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Introduction

Diabetic kidney disease or diabetic nephropathy (DN) 
is a progressive disease characterized by gradual damage 
of renal function. DN, which is one of the most severe 
diabetic microvascular complications, is the main etiology 
of chronic kidney disease and end-stage renal disease 
(ESRD) throughout the world (1,2). Studies have shown 

that approximately 30% of type 1 and type 2 diabetics may 
develop DN (3,4). With the rapidly escalating number of 
patients with diabetes, DN greatly increases health costs 
and cardiovascular deterioration. 

Nonhuman primates are the best candidate animal 
models for discovering and studying the mechanisms 
underlying human DN due to their close evolutionary 
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relationship. While most previous studies (5-8) have 
focused on the mechanisms and treatment of DN in rhesus 
monkeys, there is a paucity of data on renal blood perfusion. 
Studies in humans (9,10) have shown that renal blood 
perfusion is correlated with renal function. The diagnosis 
of DN in humans is often based on abnormalities in blood 
biochemical tests, including elevation of serum urea and 
creatinine concentrations, as well as the decline of urine 
specific gravity (11). Unfortunately, these abnormalities 
are often detected when there is already considerable 
renal dysfunction. Renal biopsy is the most commonly 
used diagnostic method. However, due to the associated 
risk of complications, such as hemorrhage, hematuria, 
or subcapsular hematoma after puncture, repeated 
renal biopsies play a limited role in humans and animal 
experiments. Contrast-enhanced ultrasound (CEUS) is a 
significant advancement in imaging techniques that allows 
noninvasive quantification of microvascular perfusion 
in tissues with corresponding quantitative parameters. 
Some studies (12-14) showed that CEUS could be used 
to evaluate renal blood flow perfusion and could identify 
DN in diabetic patients with kidney damage. However, 
there are few studies on quantitative CEUS parameters for 
discriminating DN and evaluating renal function failure. 
A recent study has found that the CEUS parameters could 
reflect pathological characteristics, especially changes 
in glomerular lesions (15). However, the consensus or 
corresponding guideline on how to evaluate DN with 
CEUS parameters, need to be further studied. Our previous 
pilot studies (16,17) examined insulin-deficient diabetes 
in rhesus monkeys with the aim of documenting the 
development of DN. In this current investigation, CEUS 
was applied to the evaluation of the precious rhesus monkey 
DN model, and the feasibility of CEUS parameters for 
the quantitative assessment of functional kidney damage 
in a DN model using rhesus monkeys was evaluated. It is 
beneficial to evaluate the renal damage of DN in further 
animal experiments. In this study, the animals in the lesion 
group had been diabetic for about 3 years. We present the 
following article in accordance with the ARRIVE reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-946/rc).

Methods

A total of 12 male rhesus monkeys were acquired from 
a government-accredited experimental animal breeding 
and research base (Chengdu Pingan, Sichuan, China). A 

protocol was prepared before the study without registration. 
Experiments were performed under a project license (No. 
2018225A) granted by Ethics Committee of West China 
Hospital of Sichuan University, in compliance with the 
Guide for the Care and Use of Laboratory Animals, 8th 
edition. All animals had free access to water supply and were 
fed standard monkey diets twice a day. 

Animals were divided into two groups, a lesion group 
and a control group, with 6 monkeys in each group. The 
diabetic model was established via intravenous injection 
of streptozotocin (Sigma-Aldrich, St. Louis, MO, USA), 
as previously described (18). The criteria for successful 
establishment of diabetes were fasting blood glucose 
(FBG) values >11.1 mmol/L for 2 consecutive days and a 
C-peptide (C-P) concentration <0.5 nmol/L. Exogenous 
insulin (Wanbang Biopharma Co. Ltd, Xuzhou, China) 
as a supplement was required to maintain an FBG level  
<15 mmol/L, allow growth in juveniles, and to keep adults 
at an acceptable weight, so as to avoid frequent episodes of 
ketoacidosis. A previous longitudinal study (19) showed that 
long-term (~3 years) diabetes can lead to kidney injury in 
rhesus monkeys. Six male rhesus monkeys (5–8 years old, 
weighing 8.2–13.0 kg, with a mean weight of 11.2±1.9 kg)  
with diabetes for about 3 years were selected as the lesion 
group for the present study. A further 6 normal rhesus 
monkeys, matched for gender, weight, and age (aged  
4–7 years, weighing 5.1–12.7 kg, with a mean weight of 
10.2±2.9 kg) were used as normal controls. All subsequent 
operations were performed after sedation via intramuscular 
injection of ketamine (5 mg/kg) and midazolam (0.2 mg/kg).

