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Background: Recent studies have shown that pyroptosis is related to cancer development. Our previous 
study also found that gasdermins (GSDMs) was associated with the tumor immune microenvironment. 
Therefore, we wanted to observe the relationship between pyroptosis and the immune microenvironment 
and prognosis of skin cutaneous melanoma (SKCM).
Methods: Pyroptosis-related genes were used for pan-cancer prognostic analysis using the GEPIA2 online 
analysis website. Prognosis-related genes were clustered using R software and related R packages, and the 
best clustering results were screened for prognosis analysis. The prognosis-related genes were also used to 
establish a prognosis-related model. Assess the predictive power of a model by comparing area under the 
curve (AUC). The t-test was used to analyze the differences of immune-related indicators between the two 
clusters and between high and low risk groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis was performed on the differential genes.
Results: By clustering the prognosis-related genes, SKCM could be divided into 2 clusters with significant 
differences in prognosis P<0.05. A prognostic model can be established using prognosis-related genes. 
The AUC value of 1 year, 2 years and 3 years was 0.696, 0.702 and 0.664, respectively. The risk score was 
significantly associated with prognosis in both univariate and multivariate Cox analyses P<0.001. The low-
risk group or C2 cluster with better prognosis had higher expression of pyroptosis-related genes, and 
tended to have a lower exclusion score, greater chemokine expression, more immune cells and higher 
immune score. However, the C2 cluster or low-risk group was also associated with a higher dysfunction 
score. At the same time, the C2 or low-risk group was more suitable for immunotherapy because of the 
higher immunophenoscore (IPS) score P<0.001. Correlation analysis also demonstrated that the risk 
score was positively correlated with the gene expression of most immunoinhibitors, MHC molecules, 
immunostimulators, and chemokines and their receptors. 
Conclusions: Pyroptosis is associated with melanoma immune microenvironment, immunotherapy 
response, and prognoses. The constructed risk scores could effectively predict the characteristics of the 
immune microenvironment, the sensitivity to immunotherapy, and the prognosis of melanoma patients.
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Introduction

Pyroptosis is believed to be a form of caspase-mediated 
programmed cell death, which activates inflammatory 
caspase and eventually leads to the lysis of gasdermins 
(GSDMs) when the body is invaded by pathogens. 
N-terminally bound GSDMs (GSDMs-NT) perforate the 
cell membrane surface, thereby inducing lytic death of the 
pathogen and the infected host cell (1-3). Pyroptosis is not 
limited to infectious diseases, and new research suggests 
that it is also associated with cancer (4). In humans, GSDMs 
consist of GSDMA, GSDMB, GSDMC, GSDMD, GSDME 
(DFNA5), and DFNB59 (PJVK). Gasdermin D (GSDMD) 
was first discovered in 2015 and was identified as the key 
executive protein of downstream molecular signals after the 
activation of caspase (4,5). The classical pyroptosis pathway 
is mediated by the assembly of inflammasomes, including 
NLRC4, NLRP1, NLRP2, NLRP3, NLRP6, NLRP7, and 
AIM2 (6,7). Inflammasomes and their related cytokines are 
also associated with the tumor immune microenvironment 
and prognosis (8,9).

Early-stage cutaneous melanoma has a good prognosis, 
but advanced melanoma has a poor prognosis (10). 
Immunotherapy has achieved good results in the treatment 
of cutaneous melanoma and has been used for first-
line treatment (11). Meanwhile, our previous study 
found that GSDMs were associated with the immune 
microenvironment (12). Therefore, we wanted to observe 
the relationship between the pyroptosis and the immune 
microenvironment of melanoma, as well as the relationship 
with the prognosis of melanoma.

Therefore, we performed a pan-cancer analysis of 13 
genes associated with GSDMs and inflammasomes and 
found that they were closely related to the overall survival 
(OS) of skin cutaneous melanoma (SKCM). Then, we 
clustered the prognostic genes among all 33 pyroptosis-
related genes and constructed a risk model, which could also 
divide SKCM into 2 clusters with significant differences in 
prognosis. The established model could be well verified by 
the data in the Gene Expression Omnibus (GEO) database. 
Previous studies in gastric (13) and colon (14) cancer have 
also modeled the risk associated with prognosis. 

