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Background and Objective: Bronchial asthma, a common respiratory disease in children and young 
adults, is characterized by hyperresponsiveness and reversible narrowing of the airways which manifest 
clinically as shortness of breath, cough, and/or wheezing. Although its pathogenic mechanism remains 
unknown, it’s known that asthma patients have substantial interindividual variability in drug responsiveness, 
among which genetic factors play key roles. For improving the understanding of the biological mechanism 
of asthma and useful recognition of diagnostic and therapeutic targets, and the main purpose of this article 
is to optimize drug selection by analyzing genes associated with different drug responsiveness in asthmatic 
patients through the use of genomic techniques.
Methods: β2-agonists, inhaled corticosteroids (ICS), and leukotriene modulators are the most commonly 
used to treat asthma, and major genetic variations associated with differential response to these three drugs 
were identified via candidate gene association analysis, genome-wide association study (GWAS), and RNA 
sequencing.
Key Content and Findings: Genomics focuses on the effects of genetic variations in a group of 
genes. Most current studies have focused on the effect of single gene polymorphisms on drug efficacy, but 
the pharmacogenomics of asthma is inherently complex, with each factor having a small effect on drug 
responsiveness, and no single locus has yet been able to predict the variability in drug responsiveness.
Conclusions: According to epidemiological researches, a worldwide increase in the prevalence of bronchial 
asthma over the past four decades was shown. Genomic approaches can be used to screen for genetic variants 
associated with drug response. Stratifying patients prior to treatment helps to optimize drug selection, 
maximize the effectiveness of individual treatment, and improve clinical outcomes.
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Introduction

Bronchial asthma, a common respiratory disease in children 
and young adults, is characterized by hyperresponsiveness 
and reversible narrowing of the airways which manifest 
clinically as shortness of breath, cough, and/or wheezing. 
Airway inflammation is the pathological features of 
asthma, which is closely related to immune response cells, 
inflammation mediators, cytokines and adhesion molecules. 
The past 3 decades have witnessed a rapid increase in 
the prevalence of bronchial asthma. It is projected that 
approximately 400 million people worldwide will experience 
asthma by 2025 (1). An epidemiological study in the United 
States revealed that there were more than 20 million 
people (or 8% of the overall population) with bronchial 
asthma nationwide in 2016, and the cost of diagnosing 
and treating the disease was estimated to be 20 billion 
USD (2). Asthma is mainly treated medically; however, 
as with most medications used in disease treatment, anti-
asthmatic drugs have notably different responsiveness 
among individual patients, which limits the clinical 
efficacy of the medications. A lot of elements may affect 
individual response to medications, including gender, age, 
diet, smoking, disease status, and drug interactions (3). 
A large proportion of such interindividual variability in 
drug responsiveness can be explained by genetic factors, 
and genetic variation across an array of genes has been 
revealed as associated with differences in patients’ response 
to anti-asthmatic drugs. Genomics has been used to study 
the effects of genetic variation of many genes, at the levels 
of both DNA and RNA. Genomics in the field of drug 
therapy has focused on how individual genetic differences 
affect interindividual variability in drug responsiveness. 
Pharmacogenomics is a new discipline, which offers the 
possibility of personalized drug selection with genetic 
information to improve effectiveness or avoid adverse 
reactions. Here, we have summarized the recent advances in 
the application of genomics in anti-asthmatic medications. 
Specifically, several genes associated with common asthma 
drugs were elaborated. We present the following article 
in accordance with the Narrative Review reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-291/rc).

Methods

Information used to write this paper was collected from the 
sources listed in Table 1.