Detailed conditions of the subjects were recorded, 
including weight, eating status, and behavioral pattern. 
Physical examination and laboratory testing were performed 
every 1–2 months. Considering the risk associated with 
complications of renal biopsy, all subjects underwent 
blood biochemical examination, ultrasound, CEUS, and 
ultrasound-guided core needle biopsy in sequence. Blood 
biochemistry was completed prior to the ultrasound 
examination. The hair of the abdomen was shaved by 
electric clippers for ultrasound. The coupling gel was 
applied to the abdomen of each rhesus monkey. All scans 
were performed with subjects lying in a supine or side 
position. Ultrasounds were performed with a scanner (iU22, 
Philips Medical systems) equipped with QLAB software 
to analyze and display time-intensity curves (TICs). First, 
greyscale ultrasound examinations of bilateral kidneys were 
performed using a high-frequency linear probe (3–9 MHz) 
in multiple sections and in multiple directions. The echo 
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(renal cortex, renal medulla, and collecting system) and 
presence or absence of occupancy were noted. A maximum 
longitudinal image displaying the entire kidney was used 
to perform the CEUS after injection of the ultrasound 
contrast agent. In this image, the whole kidney was centered 
on the screen, and the process of CEUS was captured with 
simultaneous B-mode and pulse inversion harmonic mode 
imaging. During the entire image acquisition process, the 
transducer was manually held at the same position. The 
mechanical index was set at 0.06, and adjusted parameters 
such as depth, gain, and focus were optimized and held 
constant during the study. An image capture time of  
1 minute after the intravenous injection of the contrast 
agent was set. The ultrasound contrast agent SonoVue 
suspension (BraccoSpA, Milan, Italy) was administered by 
bolus injection (0.05 mL/kg) through the cubital vein of the 
subject, followed by rapid delivery of a 1.0-mL bolus saline 
for flushing. The injection was performed with a unified 
standard manner by the same person with CEUS nursing 
experience. There was an interval of at least 20 minutes 
between the 2 kidney CEUS examinations in each monkey, 
and the residual bubbles were cleared off with a flash echo 
technique at a high mechanical index setting. 

All images obtained from the CEUS were stored 
on magnetic optical disks offline and analyzed using a 
commercially available software tool (Qlab, Philips). Three 
regions of interest (ROIs) in the renal parenchyma of each 
kidney were manually drawn by an ultrasound doctor (with 
more than 5 years’ experience in CEUS imaging analysis) 
who was blinded to the groups. For every ROI, the size and 
depth were similar. The software was used to automatically 
generate a TIC using a fitting technique and related 
quantitative parameter values, including rise time (RT, sec, 
contrast agent perfusion time in ROI, from 5% to 95% 
of an increasing curve), peak intensity (PI, dB, the peak 
intensity of the contrast agent signal), area under the curve 
(AUC, dBsec, the area under the TIC curve), time from 
peak to one half (TPH, sec, time needed after injection 
when the intensity decreases to half PI), and time to peak 
(TTP, sec, the time after injection when the ROI signal 
intensity reaches its maximum). 

Ultrasound-guided bilateral renal biopsies were 
conducted in each rhesus monkey at the end of CEUS. The 
puncture point was the lower pole of the kidney. The renal 
biopsy samples were placed in formalin. Hematoxylin-eosin 
(HE) staining was performed and the slides were observed 
under light microscopy by researchers who were blinded 
to the groups. All samples were assessed according to the 

pathological diagnostic criteria of DN (glomerular basement 
membrane thickening, diffuse mesangial expansion, and/or 
Kimmelstiel-Wilson nodules). 

Statistical analysis

All statistical analyses were performed with the SPSS 20.0 
software package. When the results of measurement data 
followed normal distribution and homogeneity of variance, 
data were expressed as the mean ± standard deviation (SD). 
Continuous variables were evaluated with the Student’s 
t-test. If the results did not conform to normal distribution, 
the Wilcoxon rank sum test was used. A P value <0.05 (two-
sided test) was considered statistically significant.