Further analysis also showed that the C2 cluster with 
better prognosis was predominantly the low-risk group, and 
compared with the C1 cluster or high-risk group, the C2 
cluster or low-risk group tended to have high expression 
of pyroptosis-related genes. This group also had a lower 
exclusion score, suggesting that it had a more favorable 

microenvironment for T cell infiltration (15), along with 
higher immune scores, more infiltration of immune 
cells, especially T cells, and greater gene expression 
of chemokines and their receptors. However, we also 
found that the C2 cluster or low-risk group had a higher 
dysfunction score, indicating a stronger microenvironment 
that suppresses T cell immune function (15). Furthermore, 
our study showed that the C2 cluster or low-risk group was 
more sensitive to anti-PD1 and CTLA4 therapy. 

Therefore, the pyroptosis status in SKCM is closely 
related to the prognosis of patients and the immune 
microenvironment. There is more immune cell infiltration 
and more immune escape factors in tumor tissue with high 
expression of pyroptosis-related factors, making these 
tumors more suitable for immunotherapy. The pyroptosis 
prognostic risk score can effectively predict the prognosis 
of patients with melanoma and predict the characteristics 
of the immune microenvironment and the sensitivity to 
immunotherapy. At the same time, we believe that in the 
future, changing the state of pyroptosis may turn cold 
tumors that are not suitable for immunotherapy into hot 
tumors that are suitable for immunotherapy. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-1095/rc).

Methods

Data sources

The gene expression data as well as mutation and survival 
data of SKCM was obtained from The Cancer Genome 
Atlas (TCGA) website (https://portal.gdc.cancer.gov/
repository). The ESTIMATE (16) and CIBERSORT 
algorithms (17) were used to calculate the immune and 
stromal scores and the immune cell infiltration content 
of each tumor. We also downloaded gene expression 
data and survival data of cutaneous melanoma from the 
GEO database (https://www.ncbi.nlm.nih.gov/geo/) 
(GEO accession number: GSE19234). Microsatellite 
instability (MSI), exclusion, and dysfunction scores were 
downloaded from the Tumor Immune Dysfunction and 
Exclusion (TIDE) website (http://tide.dfci.harvard.edu). 
Immunophenoscores (IPS) were downloaded from The 
Cancer Immunome Database (TCIA) website (https://
tcia.at/).

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

https://atm.amegroups.com/article/view/10.21037/atm-22-1095/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-1095/rc
https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
https://www.ncbi.nlm.nih.gov/geo
https://tcia.at/
https://tcia.at/
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Gene Expression Profiling Interactive Analysis (GEPIA) 

Using the GEPIA2 (18) (http://gepia.cancer-pku.cn/) 
online analysis website, “Survival Map” was selected in the 
search analysis toolbar of GEPIA2. All gene names were 
input, “Overall Survival” was selected in methods, the P 
value was set to 0.05, and median for group cutoff was 
selected. Multiple genes were analyzed in relation to OS in 
all tumors. “Dimensionality Reduction” was selected in the 
analysis toolbar, and the tumor type was “Skin Cutaneous 
Melanoma, SKCM”. Genotype-tissue expression (GTEx) 
selected skin-not sun exposed (suprapubic) and skin-sun 
exposed (lower leg), and 13 pyroptosis-related genes were 
input for principal component analysis (PCA). “Survival 
Plots” was selected in the analysis toolbar, and the tumor 
type was “Skin Cutaneous Melanoma, SKCM”. Overall 
survival was selected in methods and median was selected 
for group cutoff to analyze the relationship between each 
gene and OS in SKCM patients.

R software analysis and plotting

Kaplan-Meier survival curves were drawn by R software 
with the survival and survminer packages. Cluster analysis 
was performed by the ConsensusClusterPlus package, 
and heat maps were drawn by the Pheatmap package. 
The GSEABase and GSVA packages were used to score 
ssGSEA. Prognosis-related genes were used to build a 
prognostic model, SKCM data in the TCGA database 
was used as a training set, and the melanoma data in 
the GEO database was used for validation, and the 
timeROC package was used to plot the receiver operating 
characteristic (ROC) curve of the survival model. The 
Ggalluvial package was used to plot the Sankey diagram. 
The Rtsne package was used to reduce the dimensionality, 
and then PCA was performed.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis

The clusterProfiler, org.Hs.eg.db, enrichplot, and ggplot2 
packages were applied for the GO and KEGG enrichment 
of differential genes with a P value of less than 0.001 
between the C1 and C2 clusters or between the high- 
and low-risk groups. Output enrichment results with 
pvalueFilter <0.05 and qvalueFilter <0.05, Then the top 10 
most statistically significant categories in biological process 

(BP), cellular component (CC) and molecular function (MF) 
in GO enrichment were plotted. The top 30 categories with 
the greatest statistical significance in the KEGG enrichment 
were mapped.

