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Background: The prevalence of stroke in young adults is increasing. We investigated the monogenic basis 
of young adult cryptogenic stroke patients.
Methods: This multicenter study enrolled cryptogenic stroke patients under 55 years old, and individuals 
with nonstroke diseases were included as controls. Targeted next-generation sequencing (NGS) was applied 
with a custom-designed gene panel that included 551 genes. Rare variants were classified into 2 groups: 
pathogenic variants and variants of unknown significance.
Results: A total of 153 individuals, including 30 (21 males, 70%; mean age 36.1±10.2 years) in the 
disease group and 123 (59 males, 48.0%; mean age 40.4±13.1 years) in the control group, were recruited. 
In the disease group, 32 rare variants were identified. Among these individuals, 18 pathogenic variants in  
16 patients were detected, with a 53.3% (16/30) diagnostic yield of monogenic causes for cryptogenic stroke. 
None of these mutations were observed in the control group. Among the mutant genes, the most prevalent 
were Notch receptor 3 (NOTCH3), protein kinase AMP-activated noncatalytic subunit gamma 2 (PRKAG2), 
and ryanodine receptor 2 (RYR2). Genes associated with cardiogenic diseases showed the highest mutation 
frequency (10/18, 55.6%) followed by genes associated with small-vessel diseases (SVDs) and coagulation 
disorders. None of the patients with mutations had evident abnormalities in the heart or other systems 
checked by routine tests. For the imaging phenotype–genotype association analysis, infarctions in both the 
anterior and posterior cerebral circulation were only observed in patients with genes related to cardiogenic 
disease.
Conclusions: In this study, pathogenic variants were identified in nearly half of the young-onset 
cryptogenic stroke patients, with genes related to cardiogenic diseases being the most frequently mutated. 
This may have implications for future clinical decision-making, including the development of finer and more 
sensitive examinations.

Keywords: Stroke in young adults; ischemic stroke; genetic

11

https://crossmark.crossref.org/dialog/?doi=10.21037/atm-21-3843


Yuan et al. Monogenic basis of young-onset cryptogenic strokePage 2 of 11

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(9):512 | https://dx.doi.org/10.21037/atm-21-3843

Introduction

Despite a decline in older adults, the stroke incidence 
in young adults is increasing (1). Stroke at younger ages 
is catastrophic because patients can be disabled for long 
periods and suffer severe loss of functionality at the peak 
of their most productive years. Even after extensive tests, 
the etiology of stroke in young adults is not determined in 
25% to 50% of cases, a situation referred to as cryptogenic 
stroke (2-4). Clinical genetic studies have the potential to 
discover the underlying biological mechanisms that cause 
cryptogenic stroke, and an increasing number of genes 
concerning hereditary cerebrovascular diseases have been 
reported upon. Genetic factors may account for up to 
50% of an individual’s risk of developing a stroke in the  
future (5). We investigated young-onset cryptogenic stroke 
as a clinical entity, as knowledge of its genetic aspects may 
help to elucidate the mechanisms of this type of stroke and 
contribute to the development of medical practices in the 
future.

Next-generation sequencing (NGS) is now widely 
used in clinical practice and research due to its efficiency 
and relatively low cost. Instead of screening the whole 
genome or exome, targeted NGS (tNGS) aimed at limited 
and selective genes may detect variants, thus providing 
substantial advantages of analysis time, cost, targeting, 
and read coverage or depth (6). In the current study, we 
designed a gene panel comprising 551 genes for cryptogenic 
stroke screening in young adults. We present the following 
article in accordance with the STROBE reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-21-3843/rc).

Methods

Study design and patients

In this prospective, multicenter study, patients under  
55 years of age with cryptogenic stroke within the previous 
6 months were enrolled. Cryptogenic stroke was defined 
as an ischemic stroke not attributed to a definite source 
of large-vessel atherosclerosis, cardioembolism, or small-
vessel disease (SVD), according to the Trial of ORG 10172 
in Acute Stroke Treatment (TOAST) classification in the 

presence of extensive cardiac, vascular, hematologic, and 
serological evaluation (7). Stroke patients with incomplete 
evaluation or evidence of more than 1 competing cause 
were not included in this study. Ethnic- and age-matched 
individuals with neurological or nonneurological disorders 
were included as controls when cerebral infarction or 
hemorrhage was ruled out.