Results

Blood biochemical indicators

As shown in Table 1, the levels of uric acid (UA), creatinine 
(CREA), high-density lipoprotein (HDL), low-density 
lipoprotein (LDL), triglyceride (TG), direct bilirubin 
(DBIL), alanine aminotransferase (ALT), and aspartate 
aminotransferase (AST) were all increased in the lesion 
group compared to the control group. In contrast, the 
levels of LDH in the lesion group decreased significantly 
compared to the control monkeys. These indicators showed 
that the animals in the lesion group had severe kidney and 
liver damage. 

Contrast enhance ultrasound (CEUS)

All subjects completed ultrasound examinations successfully. 
There was no evidence of focal or diffuse abnormalities 
in any of the subjects. Renal echo did not show obvious 
changes in B-mode ultrasound in either group of animals. 
There was no evidence of space-occupying lesions in 
the kidneys. In the CEUS, the renal hilus first enhanced 
visually after the injection of SonoVue and rapidly spread 
to the renal artery, intrarenal arteries, and the renal 
cortex in sequence. The medulla and intrarenal vein were 
then observed in sequence (Figure 1). A significant visual 
difference was detected between the acquisition time 
(wash-in) and release of the contrast agent time (wash-
out). Quantitative analysis of the renal parenchyma was 
performed using specialized computer software (QLAB). 
The TICs were generated in selected regions of the 
bilateral renal parenchyma. The shapes of the TICs in 
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Table 1 The biochemical parameters in the lesion group and the 
control group

Index Control group Lesion group 

Number 6 6 

Age (years) 4–7 5–8

Weight (kg) 10.2±2.9 11.2±1.9

WBC (10
9
/L) 10.01±4.03 9.62±4.04

MCV (fL) 68.75±3.75 66.3±3.67

MCH (pg) 24.44±1.23 24.01±1.34

MCHC (g/L) 357.54±12.84 362±6.68

ALB (g/L) 45.23±7.41 43.66±9.71

ALT* (g/L) 48.67±20.43 77.36±29.56

AST* (g/L) 35.6±17.78 83.11±25.47

GGT (IU/L) 89.0±37.9 93.63±43.84

DBIL* (IU/L) 0.43±0.20 1.3±0.7

CREA* (mmol/L) 50.84±13.23 75.74±17.24

HDL* (IU/L) 1.12±0.23 1.7±0.58

LDH* (µmol/L) 427.32±159.54 266.86±87.49

LDL* (mmol/L) 1.12±0.31 1.79±0.45

TBIL (IU/L) 2.84±0.41 2.77±0.75

TG* (IU/L) 0.54±0.02 0.94±0.71

UA* (µmol/L) 0.46±0.48 6.04±1.03

BUN (µmol/L) 6.96±1.24 7.09±1.39

Values are presented as the mean ± standard error. *, P<0.05. 
WBC, white blood cells; MCV, mean corpuscular volume; MCH, 
mean corpuscular hemoglobin; MCHC, mean corpuscular 
hemoglobin concentration; ALB, albumin; ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; DBIL, 
direct bilirubin; CREA, creatinine; HDL, high-density lipoprotein; 
LDH, lactate dehydrogenase; LDL, low-density lipoprotein; TG, 
triglyceride; TBIL, total bilirubin; UA, uric acid; BUN, blood urea 
nitrogen.

A

B

C

                            M1M1

                             M1

                            M1

M1

M1

Figure 1 A contrast-enhanced ultrasound performed on the 
kidney of a normal rhesus monkey. (A) The contrast agent reached 
the renal parenchyma 10 seconds after the bolus injection; (B) the 
intensity of the renal parenchyma reached its peak at 18 seconds 
after the bolus injection; (C) the contrast agent faded away  
50 seconds after the bolus injection.

all experimental animals were asymmetric and unimodal 
with obvious ascending, descending, and peak shapes. The 
profile of the TIC showed a fast ascending branch and a 
slow descending branch (Figure 2). The overall shape of the 
curve in the lesion group (Figure 2A) was wide, ascended 
slowly, and descended sharply compared with the normal 
control group (Figure 2B).