Statistical analysis

On the GEPIA2 online analysis website, P<0.05 was 
selected, which was considered as statistically significant. 
Pearson’s correlation coefficient was used for correlation 
analysis, and P<0.05 was statistically significant. Assess 
the predictive power of a model by comparing AUC. For 
difference analysis, GO, KEGG enrichment, univariate and 
multivariate Cox analysis, and prognostic analysis, P<0.05 
was considered as statistically significant.

Results

Pan-cancer analysis of the relationship between the gene 
expression of GSDMs and inflammasomes and OS 

Using the GEPIA2 online analysis tool, we performed a 
pan-cancer analysis of the relationship between GSDMs, 
inflammasome-related genes, and OS. It was found that 
GSDMB, GSDMD, NLRC4, NLRP1, NLRP3, NLRP6, 
NLRP7, and AIM2 were negatively correlated with the 
OS of SKCM (Figure 1A). It was also found that the 
expression of GSDMs and inflammasome-related genes 
was significantly different in cutaneous melanoma and skin 
tissue (Figure 1B). In addition, Kaplan-Meier survival curves 
of SKCM were plotted separately for each prognostic gene 
(Figure 1C-1J).

Two clusters of SKCM with significant differences in 
prognosis based on clustering of prognostic-related GSDMs 
and inflammasome genes

We used the prognostic-related GSDMs and inflammasome 
genes to cluster the skin melanoma samples. We found 
these genes could effectively divide SKCM into 2 clusters 
for melanoma data from TCGA database (Figure 2A-2C), 
and the 2 clusters had significant differences in prognosis 
(P<0.05; Figure 2D). Based on melanoma data from GEO 
database, it was also found that these genes could effectively 
divide melanoma data into 2 clusters (Figure 2E-2G), and 
there was a significant difference in prognosis between the 2 
clusters (P<0.05; Figure 2H).

http://gepia.cancer-pku.cn/
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Figure 1 Pan-cancer analysis of the relationship between the GSDMs and inflammasomes and overall survival. (A) Heatmap of the relationship 
between the gene expression of GSDMs and inflammasomes and overall survival. (B) PCA dimensionality reduction on samples from skin 
melanoma and skin normal tissue based on the gene expression of GSDMs and inflammasomes. (C-J) Kaplan-Meier survival curves of SKCM 
for each prognostic gene. GSDMs, gene expression of gasdermins; PCA, principal component analysis; SKCM, skin cutaneous melanoma.
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Two clusters of SKCM with significant differences in 
prognosis based on clustering of prognostic-related genes 33 
pyroptosis-related genes via data from the TCGA database

Using the SKCM data in TCGA database, we further 
clustered the genes related to the prognosis of melanoma 
among 33 pyroptosis-related genes and found that 
these genes could also divide SKCM into 2 clusters  
(Figure 3A-3D), and the prognosis of the 2 clusters was 
significantly different (Figure 3E). Moreover, in the C2 cluster 
with a better prognosis, the expression of pyroptosis-related 
genes was higher than that in the C1 cluster (Figure 3F,3G).

Two clusters of SKCM with significant differences in 
prognosis based on clustering of prognostic-related genes 33 
pyroptosis-related genes via data from the GEO database

By analyzing the data of skin melanoma from the GSE19234 
data set downloaded from the GEO database, we also 
found that the pyroptosis prognostic genes could divide 
melanoma into 2 clusters (Figure 4A-4C), and the prognosis 
of the 2 clusters was significantly different (Figure 4D).  
Moreover, in the C2 cluster with a better prognosis, the 
expression of pyroptosis-related genes was higher than that 

in the C1 cluster (Figure 4E).

The C1 and C2 clusters had different immune cell 
infiltration profiles and different immunoinhibitor, MHC 
molecule, immunostimulator, chemokine, and chemokine 
receptor gene expression

Using the CIBERSORT algorithm to calculate the 
content of immune cells, it was found that C2 cluster had 
a higher proportion of infiltrating memory B cells, CD8+ 
T cells, activated memory CD4+ T cells, Tregs, and M1 
macrophages, and a lower proportion of M2 macrophages, 
M0 macrophages, and resting mast cells compared with 
the C1 cluster. The proportions of most other cells in the 
C2 cluster were also higher than those in the C1 cluster, 
but this was not statistically significant (Figure 5A). Using 
the ssGSEA method to calculate immune cell scores, it 
was found that all immune cell scores in the C2 cluster 
were higher than those in the C1 cluster (Figure 5B). In 
addition, the C2 cluster had high gene expression of most 
immunoinhibitors (Figure 5C), MHC molecules (Figure 5D),  
immunostimulators (Figure 5E), and chemokines and their 
receptors (Figure 5F). 

