “unblinding” of the potential association 
between treatment and outcome (94). This poses a unique 

Table 2 Examples of combinations of non-traditional designs and analytical strategies

Design Causal inference Borrowing evidence Adaptive analytical strategy 

External control Propensity score methods (29) 
or exact matching (20)

Meta-analytic-predictive approach (29,79,80) 
Bayesian methods (81)

Longitudinal design randomized Hierarchical models (34) 

Longitudinal design 
observational

Propensity score methods 
(10,82,83)

Master protocol platform BATTLE (48)

Master protocol basket NCI MATCH (53) BRAF-vemurafenib trial (54)
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challenge in rare disease because while one may want to learn 
about natural history under the control arm before refining the 
endpoints, this may introduce investigator bias in using this 
same natural history study in analysis as an external control.

Borrowing evidence

Borrowing evidence is an important analytical strategy to 
overcome the issue of limited sample size in rare disease 
setting and could occur in different ways depending on the 
context. For a basket trial (discussed in Section ‘Master 
protocols’) that enrolls patients with different disease types 
but the same molecular alteration, information borrowing 
mainly occurs across the disease types and within the given 
trial. For a trial designed with external controls (discussed 
in Section ‘External or historical controls’), information 
borrowing occurs between the external control data and 
current trial data. For pediatric trials that are typically 
initiated after some data have been accumulated in the 
adult population, the natural information borrowing is 
from adult to pediatric, and there is an increasing interest 
recently to use innovative method to integrate evidence 
from the adult to pediatric decision making (95). Data 
sources for borrowing could also vary, with either summary-
level data or patient-level data, from either clinical trials 
or observational databases (EHR/claims), and could be 
either historical or contemporary. Moreover, justifications 
for information borrowing should be assessed, such as if 
the study populations from various data sources share any 
similarities.

To faci l i tate  information borrowing,  Bayes ian 
analysis framework is typically used, due to its ability 
of incorporating a data structure with multiple levels of 
hierarchy and accounting for external (to the current trial) 
information through the use of priors. For information 
borrowing across multiple cohorts with a given trial (e.g., in 
a basket trial), hierarchical Bayesian modeling (HBM) or its 
modifications are the most common approaches, as discussed 
in Section ‘Master protocols’. For information borrowing 
between trials, informative priors of various forms 
could be used. The simplest informative prior is elicited 
priors, which elicit and summarize the experts’ opinions 
into a prior distribution for the model parameter (96).  
A more complicated approach is power prior, where the 
historical data is used to calculate the posterior distribution 
of the model parameter and the resulting posterior becomes 
the new prior for the current trial (97). A power parameter 
was included in this approach to control how much 

information to borrow from the historical data, and the 
value of this parameter could be determined based on expert 
opinion or some model fit criteria (97,98). Another method 
is the meta-analytic-predictive (MAP) approach, which 
summarizes the historical information to make a prediction 
for the distribution of the model parameter in a new trial, 
and this predictive distribution serves as the informative 
prior for the current trial (79). The information contained 
in this informative prior distribution could also be expressed 
in terms of number of patients, as prior effective sample 
size, which provides an intuitive summary on the amount of 
information borrowed from the historical data. Moreover, 
for between trial information borrowing, although historical 
data is the most common type, concurrent trial data may be 
available in some cases and can be incorporated as well; see 
an example design that integrates a concurrent adult phase I 
trial data into the design of the pediatric phase I trial (99).

One key  as sumpt ion  in  the  above  methods  i s 
exchangeability (or similarity) among multiple cohorts 
or trials, while this assumption may not always hold. 
Therefore, extensions to these methods have been 
proposed, to allow adaptive adjustment on the degree 
of borrowing according to the level of evidence on 
similarities between cohorts/trials accumulated during 
the current trial. Such methods allow more borrowing 
when there is strong evidence of similarity and reduces 
the amount of borrowing as the evidence decreases, and 
sometimes are referred to as ‘dynamic’ (as opposed to 
‘static’) borrowing methods. For example for basket trials, 
the BLAST design allows the treatment response vary 
across disease cohorts (beyond the randomness defined 
by HBM) by assuming two underlying latent subgroups 
(‘sensitive’ vs. ‘insensitive’ to treatment), to achieve strong 
information borrowing within each latent subgroup 
but little borrowing between the two subgroups (58).  
For external evidence borrowing methods, extensions of 
power prior [such as calibrated power prior (100), joint 
power prior (101), and commensurate power prior (102)] 
and extensions of MAP [such as robust-MAP (80)] were 
developed to accommodate potential differences between 
the external data and the current trial data. 