Genomics: overview and analytic methods

Genomics focuses on the effects of genetic variations in 
a group of genes. Such changes include single nucleotide 
polymorphism (SNP), base insertion or deletion, copy 
number variation (CNV), and variable number of tandem 
repeats (VNTR). Several of these variants influence the 
number, timing, and function of encoded proteins, thus 
affecting certain physiological and pathological processes of 
the organism and its response to the outside world (4). As 
shown in Figure 1, the commonly used analytical methods 
in genomics include candidate gene association, genome-
wide association studies (GWAS), RNA sequencing, and 
biological pathway analysis. Candidate gene association 
analysis is the study of associations between variants in genes 
of interest and disease phenotypes and is commonly used 
to analyze alleles in patients with different drug responses. 
Building on the existing knowledge of the function of a 
specific gene, it identifies and selects SNPs with potential 
function, detects their presence in patients and controls 
having the feature, and finally correlates the gene variants 
with drug response profiles. The genetic association is 
large when the minor allele frequencies (MAF) of the SNPs 
are greater than 10%. The strength of candidate gene 
association analysis is that it needs a relatively small sample 
size and is simple and economical to conduct; however, it 
requires prior knowledge of the function of genes associated 
with drug response, and selection of genes can be difficult if 
only limited information is available (5). Meanwhile, GWAS 
allows the analysis of thousands of SNPs, associating them 
with specific phenotypes or drug responses. It typically 
detects SNPs in the set of genomic regions with the 
greatest inter-individual variation on each individual’s DNA 
microarray, with each SNP being tested independently. The 
GWAS method is characterized by its powerful statistical 
ability as it can process large sample sizes and detect and 
analyze entire genomes (6). In contrast, RNA sequencing 
helps to discover new genes involved in drug response by 
analyzing differences in expression profiles, usually in cell 
lines (7). Biological pathway analysis means that after the 
identification of candidate genes, other potential genes 
that influence drug action can be discovered by analyzing 
genetic networks and pathways (8).

Genomic association of commonly used anti-
asthmatic drugs

β2-adrenergic receptor agonists, inhaled glucocorticoids 

https://atm.amegroups.com/article/view/10.21037/atm-22-291/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-291/rc
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Table 1 The search strategy summary

Items Specification

Date of search (specified to date, month and year) 1/1/2021

Databases and other sources searched PubMed, Index to Chiropractic Index to Chiropractic, MANTIS, 
ERIC (Educational Resources Information Center), AMED (Allied 
and Complementary Medicine Database), CINAHL (Cumulative 
Index to Nursing and Allied Health Literature), EMBASE/Excerpta 
Medica, Cochrane Database of Systematic Reviews

Search terms used (including MeSH and free text search terms and 
filters)

Bronchial asthma, genomics, single nucleotide polymorphisms, 
genetic variants

Timeframe 1987–2020

Inclusion and exclusion criteria (study type, language restrictions etc.) None used

Selection process (who conducted the selection, whether it was  
conducted independently, how consensus was obtained, etc.)

Jie Li conducted the selection, consensus was obtained by all 
researchers discussion

Any additional considerations, if applicable None used

Figure 1 Common analysis techniques in genomics. SNP, single nucleotide polymorphism.

Genomics

Association 
analysis of 

candidate genes

It identifies and selects SNPs with potential function, detects 
their presence in subjects and controls having the feature, and 
finally correlates the gene variants with drug response profiles.

Genome-wide 
association 

studies (GWAS)

It detects SNPs in the genomic region with the greatest inter-
individual variation on each individual's DNA microarray, with 

each SNP being tested independently.

RNA sequencing
By analyzing differences in expression profiles, it helps to 

discover new genes involved in drug response by analyzing 
differences in expression profiles, usually in cell lines.

Biological 
pathway analysis

After the identification of candidate genes, the analysis of 
genetic networks and pathways can contribute to discovering 

other potential genes that influence drug action.

(ICS), leukotriene modulators, and anticholinergics are the 
most commonly used medications for asthma. These drugs 
can be divided into 2 groups: (I) anti-inflammatory drugs, 
which include ICS and long-acting beta agonists (LABA); 
and (II) drugs for rapid relief of symptoms such as acute 
bronchial stenosis, chest tightness, and wheezing, including 
short-acting beta agonists (SABA) (9). To date, most 
genomic studies on asthma pharmacotherapy have focused 
on 3 drug classes: beta agonists, ICS, and leukotriene 
modulators.

β2-agonist-related gene variations

Relying on the duration of action, β2-agonists are 
fallen into 3 classes: SABA (e.g., fenoterol, isoprenaline, 
levoproterenol, and salbutamol), LABA (e.g., salmeterol and 
formoterol), and ultra-long-acting agonists (e.g., vilanterol 
and indacaterol) (10).