The perfusion parameters of the TIC in the two groups 
followed a normal distribution. Compared with the normal 

group, the lesion group showed significantly decreased PI, 
reduced AUC, the delayed TTP, and earlier TPH (P<0.05; 
Table 2). There was no significant difference in the RT 
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ROI 2=15.13 dB
(Smoothing = Off, log)
Echo mean =15.13 dB
Echo mean min/max/mean =3.01/19.59/15.92 dB
Echo std dev =14.62 dB

Curve fit-echo mean-LDRW WIWO
Derived clinical parameters
Rise time =8.22 sec
Peak Intensity =15.44 dB
Mean transit time =31.04 sec
Area under the curve =685.71 dB sec
Time from peak to one half =42.28 sec
Wash in slope =1.25 dB/sec
Time to peak =17.61 sec
R2=0.5705
Chi2=842.50
(Motion compensation is OFF)

ROI area =25.05 mm2

Echo mean

ROI 1=17.04 dB

ROI 2=15.13 dB

ROI 1=10.65 dB
(Smoothing = Off, log)
Echo mean =10.65 dB
Echo mean min/max/mean =0.47/10.96/6.68 dB
Echo std dev =9.46 dB
Echo median =9.46 dB

Curve fit-echo mean-LDRW WIWO
Derived clinical parameters
Rise time =11.70 sec
Peak Intensity =9.07 dB
Mean transit time =31.01 sec
Area under the curve =413.26 dB sec
Time from peak to one half =42.91 sec
Wash in slope =0.69 dB/sec
Time to peak =27.46 sec
R2=0.7711
Chi2=607.94
(Motion compensation is ON)

ROI area =25.23 mm2

Echo mean

ROI 1=10.65 dB

A

B

Figure 2 The time-intensity curve of the renal parenchyma. (A) The overall shape of the curve was wide, ascended slowly, and descended 
sharply in the lesion group; (B) compared with the lesion group, the curve of the control group rose sharply, and then decreased slowly. 
These boxes of different colors represent the different regions of interest (ROIs) in the renal parenchyma of each kidney that were manually 
drawn by ultrasound doctor.
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between the two groups. 

Renal histology

In accordance with the pathological criteria, all 6 rhesus 
monkeys in the lesion group were diagnosed with DN. 
Diffuse expansion of the mesangial matrix was observed 
in most diabetic monkeys (Figure 3). In addition, the 
peripheral glomerular basement membrane (PGBM) was 
thickened and mesangial cell proliferation was observed. 

Discussion

A kidney biopsy, the gold standard test for diagnostic, 
therapeutic regimen adjustment and prognostic information, 
is usually only performed when the renal pathology needs 
to be determined. At present, screening and diagnosis of 
DN is still based on the albuminuria assessment (20). The 
treatment of DN has two primary goals: preserving renal 
function to reduce the risk of ESRD; reducing the risk of 
cardiovascular events and mortality (21). For patients with 
typical DN, standard treatment still focuses on glycemic 

and blood pressure control, with the aim of preventing DN 
progression and albuminuria regression (20).

Pathologically, DN is a secondary lesion to severe 
microvascular complications of diabetes (2). The process 
of disease progression is accompanied by glomerular 
basal membrane thickening, mesangial hyperplasia, and 
glomerular sclerosis. At present, the noninvasive diagnosis 
of DN in experiments using animals is mainly based on 
laboratory examination of blood and urine parameters. 
However, laboratory indicators cannot easily detect early 
diabetic renal damage and can be influenced by many 
external factors (such as proteinuria due to body stress, 
infection, hyperglycemia, hypertension, etc.). Therefore, 
the extent of renal damage cannot be objectively evaluated. 
Although renal needle biopsy is more sensitive and accurate, 
it is traumatic and risky to some extent. Therefore, it is 
necessary to explore sensitive, effective, and objective 
examination methods for the early and repeated quantitation 
of renal function. In a study involving healthy cats, CEUS 
has been used to detect differences in renal perfusion 
induced by angiotensin II (22). Renal perfusion changes 
have also been evaluated by using CEUS in renal ischemia-

Table 2 TIC parameters in the lesion group and the control group

Group AUC* (dB sec) TPH* (sec) PI* (dB) TTP* (sec) RT (sec)

Control group 563.39±72.71 39.6±2.05 13.0±1.7 17.3±2.02 7.95±1.12

Lesion group 419.00±91.82 35.40±4.48 11.59±2.30 23.20±5.40 8.29±1.65

*, P<0.05. TIC, time intensity curve; AUC, area under the curve; TPH, time from peak to one half; PI, peak intensity; TTP, time to peak; RT, rise 
time.