The study protocol was approved by the review board of 
Peking Union Medical College Hospital, Chinese Academy 
of Medical Sciences and participating centers (No. ZS-1554) 
and was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). Written informed consent was 
obtained from all patients. 

Evaluation, sample collection, and genetic testing

To identify stroke etiologies, comprehensive examinations 
were conducted before enrollment, including (I) carotid 
duplex; (II2) transcranial Doppler ultrasound bubble 
test (in all patients) or transesophageal echocardiogram 
(in 2 patients); (III) magnetic resonance angiography 
or computed tomography angiography; (IV) ultrasonic 
cardiogram, regular electrocardiogram (ECG), or  
24-hour ECG  monitoring; (V) relevant blood tests. 
After enrollment, the clinical data, including age, sex, 
conventional risk factors, history of cardiovascular diseases, 
and family medical records, were recorded on standardized 
case report forms. Conventional risk factors included 
hypertension, diabetes mellitus, hypercholesterolemia/
hyperlipidemia, cigarette smoking, cardiovascular diseases, 
and arrhythmia, including  atrial fibrillation (AF). Other 
risk factors were also included to explore rare risk factors, 
including tumors, sleep disorders, trauma, infections, 
drug or alcohol intake, strenuous activity, or the Valsalva 
maneuver before stroke onset. A review of concurrent 
diseases was performed, including of autoimmune disease, 
thyroid disease, hematological system disorders, and other 
disorders. Positive family history was recorded if there was 
a stroke in first-degree relatives. 

tNGS and interpretation

Multiple genes associated with stroke etiology were included 
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in the gene panel design (refer to available online: https://
cdn.amegroups.cn/static/public/atm-21-3843-1.pdf). We 
incorporated a total of 551 genes related to arterial structure 
abnormalities, cardiogenic pathways, coagulating deficits, 
and metabolic causes, such as hereditary hypertension, 
hyperlipidemia, and hyperhomocysteinemia. Genes were 
included according to the following criteria: (I) causative 
or postulated to be susceptible genes in stroke patients and 
(II) related to stroke or exhibiting stroke-related traits, such 
as cardiac arrhythmia and structural diseases. These genes 
could be classified into 8 categories: (I) SVD; (II) non-
SVD arterial diseases; (III) coagulation and anticoagulation 
imbalance; (IV) metabolic disorders; (V) congenital heart 
diseases; (VI) hereditary cardiomyopathy; (VII) arrhythmic 
disease; and (VIII) miscellaneous.

Genomic DNA was extracted from peripheral blood 
leukocytes using a QIAamp DNA Blood Mini Kit (Qiagen 
Inc., Valencia, CA, USA) according to standard protocols. 
An enriched genomic library was sequenced on the 
HiSeq2000 platform (Illumina Inc., San Diego, CA, USA) 
with 90-bp paired-end reads. Variants with a read depth 
≥10 and genotype quality ≥20 were retained as quality-
control metrics. The achieved average depth and coverage 
were above 100× and 96.5%, respectively. Sequence 
alignments were conducted in reference to UCSC hg19 
(Homo sapiens) using the open-source Burrows-Wheeler-
Alignment software tool v. 0.7.17 and then reformatted 
using the SAMtools software package v. 1.9 (8). Variant 
frequencies were initially determined in the Genome 
Aggregation Database (gnomAD) and Exome Aggregation 
Consortium (ExAC), to remove common single nucleotide 
polymorphisms (SNPs). Only nonsynonymous, splicing, and 
frameshift variants with a minor allele frequency (MAF) of 
less than 0.5% across all population databases were selected 
for further analysis. Variant annotation and filtering were 
performed by Mutation Taster (http://www.mutationtaster.
org), SIFT (http://sift.jcvi.org/), and PolyPhen2 (http://
genetics.bwh.harvard.edu/pph2/). Sanger sequencing was 
performed to validate the identified mutations. The criteria 
used to define the variants were based on the inheritance 
pattern of disease genes and the recommendations of the 
American College of Medical Genetics (ACMG) (9).

Rare variants were categorized into 2 subgroups for 
practical application: pathogenic and unknown significance. 
Pathogenic variants met the ACMG standards (9). 
Variants with unknown significance (VUS) were defined 
as (I) variants that did not match the ACMG criteria 

for pathogenic variants that might include mismatched 
inheritance patterns and (II) variants of patients from 
unverifiable family history or unavailable segregation 
analysis. The profile and spectrum of mutant genes were 
summarized. Genotype–phenotype analysis was performed 
in the mutation group stratified by stroke lesion number 
and location. 