Discovered by Kobilka et al. in 1987, the adrenoreceptor 
beta 2 (ADRB2) gene and is localized to chromosome 
5q31-q32, an area l inked with asthma- associated  
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phenotypes (11). More than 80 SNPs have been identified 
for ADRB2, the most common being Arg16Gly (rs1042713) 
and Glu27Gln (rs1042714). The approximated frequency 
of the Arg16 variant is 39.3% in whites, 49.2% in blacks, 
and 51.0% in Han Chinese (12). It has been shown that 
homozygotes of Arg16 have a greater bronchodilating 
effect of salbutamol compared to homozygotes of Gly16, 
with a significant increase in forced expiratory volume 1 
(FEV1) after drug administration. However, the decline in 
FEV1 was also faster in individuals with Arg16 genotype 
after LABA use, and several patients who received the 
treatment of salmeterol even suffered from severe asthma 
exacerbations (13). Children who are homozygous for 
Arg16 have poor outcomes while receiving the treatment 
with LABA and ICS, and therefore montelukast has been 
recommended as an alternative to salmeterol as customized 
second-line asthma controller therapy in asthmatic kids. 
Other uncommon nonsynonymous coding variants of 
ADRB2 have been disclosed. For instance, the SNP 
rs1800888 encodes a threonine on Thr164Ile; compared 
with carriers of wild-type Thr164, individuals homozygous 
for Ile164 are 3- to 4-fold less responsive to LABA (14).

The adenylyl cyclase type 9 (ADCY9) gene is part of the 
signaling pathway of the β2-adrenergic receptor (β2-AR). 
Slob et al. found that the SNP Ile772Met (rs2230739 in 
ADCY9) was related to acute bronchodilation to SABA in 
asthmatic patients and also with changes in lung function 
in response to ICS (15). Arginases, which are encoded by 
ARG1 and ARG2, are metabolized in vivo into L-arginine, 
which in turn generates nitric oxide (NO) in the presence 
of nitric oxide synthase (NOS), and NO is an endogenous 
bronchodilator. Ziyab et al. found that ARG1 polymorphisms 
(rs2781659 and rs2781667) were related to acute SABA-
induced bronchodilation in asthmatic patients (16). A Dutch 
asthma population-based cohort study demonstrated that 2 
polymorphisms in ARG2 (rs17249437 and rs3742879) were 
related to asthma and more serious airway obstruction (17). 
The bioactivity of NO is mediated through the formation 
of S-nitrosothiols (SNOs), whereas S-nitrosoglutathione 
reductase (GSNOR) metabolizes SNO. A recent sequencing 
study of the GSNOR gene in the United States identified 
13 SNPs, with an allele frequency of >5%. The authors 
demonstrated an interaction between GSNOR and ADRB2 
in Mexicans, which was believed to be associated with 
decreased bronchial responsiveness to bronchodilators (18).  
Through GWAS, Kabesch et al. identified 4 asthma-
associated SNPs (rs350729, rs1840321, rs1384918, and 
rs1319797) in the spermatogenesis associated serine rich 

2 like (SPATS2L) gene on chromosome 2, which may be 
associated with β2-adrenergic receptor downregulation (19).

ICS-related gene variations

The earliest studies on glucocorticoid responsiveness 
were focused on the glucocorticoid receptor gene nuclear 
receptor subfamily 3, group C, member 1 (NR3C1), which 
is located on chromosome 5q31. It has been shown that 2 
SNPs of this gene have a potential impact on glucocorticoid 
responsiveness, one of which, Asn363Ser (rs56149945 in 
NR3C1), has been recognized in some populations, and 
lymphocytes of individuals carrying this genetic variant have 
a higher sensitivity to dexamethasone compared to non-
carriers (20).