Figure 2 The prognostic-related GSDMs and inflammasome genes could effectively divide SKCM into 2 clusters. (A-C) The prognostic-
related GSDM and inflammasome genes could effectively divide SKCM into 2 clusters based on TCGA database. (D) Kaplan-Meier 
survival curves of SKCM for the 2 clusters based on TCGA database. (E-G) The prognostic-related GSDM and inflammasome genes could 
effectively divide SKCM into 2 clusters based on the GEO database. (H) Kaplan-Meier survival curves of SKCM for the 2 clusters based on 
the GEO database. CDF, Cumulative Distribution Function; GSDMs, gasdermins; SKCM, skin cutaneous melanoma; TCGA, The Cancer 
Genome Atlas; GEO, Gene Expression Omnibus.
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Figure 4 The prognostic-related genes among 33 pyroptosis-related genes could divide skin cutaneous melanoma (SKCM) into 2 clusters 
with significant differences in prognosis based on the GEO database. (A-C) The prognostic-related genes among 33 pyroptosis-related 
genes could divide SKCM into 2 clusters based on the GEO database. (D) Kaplan-Meier survival curves of SKCM for the 2 clusters based 
on the GEO database. (E) Box plot of pyroptosis gene expression between the 2 clusters based on the GEO database. *, P<0.05; **, P<0.01; 
***, P<0.001. CDF, Cumulative Distribution Function; SKCM, skin cutaneous melanoma; GEO, Gene Expression Omnibus.
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Figure 5 The C1 and C2 clusters had different immune cell infiltration profiles and different immunoinhibitor, MHC molecule, 
immunostimulator, chemokine, and chemokine receptor gene expression based on TCGA database. (A) Comparison of immune cell content 
between the 2 clusters calculated by the CIBERSORT algorithm based on TCGA database. (B) Comparison of immune cells between the 
2 clusters calculated using the ssGSEA method based on TCGA database. (C-F) Heat maps of the gene expression of immunoinhibitors, 
MHC molecules, immunostimulators, and chemokines and their receptors between the 2 clusters based on TCGA database. *, P<0.05; **, 
P<0.01; ***, P<0.001. TCGA, The Cancer Genome Atlas; ssGSEA, single-sample gene set enrichment analysis.
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The risk model constructed by the genes related to the 
prognosis of pyroptosis could effectively predict the 
prognosis of patients

Based on SKCM data from TCGA database, prognostic risk 
models were constructed for SKCM using prognosis-related 
genes among 13 major pyroptosis genes or 33 pyroptosis 
genes. The prognostic risk models constructed using 
the 13 major pyroptosis genes could not be validated in 