Statistical analysis

Quantitative data were described as mean ± standard 
deviation, while qualitative data were described as counts 
with percentage. Data were analyzed with SPSS v. 23.0 
software (IBM Corp., Armonk, NY, USA).

Results

Clinical data

A total of 51 patients from 15 hospitals were initially 
enrolled as the disease group from October 2017 to 
November 2018. We excluded 4 patients with intracerebral 
hemorrhages, 1 patient with transient ischemic attack, and 
16 nonstroke patients. Finally, 30 patients (21 males, 70%; 
mean age 36.1±10.2 years) were eligible for enrollment as 
disease group participants. Of these, 7 patients (23.3%) and 
17 (56.7%) patients had risk factors and a family history of 
stroke, respectively; 12 patients were aged under 35 years,  
9 patients were 35–44 years, and 9 were 45–55 years;  
8 and 16 patients had posterior or anterior cerebral 
infarction, respectively; 5 patients had infarctions located 
in both the anterior and posterior regions, whereas the 
other 1 patient had a cerebral border zone infarction; as for 
cardiac evaluation, transesophageal echocardiography was 
conducted in 2 patients, and a patent foramen ovale was 
found in 1 patient.

A total of 123 patients (59 males, 48.0%) were enrolled 
as the control group. The mean age of the control group 
was 40.4 years (the standard deviation was 13.1). Within the 
control group, 68 patients were diagnosed with amyotrophic 
lateral sclerosis, 10 had follicular thyroid carcinoma, 19 had 
idiopathic tremors, 7 had genetic muscular diseases, 7 had 
hereditary dystonia, 5 had hereditary spastic paraplegia, 3 
had hereditary peripheral neuropathy, 2 had mitochondrial 
disease, 1 had familial epilepsy, and 1 had paroxysmal 
dystonia. Risk factors, which were found in 13% (n=16) of 
the control group, included hypertension (in 4 patients), 
hyperlipidemia (in 5 patients), and smoking (in 8 patients). 

https://cdn.amegroups.cn/static/public/atm-21-3843-1.pdf
https://cdn.amegroups.cn/static/public/atm-21-3843-1.pdf
http://www.mutationtaster.org
http://www.mutationtaster.org
http://sift.jcvi.org/
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Genetic analysis

A total of 32 rare variants in 24 genes in 27 patients (27/30, 
90%) were identified in the disease group and 12 rare 
variants in 7 patients (7/123, 5.7%) were detected in the 
control group (Figure 1A,1B, available online: https://cdn.
amegroups.cn/static/public/atm-21-3843-1.pdf). Among 
them, 18 pathogenic variants in 16 patients (16/30, 53.3%) 
were found in the stroke group according to the ACMG 
criteria, but none of these mutations were found in the 123 
control individuals (available online: https://cdn.amegroups.
cn/static/public/atm-21-3843-1.pdf). Variants that did not 
match the inheritance pattern or needed further segregation 
or functional analysis to confirm their pathogenicity 
were included in the list of unknown significance. These 
variants might have included previously reported missense 
variants in genes, such as Titin (TTN, listed in https://
cdn.amegroups.cn/static/public/atm-21-3843-1.pdf). The 
clinical details of the patients with these variants are also 
reported in https://cdn.amegroups.cn/static/public/atm-21-
3843-1.pdf.

The majority of monogenic disease genes were related 
to cardiogenic disorders. Of the mutation spectrum, there 
were 9 patients with 10 pathogenic variants in the genes 
of hereditary cardiomyopathy or congenital heart disease, 
4 in genes related to SVD (22.2%), and 4 in genes related 
to coagulation and anticoagulation imbalances (22.2%;  
Figure 2A). These mutations added up to a total of  

10 mutations in genes related to cardiac disease, which 
accounted for 55.6% (10/18) of genetic causes. 

The Notch Receptor 3 (NOTCH3) was the most 
frequently mutated gene in the patient group. Three 
mutations in NOTCH3 were detected in 3 patients (10%), 
followed by 2 pathogenic variants in the ryanodine receptor 
2 (RYR2) and protein kinase AMP-activated noncatalytic 
subunit gamma 2 (PRKAG2). Other mutant genes are listed 
in Table 1 and shown in Figure 2A.