The corticotropin releasing hormone receptor 1 
(CRHR1) gene encodes the main receptor for corticotropin-
releasing hormone and is a core regulator of corticosteroid 
synthesis and catecholamine generation. Rijavec et al. 
observed a great association correlation between improved 
pulmonary function after ICS treatment and CRHR1 SNPs 
(rs1876828, rs242939, and rs242941), and individuals 
homozygous for this polymorphism had significantly 
higher mean FEV1 than other patients (21). A low-affinity 
receptor for immunoglobulin E (IgE), a core molecule for 
B-cell stimulation is encoded by the Fc epsilon receptor 2 
(FCER2) gene. It was observed that the SNP rs28364072 
of FCER2 is related to a growing risk of re-exacerbation 
after ICS treatment in asthmatic children, who also 
had significantly higher serum IgE levels, possibly by a 
mechanism in which FCER2 variants adversely affect the 
normal negative feedback mechanism on IgE synthesis (22).  
The stress stimulated phosphoprotein 1 (STIP1) gene 
encodes a heat shock protein, which is essential for 
assembling and activating of the glucocorticoid receptor. 
It was shown that SNPs (rs6591838, rs2236647, and 
rs1011219) in STIP1 are greatly related to improved FEV1 
responses in asthmatic patients with reduced lung function 
after 4 weeks of glucocorticoid treatment (23). Weitzel 
et al. performed RNAseq analysis of the transcriptome 
of 4 classes of human airway smooth muscle (ASM) cells 
and identified cysteine rich secretory protein LCCL 
domain with 2 (CRISPLD2), encoding a secreted protein 
associated with lung growth and endotoxin control (24).  
The CRISPLD2 gene was found to have an SNP associated 
with ICS resistance in asthmatic patients. Reverse 
transcription polymerase chain reaction (RT-PCR) and 
western blotting further displayed that dexamethasone 
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treatment grew the expression of CRISPLD2 messenger 
RNA (mRNA) and protein levels in ASM cells, and 
functional researches confirmed that CRISPLD2 could 
regulate the anti-inflammatory roles of glucocorticoids 
in ASM (25). Another candidate gene associated with 
ICS treatment response is T-box transcription factor 21 
(TBX21). Mice with a targeted deletion of the TBX21 gene 
rapidly exhibited airway hyperresponsiveness, increased 
airway eosinophilia, and accelerated airway remodeling 
processes. The SNP rs2240017 of TBX21 was related to 
improved bronchoprotection (26). Hernandez-Pacheco 
et al. conducted a cohort study and found that patients 
heterozygous for rs2240017 had significantly lower airway 
hyperresponsiveness during ICS treatment compared to 
those homozygous for this SNP (27).

Leukotriene modulator-related gene variations

Leukotriene modulators have potent anti-inflammatory 
activity and can improve the clinical course of asthma with 
minimal side effects. Depending on their mechanism of 
action, they are divided into 2 classes: cysteinyl leukotriene 
receptor antagonists (e.g., montelukast, zafirlukast, 
pranlukast, and tomelukast) and 5-lipoxygenase inhibiting 
agents (e.g., zileuton).

To date, the vast majority of pharmacogenetic studies 
on leukotriene modulators have focused on the variants 
of 5-LOX gene (ALOX5) and LTC4 synthase (LTC4S). 
Located on chromosome 10q11.12, the ALOX5 gene has 
14 exons. Its activity is related to many repetitive sequences 
in the promoter area Sp1/Erg1. Mutant ALOX5 repeat 
polymorphism has been related to declined exacerbation 
rates in montelukast-treated asthma patients. Another 
study in Spain showed a reduced number of acute asthma 
exacerbations and increased FEV1 in patients with wild-
type alleles or heterozygotes; in addition, these patients had 
increased urinary leukotriene E4 concentrations, reflecting 
increased leukotriene biosynthesis (28). Candidate gene 
analysis suggested that other ALOX5 SNPs (rs2115819, 
rs4987105, and rs4986832) might also affect the response 