melanoma data in the GEO database (Figure 6A). Finally, a 
prognostic risk model including AIM2, GSDMC, GSDMD, 
IL18, NLRP6, and PRKACA was constructed by using the 
prognosis-related genes among the 33 pyroptosis-related 
genes (Figure 6B), and it was found that the constructed 
prognostic risk model could be effectively verified by 
the melanoma data in the GEO database (Figure 6C).  
By analyzing the ROC curve, it was found that the 
prognostic risk model constructed by the prognosis-related 
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Figure 6 The risk model constructed by the genes related to the prognosis of pyroptosis can effectively predict the prognosis of patients. (A) 
Kaplan-Meier survival curves of SKCM for high- and low-risk groups based on the prognostic risk model constructed by using prognosis-
related genes among the 13 major pyroptosis genes determined by TCGA database. (B) Kaplan-Meier survival curves of SKCM for high- 
and low-risk groups based on the prognostic risk model constructed by using prognosis-related genes among all 33 pyroptosis genes based 
on TCGA database. (C) Kaplan-Meier survival curves for melanoma patients from the GEO database for high- and low-risk groups based 
on the prognostic risk model constructed by using prognosis-related genes among all 33 pyroptosis genes determined by TCGA database. 
(D) The AUC drawn for SKCM patients in TCGA database used the prognostic risk model constructed from prognosis-related genes 
among 13 major pyroptosis genes based on TCGA database. (E) The AUC curve drawn for SKCM patients in TCGA database used the 
prognostic risk model constructed from prognosis-related genes among all 33 pyroptosis genes based on TCGA database. (F) The AUC 
curve drawn for melanoma patients in the GEO database used the prognostic risk model constructed from prognosis-related genes among 
all 33 pyroptosis genes based on TCGA database. (G) The risk plot drawn for SKCM patients in TCGA database based on the prognostic 
risk model constructed by using prognosis-related genes among 13 major pyroptosis genes based on TCGA database. (H) The risk plot 
drawn for SKCM patients in TCGA database based on the prognostic risk model constructed by using prognosis-related genes among all 
33 pyroptosis genes based on TCGA database. (I) The risk plot drawn for melanoma patients in the GEO database based on the prognostic 
risk model constructed by using prognosis-related genes among all 33 pyroptosis genes based on TCGA database. (J) PCA by the prognostic 
genes among 13 major pyroptosis genes involved in the construction of the model could divide the SKCM patients from TCGA database 
into 2 different groups. (K) PCA by the prognostic genes among all 33 pyroptosis genes involved in the construction of the model could 
divide the SKCM patients from TCGA database into 2 different groups. (L) PCA by the prognostic genes among all 33 pyroptosis genes 
involved in the construction of the model could divide the melanoma patients from the GEO database into 2 different groups. (M) The t-SNE 
analysis by the prognostic genes among 13 major pyroptosis genes involved in the construction of the model could divide the SKCM patients 
from TCGA database into 2 different groups. (N) The t-SNE analysis by the prognostic genes among all 33 pyroptosis genes involved in 
the construction of the model could divide the SKCM patients from TCGA database into 2 different groups. (O) The t-SNE analysis by 
the prognostic genes among all 33 pyroptosis genes involved in the construction of the model could divide the melanoma patients from 
the GEO database into 2 different groups. SKCM, skin cutaneous melanoma; TCGA, The Cancer Genome Atlas; GEO, Gene Expression 
Omnibus; AUC, area under the curve; PCA, principal component analysis; t-SNE, t-distributed stochastic neighbor embedding.
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Figure 7 Risk score was significantly associated with prognosis in both univariate (A) and multivariate (B) Cox analyses.

genes among the 33 pyroptosis genes was better than that 
constructed by the prognosis-related genes among the 13 
pyroptosis genes. Because the area under the curve (AUC) 
value of 1 year, 2 years and 3 years is higher than that of 
the latter model (Figure 6D,6E). The application of this 
model in the GEO database also had a higher AUC value 
(Figure 6F). The risk plot also indicated that the risk score 
was related to the prognosis of patients (Figure 6G-6I). 
Through PCA (Figure 6J-6L) and t-SNE (Figure 6M-6O) 
analysis, it was found that the prognostic genes involved in 
the construction of the model could divide the samples into 
2 different groups.

Risk score was an independent prognostic factor for SKCM 

The risk score was significantly associated with prognosis 
in both univariate (Figure 7A) and multivariate (Figure 7B) 
Cox analyses. This suggests that the risk score can be used 
as a prognostic indicator of SKCM and is an independent 
prognostic factor. 

High- and low-risk groups had different immune cell 
infiltration and immune scores 

Through the Sankey diagram (Figure 8A), we found that the 
C2 cluster was predominantly the low-risk group, and the C1 
cluster was predominantly the high-risk group. Our analysis 
also showed that the C2 cluster had a better prognosis 
than the C1 cluster. In the low-risk group, pyroptosis-
related genes were also highly expressed (Figure S1A). The 
CIBERSORT method was used to calculate the infiltration 
content of immune cells in the tumor microenvironment 
(Figure 8B). It was found that the low-risk group had a 
higher proportion of memory B cells, plasma cells, CD8+ 
T cells, activated memory CD4+ T cells, Tregs, and M1 
macrophages than the high-risk group, along with a lower 
proportion of resting gamma delta natural killer (NK) cells, 
M2 macrophages, M0 macrophages, and resting mast cells. 
The proportions of most other cells in the low-risk group 
were also higher than those in the high-risk group, but 
there was no statistical significance. Using ssGSEA to score 
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Figure 8 The high- and low-risk groups had different immune cell infiltration profiles and immune scores. (A) The Sankey diagram includes 
cluster, risk score, stage, and survival status (fustat). (B) Comparison of immune cell content between high- and low-risk groups calculated by 
the CIBERSORT algorithm based on TCGA database. (C) Comparison of immune function score between high- and low-risk groups. (D) 
Correlation analysis of risk score and immune score. (E) Correlation analysis of risk score and TMB. (F) Correlation analysis of risk score 
and DNAss. (G) Correlation analysis of risk score and RNAss. (H) Correlation analysis of risk score and stromal score. *, P<0.05; **, P<0.01; 
***, P<0.001. TCGA, The Cancer Genome Atlas.