Loss of function (LoF) mutations were detected in 
junctophilin 2 (JPH2), TTN, fibrinogen alpha chain 
(FGA), protein C (PROC), and Von Hippel-Lindau tumor 
suppressor (VHL). Except for the mutation in PROC (29),  
all the others were novel. Two RYR2 mutations were 
found, one of which was reported with functional evidence 
for pathogenicity (p. T1107M) (15). The other variant, 
p. D4195A, was absent in the 123 control individuals. 
This variant was located in the region conserved across 
species, and 2 adjacent mutations (p. C4193W, p. T4196A) 
were reported to be pathogenic (32,33). One rare 
galactosidase alpha variant (p. L21V) identified showed 
high conservation, and a different missense change was 
previously reported (p.L21P) (34). Two mutations were 
related to thrombophilia, including PROC and protein S 
(PROS1), which previous in vitro studies suggest might 
affect anticoagulant functions (30,31).

In addition, 3 patients had more than 1 rare variant. 
Patient 44 had 2 LoF mutations in FGA and TTN. Patient 

10.0% 5.7%

94.3%

36.7% 53.3%

Disease group Control group

Positive

Probable positive

Negative

A B

Figure 1 Diagnostic yield in (A) the disease group and (B) the control group.
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4 had 2 PRKAG2 variants, both previously reported to 
be damaging (22-24). Patient 21 had a LoF mutation in 
phospholipase A2 group VII and a rare variant of unknown 
significance in TTN (see available online: https://cdn.
amegroups.cn/static/public/atm-21-3843-1.pdf).

Phenotype-genotype analysis

When stratified into single versus multiple lesions, 
NOTCH3 and PRKAG2 were the most prevalent genes with 
a single infarction. For multiple infarctions, the mutated 

Figure 2 Pathogenic gene variant number in (A) the different disease categories and (B) by phenotype. NEXN, nexilin; JPH2, junctophilin 
2; TTN, titin; RYR2, ryanodine receptor 2; FGA, fibrinogen alpha chain; TBX20, T-box transcription factor 20; GATA6, GATA binding 
protein 6; LRP6, low-density lipoprotein receptor–related protein 6; PROC, protein C; PROS1, protein S; VHL, Von Hippel-Lindau tumor 
suppressor; GLA, galactosidase alpha; NOTCH3, Notch receptor 3; PRKAG2, protein kinase AMP-activated noncatalytic subunit gamma 2; 
SVD, small vessel disease.
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Table 1 Phenotype and genotype of patients with pathogenic gene variants

Patient 
number

Sex Age Risk factor
Family 
history

MRI characteristics
Gene 

symbol
Inheritance Refseq

Nucleotide change 
(Protein change)

Mutation Status
Exon/Intron 

ID
SNP ID Frequency Disease abbreviation Categories

7 F 29 No Yes Bilateral multiple cortexes and subcortical infarction 
in the anterior and posterior circulation

JPH2 AD NM_020433 c.G880T (p.E294X) Nonsense Novel Exon 2 – – CMH17 Hereditary cardiomyopathy

22 F 45 No No Unilateral single cortical infarction in watershed 
territory

RYR2 AD NM_001035 c.C3320T (p.T1107 M) Missense Reported (10-15) Exon 28 Rs200236750 0.000323e CPVT Hereditary cardiomyopathy

30 M 35 No Yes Unilateral multiple cortex infarction in the anterior 
circulation

RYR2 AD NM_001035 c.A12584C (p.D4195A) Missense Novel Exon 90 – – CPVT Hereditary cardiomyopathy

44 M 17 No No Unilateral single subcortical infarction in anterior 
circulation without the involvement of the internal 
capsule and basal ganglia region

TTN AD NM_001256850 c.T54027G (p.Y18009X) Nonsense Novel Exon 249 – – Dilated cardiomyopathy Hereditary cardiomyopathy

FGA AD NM_000508 c.C607T (p.Q203X) Nonsense Reported (16) Exon 5 Rs200299414 0.0000082e Familial visceral 
amyloidosis and 

Hypofibrinogenemia

Coagulation and 
anticoagulation imbalance

46 M 35 No No Unilateral multiple cortex infarction in the anterior 
circulation

TBX20 — NM_001077653 c.G1001A (p.R334Q) Missense Reported (17) Exon 7 – – FDC Hereditary cardiomyopathy