to montelukast (29). The leukotriene C4 synthase gene 
(LTC4S) is one of to the S-glutathione synthase family, 
catalyzing the transformation of LTA4 to LTC4. The 
most significant SNP identified so far is rs730012, which 
is associated with increased generation of LTC4 in 
eosinophils (30). Pham et al. found a 73% reduction in 
the risk of acute asthma exacerbations in montelukast-
treated patients homozygous for rs730012 (31). The ATP 
binding cassette C1 (ABCC1) gene, which encodes multi-
drug resistance protein 1 (MRP1) and exerts a significant 
effect on the transmembrane transport of LTC4, has also 
been studied. A polymorphism of this gene (rs119774 in 
LTC4) was associated with the montelukast treatment 
response, and individuals heterozygous for rs119774 had 
24% elevated FEV1 compared to those homozygous for 
this polymorphism (32). Meanwhile, LTA4 hydrolase acts 
to convert LTA4 to LTB4, and the gene encoding it is 
located on chromosome 12q22. A polymorphism of this 
gene (rs2660845 in LTA4) is related to with the risk of 
acute asthma exacerbations during montelukast treatment. 
Individuals heterozygous for rs2660845 have a 4-fold higher 
risk of acute asthma exacerbations than the homozygous 
individuals (33). The mechanism may be that this SNP 
lowers LTA4 hydrolase activity, leading to a decrease in 
LTB4 synthesis, which stimulates the LTC4-synthesis 
pathway to promote the synthesis of cysteinyl leukotriene. 
The solute carrier organic anion transporter family member 
2B1 (SLCO2B1) gene encodes protein 2B1, which exerts a 
significant effect on the active transport of organic anions 
by the intestinal wall. rs12422149 is associated with the 
transport and serum level of montelukast, and individuals 
with rs12422149 had 39% lower serum level of montelukast 
than controls (34). A summary of the asthma drug treatment 
response-related genes is shown in Table 2.

Future prospects

Many pharmacogenomic studies conducted so far have 
had limitations including small sample scale, inaccurate 
phenotype  de f in i t ion ,  unreasonab le  popu la t ion 

Table 2 Genes associated with asthma drug responsiveness (identified by genomic techniques)

Class Gene name

β2-receptor agonists ADRB2, Arg16, ADCY9, ARG1, ARG2, GSNOR, and SPATS2L

Inhaled glucocorticoids (ICS) NR3C1, CRHR1, FCER2, STIP1, CRISPLD2, and TBX21

Leukotriene modifiers ALOX5, LTC4S, ABCC1, and SLCO2B1
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stratification, and shortage of reproducibility, which need to 
be addressed in future studies. High-throughput techniques 
have made large-size genotyping and expression studies 
possible in recent years. In addition, gene-environment 
interactions, mutual effects between variants in various 
genes and genetic pathways, epigenetic regulation, and 
transcriptional regulation of small interfering RNAs 
(siRNAs) and long-stranded non-coding RNAs (lncRNAs) 
are also topics for future pharmacogenomics studies. For 
instance, DNA methylation is an epigenetic alternation in 
which the addition of methyl to the cytosine residues of 
cytosine- and guanine-rich (CpG islands) DNA fragments 
within gene promoters stops the binding of transcription 
elements, which leads to downregulation of gene expression 
and may affect disease susceptibility (35). Interferon (IFN) 
gene promoter hypermethylation and interleukin-4 (IL-4) 
promoter hypomethylation have been revealed as related to 
elevated airway IgE levels in asthmatic patients, and DNA 
methylation of the 5-LO promoter regulates the expressions 
of key genes in the leukotriene pathway (36).

Most current studies have focused on the effect of 
single gene polymorphisms on drug efficacy, but the 
pharmacogenomics of asthma is inherently complex, with 
each factor having a small effect on drug responsiveness, 
and no single locus has yet been able to predict the 
variability in drug responsiveness. Therefore, developing 
statistical models to predict treatment responsiveness based 
on multiple genetic loci is warranted. Integrative genomics 
approaches that combine genome-wide SNP data with gene 
expression profiles will also be useful tools for recognizing 
new genes or mechanisms that leading to inter-individual 
modifiability in drug reaction. In recent years, great strides 
have been made in human genome analysis technologies 
and international information sharing networks. Large 
whole-genome sequencing projects, such as the NHLBI 
Exome Sequencing Project, 1000 Genomes, and gene 
sequencing projects in African ancestral populations, have 
achieved excellent results and created databases of rare 
genetic variants that could serve pharmacogenetic studies in 
different racial and ethnic groups in the future.

Summary

Although the etiology of asthma is still not fully elucidated, 
genetic factors have been demonstrated to play key 
important roles. Response to anti-asthmatic drug therapy 
varies widely among patients, and some patients may 
even experience life-threatening adverse drug reactions. 

Genomic approaches can screen for genetic variants 
associated with drug response. Stratifying patients prior to 
treatment helps to optimize drug selection, maximize the 
effectiveness of individual treatment, and minimize the risk 
of adverse reactions. Genomics can also offer new visions to 
the mechanisms of drug action and facilitate the growth of 
novel therapeutic options in the future.
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