immune cells (Figure S1B), it was also found that almost 
all immune cells in the low-risk group scored higher than 
those in the high-risk group. Immune function analysis 
showed that except for mast cells, which were lower in the 
low-risk group, other immune functions were higher in the 
low-risk group (Figure 8C), which was consistent with the 

low proportion of resting mast cells in the low-risk group. 
The immune score is often correlated with the content 
of immune cells, and it was found that the risk score and 
immune score were highly correlated and statistically 
significant (Figure 8D). In addition, the risk score was not 
significantly associated with TMB (Figure 8E) and DNA 
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Figure 9 The high- and low-risk groups had different gene expression profiles of immunoinhibitors, MHC molecules, immunostimulators, 
and chemokines and their receptors. Heat maps of the gene expression of immunoinhibitors (A), MHC molecules (B), immunostimulators (C), 
and chemokines and their receptors (D) between high- and low-risk groups based on TCGA database. *, P<0.05; **, P<0.01; ***, P<0.001. 
The Cancer Genome Atlas.
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methylation based Stemness Scores (DNAss) (Figure 8F), 
although it was significantly associated with RNA based 
Stemness Scores (RNAss) (Figure 8G) and stromal score 
(Figure 8H), but the correlation coefficient was too low.

High- and low-risk groups had different gene expression 
profiles of immunoinhibitors, MHC molecules, 
immunostimulators, and chemokines and their receptors 

Our analysis showed that genes such as immunoinhibitors 
(Figure 9A), MHC molecules (Figure 9B), immunostimulators 

(Figure 9C), and chemokines and their receptors (Figure 9D) 
were highly expressed in the low-risk group.

The correlation between risk score and the expression 
of genes such as immunoinhibitors, MHC molecules, 
immunostimulators, and chemokines and their receptors

It was found that the risk score was negatively correlated with the 
gene expression of most of the immunoinhibitors (Figure 10A), 
MHC molecules (Figure 10B), immunostimulators (Figure 
10C), and chemokines and their receptors (Figure 10D). 
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Figure 10 The correlation between risk score and the gene expression of immunoinhibitors, MHC molecules, immunostimulators, and 
chemokines and their receptors. (A) Correlation heat map between risk score and the expression of immunoinhibitor genes. (B) Correlation 
heat map between risk score and the gene expression of MHC molecules. (C) Correlation heat map between risk score and the expression of 
immunostimulator genes. (D) Correlation heat map between risk score and the gene expression of chemokines and their receptors. (E-M) 
Correlation analysis of risk score and PD1, PD-L1, PD-L2, TIGIT, CTLA-4, LAG3, LGALS9, HAVCR2, and BTLA gene expression.
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Analysis of common immune checkpoint-related genes found 
that the correlation coefficients with PD1, PDL1, PDL2, 
TIGIT, CTLA-4, LAG3, LGALS9, HAVCR2, and BTLA were 
greater than 0.5, and the P values were less than 0.001 (Figure 
10E-10M).

Exclusion, dysfunction, and IPS differences between the C1 
and C2 clusters or the high- and low-risk groups 

Through the Sankey diagram (Figure 11A) or difference 
analysis, it was found that the low-risk group or C2 cluster 
tended to have more MSI patients, lower exclusion scores, 
but higher dysfunction scores (Figure 11B-11G). At the 
same time, the low-risk group or C2 cluster had higher IPS, 
including ips_ctla4_neg_pd1_pos, ips_ctla4_pos_pd1_neg, 
and ips_ctla4_pos_pd1_pos. These findings suggest that the 
low-risk group or C2 cluster is more suitable for anti-PD1 
or CTLA4 immunotherapy (Figure 11H-11O).

GO and KEGG enrichment

GO and KEGG enrichment analysis was performed on the 
differential genes between the C1 and C2 clusters (Figure 
12A,12B) or between the high- and low-risk groups (Figure 
12C,12D). It was found that GO enrichment was mainly 
involved in immune-related functions. KEGG enrichment 
was also mainly involved in immune cell-related pathways.