1 M 24 No Yes Unilateral single cortical infarction in the posterior 
circulation

NEXN AD NM_144573 c.C835T (p.R279C) Missense Reported (18) Exon 8 Rs146245480 0.0012c, 
0.0005945e

FHC Hereditary cardiomyopathy

23 M 46 No Yes Bilateral multiple cortex infarction in the anterior 
circulation

GATA6 AD NM_005257 c.G551A (p.S184N) Missense Reported (19,20) Exon 2 Rs387906816 0.001c, 
0.000841e

ASD9 and TOF Congenital heart diseases

47 F 41 No Yes Unilateral multiple cortexes and subcortical  
infarctions in the anterior and posterior circulation

LRP6 AD NM_002336 c.A246T (p.K82N) Missense Reported (21) Exon 2 Rs199693693 0.0002636e ADCAD2 Congenital heart diseases

4 F 36 Hypertension Yes Unilateral single pons infarction PRKAG2 AD NM_016203 c.G298A (p.G100S) Missense Reported (22) Exon 3 Rs79474211 0.01458c, 
0.0081323e

PRKAG2 syndrome Congenital heart diseases

PRKAG2 AD NM_016204 c.G130A (p.A44T) Missense Reported (23,24) Exon 2 Rs144857453 0.001c, 
0.0002465e

PRKAG2 syndrome Congenital heart diseases

2 M 40 No Yes Unilateral single subcortical infarction in the territory 
of one perforating arteriole in the anterior circulation 
and severe white matter hyperintensities 

NOTCH3 AD NM_000435 c.C505T
 (p.R169C)

Missense Reported  (25,26) Exon 4 Rs28933696 – CADASIL Small-vessel diseases

12 M 54 No No Unilateral single subcortical infarction in the territory 
of one perforating arteriole in the anterior circulation 
and severe white matter hyperintensities 

NOTCH3 AD NM_000435 c.C368G
(p.C123S)

Missense Novel Exon 4 – – CADASIL Small-vessel diseases

14 F 35 No Yes Unilateral single subcortical infarction in the territory 
of one perforating arteriole in the anterior circulation

NOTCH3 AD NM_000435 c.A502T (p.C168S) Missense Novel Exon 4 – – CADASIL Small-vessel diseases

38 M 44 No No Unilateral single subcortical infarction in the territory 
of one perforating arteriole in the anterior circulation

PROC AD NM_000312 c.572_574delAGA 
(p.K192del)

Codon 
deletion

Reported (27-30) Exon 7 – 0.00066e, 
0.004g

Protein C deficiency Coagulation and 
anticoagulation imbalance

50 F 48 No Yes Unilateral single subcortical infarction in the territory 
of one perforating arteriole in the anterior circulation

PROS1 AD NM_000313 c.A1095C (p.N365K) Missense Reported (31) Exon 10 Rs199469491 0.0006c, 
0.0014666e

Protein S deficiency Coagulation and 
anticoagulation imbalance

25 M 26 Smoking Yes Unilateral single cortical and subcortical infarction 
in anterior circulation without the involvement of the 
internal capsule and basal ganglia region

VHL AD NM_000551 c.G106T (p.E36X) Nonsense Novel Exon 1 – – ECYT2 Coagulation and 
anticoagulation imbalance

10 M 37 Smoking, 
diabetes mellitus, 
hypertension, and 

hyperlipidemia

Yes Bilateral multiple cortical infarctions in the posterior 
circulation

GLA XR NM_000169 c.C61G (p.L21V) Missense Novel Exon 1 – – Fabry disease Small-vessel diseases

c, ClinVar frequency; e, ExACAF frequency; g, 1000-genome frequency. MRI, magnetic resonance imaging; NEXN, nexilin; JPH2, junctophilin 2; TTN, Titin; RYR2, ryanodine receptor 2; FGA, fibrinogen alpha chain; TBX20, T-box transcription factor 20; GATA6, GATA binding protein 6; LRP6, low-
density lipoprotein receptor-related protein 6; PROC, protein C; PROS1, protein S; VHL, von Hippel-Lindau tumor suppressor; PRKAG2, protein kinase AMP-activated noncatalytic subunit gamma 2; NOTCH3, Notch receptor 3; GLA, galactosidase alpha; CMH17, cardiomyopathy hypertrophic 17; 
CPVT, catecholaminergic polymorphic ventricular tachycardia; FDC, familial dilated cardiomyopathy; FHC, familial hypertrophic cardiomyopathy; ASD9, atrial septal defect type 9; TOF, tetralogy of Fallot; ADCAD2, autosomal dominant coronary artery disease 2; PRKAG2, protein kinase AMP-activated 
noncatalytic subunit gamma 2; ECYT2, familial erythrocytosis-2; CADASIL, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy; AR, autosomal recessive inheritance; AD, autosomal dominant inheritance; XR, X-linked recessive  dominant inheritance; M, male; F, 
female.
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genes were related to SVD or heart disease; however, 
only in patients whose lesions affected both the anterior 
and posterior cerebral circulation areas were cardiogenic 
disease genes found (i.e., JPH2 and low-density lipoprotein 
receptor–related protein 6; Figure 2B).