20.0 μm 50.0 μm

A B

Figure 3 Histology of the renal biopsies. (A) Photomicrograph of the renal tissue sections in the control group showing the normal 
histological structure of the glomerulus (hematoxylin and eosin staining); (B) photomicrograph of the renal tissue sections in the lesion 
group showing the swollen renal tubules, glomerular capillary basement membrane thickening, and mesangial matrix expansion (hematoxylin 
and eosin staining). 
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reperfusion injury in dogs (23). These studies suggested 
that CEUS quantitative evaluation of renal perfusion is a 
valuable method for estimating renal perfusion changes in 
animal experiments.

Herein, a DN animal model was established to explore 
the changes in renal perfusion and blood biochemistry 
indicators in rhesus monkeys. The efficacy of CEUS 
in assessing DN in the rhesus monkey was explored. In 
this study, the TIC was established to obtain the relative 
quantitative parameters, including AUC, TPH, TTP, PI, 
and RT. The AUC, which reflects relative blood volume 
changes in the tissue, showed a linear relationship with 
tissue blood flow in certain ROIs. Previous research 
demonstrated that, as the most valuable of all quantitative 
parameters, the AUC is proportional to the mean blood 
flow (24). In this study, the AUC was reduced, which 
suggested that renal blood flow perfusion could have been 
under low filtration conditions, and blood flow perfusion 
was clearly decreased. PI, which is proportional to the 
average blood volume, refers to the most significant signal 
intensity enhanced by contrast agent in a certain ROI. Since 
the signal intensity of the contrast agent is significantly 
correlated with the concentration of microbubbles in a 
certain ROI, the PI can roughly reflect blood flow, and has 
a correlation with tissue perfusion. A decrease in the PI 
value can represent a decline in renal perfusion when renal 
function is damaged. Combined with pathological results, 
our data showed that both PI and AUC declined with the 
deterioration of renal function, which is consistent with 
the data reported in the literature (25). TTP represents the 
time from the injection of contrast agent to the maximum 
signal intensity. This study found that TTP was delayed, 
which demonstrated that renal perfusion (wash-in) was 
slowed. The time required for the contrast agent to enter 
the renal microcapillary bed was extended. Compared 
with the control group, the extension of TTP appeared 
as a gentle rise in the lesion group in the TIC. The TPH 
reflects the microbubbles clearance rate. In this study, the 
index was shorter in the lesion group than in the control 
group, suggesting that the microbubbles washed out quickly 
in the damaged renal tissue. Based on the analysis of these 
two indicators, the extension of TTP and the shortening of 
TPH suggested that microvascular perfusion of the renal 
parenchyma in the lesion group was slower than that in the 
control group, but clearance was faster. 

CEUS can evaluate renal hemodynamic changes 
noninvasively and repeatedly. Further quantitative 
evaluation needs experimental verification. There may 

be some fundamental limitations to this study. First, the 
sample size of the experimental animals was small, which 
may have impacted the results. Second, the perfusion 
parameters of the CEUS may be influenced by multiple 
factors, such as the ultrasonic instrument setting, selection 
of probe, contrast agent concentration and injection speed, 
as well as the shape, area size, and location of the ROI 
(26,27). Only experienced reviewers can adequately analyze 
the perfusion parameters of CEUS. In addition, our study 
did not grade the degree of renal injury in the lesion group, 
and the diagnostic efficacy of CEUS at different stages of 
renal injury in DN warrants further investigation. Although 
future studies are need to confirmations these results, the 
preliminary data presented here are encouraging for the use 
of CEUS as a screening tool in patients with DN.

In conclusion, CEUS may be used to monitor kidney 
microvascular injury in DN rhesus monkeys. Moreover, 
CEUS parameters may be used as a supplemental tool for 
evaluating renal hemodynamic changes in DN.
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