Discussion

The class ical  pyroptosis  pathway is  mediated by 

inflammasomes and caspase-1. When the body is invaded 
by pathogens, inflammatory caspase is activated, which 
eventually leads to the lysis of GSDMs. GSDM-NTs 
perforate the cell membrane surface, thereby inducing 
lytic death of pathogens and infected host cells (1,2,6,7). 
In addition to PJVK, almost all N-terminal domains of 
GSDMs can exert pore-forming activity in the plasma 
membrane (4,19). It has now been found that they can 
also be cleaved by other proteases, such as caspase-4/5/11, 
caspase-3, caspase-8, and granzymes (20).

Using GEPIA2 online analysis tools, “Median” was 
selected for group cutoff to analyze the prognosis of GSDM 
family genes and inflammasome-related genes. We found 
that most of the GSDMs and inflammasome genes were 
negatively correlated with the prognosis of SKCM. We used 
prognosis-related genes to cluster SKCM data downloaded 
from TCGA database and found that SKCM could be 
effectively divided into 2 clusters, and the prognosis of the 
C1 and C2 clusters was significantly different. Melanoma 
data downloaded from the GEO database also found the 
same phenomenon. However, the prognostic risk model 
constructed by these genes could not be validated in the 
GEO database.

In order to better cluster the tumors and construct a 
good prognostic risk model, we clustered the prognostic-
related genes among 33 pyroptosis genes. Both SKCM 
data downloaded from TCGA database and melanoma 
data downloaded from the GEO database could effectively 
divide melanoma into 2 clusters, and the prognosis of 
the 2 clusters was statistically different. The results were 
similar to the clustering of prognosis-related genes in 
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Figure 11 Exclusion, dysfunction, and IPS differences between the C1 and C2 clusters or high- and low-risk groups. (A) The Sankey 
diagram includes cluster, risk score, exclusion, and dysfunction. (B-D) MSI, exclusion, and dysfunction differences between the high- and 
low-risk groups. (E-G) MSI, exclusion, and dysfunction differences between the 2 clusters. (H-K) IPS differences between the high- and 
low-risk groups. (L-O) IPS differences between the 2 clusters. ***, P<0.001. IPS, immunophenoscore; MSI, microsatellite instability.
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Figure 12 GO and KEGG enrichment. (A) GO enrichment of differential genes between the high- and low-risk groups. (B) GO enrichment 
of differential genes between the 2 clusters. (C) KEGG enrichment of differential genes between the high- and low-risk groups. (D) KEGG 
enrichment of differential genes between the 2 clusters. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, 
biological process, CC, cellular component; MF, molecular function.
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GSDMs and inflammasomes. Furthermore, we constructed 
a prognostic risk model by using prognosis-related genes, 
and finally constructed a prognostic risk model including 
AIM2, GSDMC, GSDMD, IL18, NLRP6, and PRKACA. 
We found that the constructed prognostic risk model 
could be effectively validated by the melanoma data in 
the GEO database. At the same time, the prognostic risk 
model constructed by prognostic-related genes among 
33 pyroptosis genes was better than that constructed by 
prognostic-related genes among 13 pyroptosis genes. 
Additionally, the risk score was an independent prognostic 
factor of SKCM. 

Previous studies have also found that clustering genes 
related to pyroptosis can classify ovarian cancer, gastric 
cancer, and colon cancer into 2 clusters with different 
prognosis, and the risk scores constructed for gastric cancer, 
lung cancer, and colon cancer can effectively predict patient 
prognosis (13,14,21,22). But except in lung cancer, the 
establishment of risk model directly applies pyroptosis-
related genes (22), Models in stomach cancer (13) and colon 
cancer (14) is mainly based on DEGs identified based on 
the 2 pyroptosis subtypes. This time, we constructed a 
prognostic risk model directly using pyroptosis genes.

Because the C2 cluster had a better prognosis, further 
analysis also showed that the C2 cluster was predominantly 
the low-risk group and the C1 cluster was predominantly 
the high-risk group. Moreover, the C2 cluster or low-
risk group was showed high expression of pyroptosis-
related genes. Previous researchers have found that 
GSDMA is associated with the development of gastric 
cancer and esophageal cancer, and GSDMB and GSDMC 
are associated with the development of breast cancer and 
melanoma, respectively (23). Moreover, PD-L1 can induce 
pyroptosis by promoting the expression of GSDMC (24). 
In a study of GSDMD, it was also found that the pyroptosis 
of nasopharyngeal carcinoma cells induced by paclitaxel 
was mediated by GSDMD, and the pyroptosis induced by 
paclitaxel was inhibited after knocking out GSDMD (25).  
Low express ion of  GSDME  may favor melanoma  
growth (26). Therefore, the good prognosis of the C2 
cluster or low-risk group may be due to the high expression 
of pyroptosis genes, which increases the incidence of 
pyroptosis of tumor cells or increases the sensitivity of 
tumor cells to drug-induced pyroptosis.