Four variants related to cerebral small vessel disease were 
detected, and they accounted for 23.5% of the gene results. 
Three pathogenic novel variants in NOTCH3 were detected 
(patients 2, 12, 14), which were associated with cerebral 
autosomal dominant arteriopathy with subcortical infarcts 
and leukoencephalopathy (CADASIL). Three patients were 
admitted for lacunar infarction, of whom 2 had multiple 
hyperintensity lesions of cerebral white matter on magnetic 
resonance imaging (MRI). Both patient 38 and patient 50 
showed single lenticular artery territory infarction with 
mutations in PROC and PROS1. Unfortunately, these 
coagulation test results were not recorded.

Discussion

The application of genetic screening in stroke has been 
limited in previous studies. Genetic testing for stroke is 
usually performed for a specific disorder and is mainly based 
on clinical experience and judgment (35,36). Some clinical 
features may suggest the existence of genetic disorders, 
such as angiokeratomas (suggesting Fabry disease) and 
hyperelastic skin (suggesting Ehlers-Danlos type IV). 
However, accurate and efficient diagnosis is difficult when 
these specific features are absent. Stroke etiology in young 
patients is often missed by less experienced clinicians, which 
can lead to treatment delay (37).

The prospective study, the Lombardia GENS project, 
investigated 209 patients for 5 monogenic diseases 
associated with stroke and had a diagnostic yield of 7% 
(38,39). However, the study only screened for 5 genes, and 
91% of patients only received tests for 1 of the disorders. 
An NGS gene panel was also applied to stroke patients. 
An ongoing, large-sample prospective study, the Small 
Vessel and Lacunar (SVE-LA) project, designed a screening 
panel covering 43 genes with monogenic genes, such as 
NOTCH3, and polygenic genes, such as interleukin 6  
(IL-6) (40). However, the genes and patients’ clinical 
phenotype were restricted to SVD, and the number of 
genes was also limited. Recently, Ilinca et al. (41) developed 
3 stroke gene panels intended for comprehensive usage. 
The panels covered genes related to monogenic stroke  
(120 genes), genes related to stroke (62 genes), and genes 
related to stroke susceptibility (32 genes). However, these 

gene panels have not yet been applied in clinic.
The current multicenter study, to our knowledge, is 

the first to develop and apply a comprehensive genetic 
screening of cryptogenic stroke in young adults. Compared 
to previous studies, our diagnosis yield was much higher 
likely due to the expanded investigation of stroke-related 
causes. 

We revealed that cardiogenic disease genes play a 
predominant role in young adult stroke patients. Half of the 
detected mutations were cardiac-associated genes, including 
hereditary cardiomyopathy and congenital heart diseases 
with structural abnormalities. Most of our detected cardio-
related genes have been reported to be associated with 
dysrhythmia or structural abnormality (TTN, RYR2, NEXN, 
JPH2, TBX20, GATA6, PRKAG2) (42-51). Unlike various 
pathophysiologies of large-artery atherosclerosis and small-
artery occlusion, cardiogenic stroke is more commonly 
related to cerebral embolism due to hemodynamic 
abnormalities (AF, cardiac structural abnormalities). 
The pathophysiology of dysrhythmia is complex and 
includes features such as electrical remodeling, structural 
remodeling, and autonomic nervous system changes (47). 
In accordance with our result, a recent study found a 
statistically increased  proportion of LoF variance of TTN 
in early-onset idiopathic AF (51). Other genes, such as 
RYR2 and JPH2, involved in Ca2+ handling or gap junction 
formation have been associated with arrhythmias (47). The 
underlying mechanisms might be intracellular Ca2+ overload 
by sarcoplasmic reticulum release events (50). Furthermore, 
one of our RYR2 mutations was reported in a dysrhythmia 
patient with functional evidence for pathogenicity (15).