Other analytical considerations

For randomized clinical trials (RCTs), the most common 
approach to inference on the treatment effect is the 
likelihood-based inference, such as a two-sample t-test 
for normal outcome data and chi-square test for binary 
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outcome data. Randomization-based inference (RBI) is an 
alternative approach, where the implanted randomization 
forms the basis for statistical inference (103). In this 
approach, treatment assignments are permuted in all 
possible ways that are consistent with the randomization 
procedure used in the trial, and a P value is calculated based 
on these permutations. RBI is robust against potential 
biases that may be caused by time trends (104,105), which 
is one of the issues in rare disease trials that take long times 
to complete. RBI could also yield valid tests even when the 
sample size is very small (103), so is particularly useful for 
rare disease studies.

Moreover, adaptive analytical strategy needs to be 
utilized for all the adaptive designs we described in Section 
‘Adaptive designs’. Specifics of the analytical strategies 
may vary but should match with the features of the design. 
For example, for the designs with interim decisions to 
potentially graduate an efficacious treatment early, the 
interim analysis should provide criteria to facility such a 
change and the final analysis should be adjusted to reflect 
this change (e.g., a revised significance level other than the 
standard 0.05).

Assessing the sample size needed to power a given 
study is an important feasibility consideration. In complex 
parallel-controlled randomized designs such as master 
protocol designs or with complex analytical strategies 
borrowing evidence, simulations can provide a flexible way 
for evaluating performance of design and analytical methods 
for different operating characteristics. 

While we focused this paper on statistical considerations 
for study design and analysis, we acknowledge there are 
other strategies such as pharmacometrics approaches. As 
described by Ryeznik et al. (106), pharmacometrics models 
allow extrapolations of relevant information from one 
population to another (such as from adult to pediatric) 
and may be attractive from various perspectives including 
making the trial more ethical and reducing development 
costs.

Conclusions 

In this paper we have focused on reviewing some novel 
designs and analytic methods to tackle challenges in clinical 
trials for rare diseases. We refer to other review papers for 
general overview of issues in developing and conducting 
trials for rare disease (3,31,32,107). For the approaches 
we described in this paper, some have already been used 
in rare disease research (such as leveraging longitudinal 

measurements), some are starting to be applied in certain 
type of rare diseases (such as basket trials in pediatric 
oncology and use of external controls in non-oncology rare 
disorders), and some have been rarely used in rare disease 
research but has great potentials and should be advocated 
(such as use of longitudinal designs and causal inference 
analyses in natural history studies). 

It is interesting to note that although these novel 
approaches appear to have unique characteristics, they 
also share a few common themes and principals to 
increase efficiency and feasibility. First, they all attempt 
to augment sample size and increase statistical power, by 
either borrowing the existing information from external 
data sources, or leveraging the longitudinal information 
collected on the same patient. Second, they aim to use 
the limited resources more efficiently, such as sharing the 
control data in platform trials and using the same patient 
for testing multiple treatments in studies with self-control. 
Third, flexibilities are built into these designs/methods, 
such as allowing additions of experimental agents over 
time in platform trials and modifying trial procedures as 
more information becomes available in adaptive designs. 
Lastly, these approaches do require more upfront planning, 
appropriate infrastructures, availabilities of computing 
software, and effective communications between study 
personnel (physicians, statisticians, trial coordinators, etc.). 
We hope this paper will raise awareness of these novel 
approaches and encourage their use in studies of rare 
diseases. 
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