The predominance of cardiogenic disease genes indicated 
that cryptogenic stroke caused by cardiogenic sources might 
be underestimated to a large extent. In the current study, 
none of our patients showed heart abnormalities in routine 
examination, which might be explained by the following 
reasons. First, in a previous report, only 3% of AF cases 
were diagnosed using 24-hour ECG in cryptogenic stroke, 
but the detection rate increased to 30% with 36-month 
monitoring (52). Elevated P terminal force v1, a marker of 
early atrial pathological change, was also related to embolic 
stroke (53). Second, recent studies have found associations 
between subtle left (and right) atrial dysfunction, left 
ventricular systolic and diastolic dysfunction, and left 
ventricular noncompaction and early-onset cryptogenic 
stroke. These associations were demonstrated only by 
using advanced 4D echocardiography and cardiac MRI, 
with apparently normal routine cardiac investigations in 
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all patients, suggesting a very early stage of cardiac disease. 
Therefore, the current cardiac condition was possibly just 
one contributing mechanism among the yet unexplored 
ones (54-58). Undoubtedly, highly sensitive methods or 
biomarkers for the early detection of cardiogenic stroke 
remain to be developed or implemented clinically. 

Dissecting genetic etiology may help clinical decision-
making in preventing recurrent strokes in currently 
cryptogenic patients. Two recent large randomized control 
studies, the  NAVIGATE ESUS (Rivaroxiban Versus 
Aspirin in Secondary Prevention of Stroke and Prevention 
of Systemic Embolism in Patients With Recent Embolic 
Stroke of Undetermined Source) trial and RE-SPECT 
ESUS (the Randomized, Double-Blind, Evaluation in 
Secondary Stroke Prevention Comparing the Efficacy and 
Safety of the Oral Thrombin Inhibitor Dabigatran Etexilate 
Versus Acetylsalicylic Acid in Patients With Embolic Stroke 
of Undetermined Source ) trial, showed that cryptogenic 
stroke did not benefit from anticoagulation (59). This 
indicates cryptogenic stroke is a heterogeneous entity. 
Thus, these advanced methods, such as genetic testing, are 
expected to guide clinical treatments in the future. Finding 
a mutation associated with large-vessel disease may warrant 
placing the patient on preventative antiplatelet therapy or 
at least knowing the choices available. If there is a mutation 
associated with arrhythmia, a patient with recurrent stroke 
will likely start taking antiarrhythmia medication despite 
this not being indicated by the ECG results.

This study had several limitations. First, the sample 
size in this study was insufficient, and the selection bias 
might have been introduced during patient recruitment. 
Although rare genetic risk factors were likely to be present 
in young adult patients, the main reasons for young-
onset stroke in the Chinese population were still due to 
conventional risk factors, and atherosclerosis accounted for 
57% of total strokes (60). Our strict inclusion criteria for 
cryptogenic stroke further limited the study population, and 
so a larger-sample study is needed to validate our findings. 
Second, family validation and functional analysis would be 
preferred. We failed to collect samples from patients’ family 
members, which reduced the rate of mutation detection. 
Rare variants in patient 34 (with HTRA1 variant) and 
patient 19 (NPHS1) would require segregation analysis 
to confirm the pathogenicity. Determining whether the 
variants were damaging in patient 49 (PROS1), patient 35 
(F5), patient 15 (TREX1), and patient 6 (AKAP9) would 
require in vitro functional tests. Third, the patients in this 
study were of Chinese origin, and the incidence of genetic 

variants may vary greatly in different races (61). The 
results should be extrapolated to other racial and ethnic 
populations with caution. Finally, whole exome sequencing 
(WES) might be a better choice in future studies, but tNGS 
was an efficient and economical platform when the study 
was designed. However, WES is becoming cost-effective 
and may achieve equally satisfactory data quality as tNGS. 
With the accumulation of more screened genes, WES may 
further expand the mutant gene spectrum of young-onset 
cryptogenic stroke.

Conclusions

Our study suggests that genetic factors may play an important 
role in young adult cryptogenic stroke patients, and further 
studies in large cohorts are required. Genes related to 
cardiogenic diseases were the most frequently mutated, which 
may indicate that more sensitive examinations are needed 
in the future. Genetic screening for cryptogenic stroke may 
better inform clinical decision-making.
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