High immune scores tend to indicate more immune 
cell infiltration in the tumor microenvironment (16). Our 
analysis found a negative correlation between the risk score 
and immune score. Subsequent analysis revealed that the 

C2 cluster or low-risk group tended to have more immune 
cell infiltration, especially effector T cell infiltration. This 
may be due to cell pyroptosis inducing the release of large 
amounts of inflammatory factors and cell contents. This 
results in the recruitment of immune cells, which further 
induces the inflammatory response and causes inflammatory 
death of the cell (27).

TIDE module can model 2 primary mechanisms of 
tumor immune evasion: the induction of T cell dysfunction 
in tumors with high infiltration of cytotoxic T lymphocytes 
(CTLs) and the prevention of T cell infiltration in tumors 
with low CTL levels, and the exclusion score and dysfunction 
score can represent the strength of the 2 tumor immune 
evasion mechanisms, respectively (15). Our analysis 
found that the C2 cluster or low-risk group had a lower 
exclusion score, indicating that the ability to prevent T cell 
infiltration in tumors was weak. However, the induction of 
T cell dysfunction in tumors was stronger because the C2 
cluster or low-risk group had a higher dysfunction score. 
This suggests that the low-risk group has a more favorable 
microenvironment for T cell infiltration than the high-risk 
group, but has a stronger ability to induce T cell dysfunction. 
Our analysis also showed that the C2 cluster or low-risk 
group had more T cell infiltration and greater expression of 
chemokines and their receptors, which may favor immune 
cell infiltration. However, at the same time, this was 
accompanied by high expression of immunoinhibitors and 
MHC-related genes, as well as more immunosuppressive 
Tregs. These factors may induce T cell dysfunction. The 
IPS can predict response to immunotherapy with CTLA-
4 and PD-1 blockers (28). Our analysis showed that 
patients in the C2 cluster or low-risk group had a higher 
IPS, indicating that they were more sensitive to treatment 
against PD1 or CTLA4. This may also be related to the 
fact that there is more infiltration of immune cells but 
greater expression of immunoinhibitors such as PD1 and 
CTLA4. When immunosuppression is relieved, there are 
more immune cells in tumors to play an anti-tumor role. 
Previous study has also shown that the immune response 
induced by pyroptosis activation is a double-edged sword 
that affects all stages of tumorigenesis (27). On the one 
hand, the activation of inflammasome-mediated pyroptosis 
and the release of pyroptosis-produced cytokines alter the 
immune microenvironment and promote the development 
of tumors by evading immune surveillance (27). On the 
other hand, pyroptosis-produced cytokines can also collect 
immune cells and induce the immune system to improve the 
efficiency of tumor immunotherapies (27). Therefore, the 
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C2 cluster or low-risk group tended to have more immune 
cell infiltration, but also more immune escape factors, such as 
immunosuppressive cells and immunoinhibitors, along with 
greater MHC gene expression, leading to T cell dysfunction. 
This type of tumor may be a hot tumor that is more suitable 
for immunotherapy (29). 

GO and KEGG enrichment analysis showed that the 
DEGs between the high- and low-risk groups or between 
the C1 and C2 clusters were mainly enriched in immune-
related functions or immune-related signaling pathways. 
This is consistent with our analysis of the immune 
microenvironment.

In conclusion, pyroptosis is closely related to the 
prognosis of SKCM, the immune microenvironment, and 
the response to immunotherapy. The prognostic model 
or risk score constructed by prognostic-related genes 
can effectively predict the prognosis of SKCM At the 
same time, the C2 cluster or low-risk group had a more 
favorable microenvironment for immune cell infiltration, 
resulting in more immune cell infiltration, especially T 
cells. However, at the same time, this group had more 
immune escape factors, such as more immunoinhibitors, 
greater MHC gene expression, and more infiltration of 
immunosuppressive Tregs. These tumors are more suitable 
for immunotherapy. Therefore, the risk score of pyroptosis 
can distinguish different immune microenvironments and 
predict the sensitivity to immunotherapy. This model can 
be used to guide the prognosis of patients and the choice 
of immunotherapy. At the same time, we believe that 
further studies should try to change the pyroptosis status of 
SKCM, which may improve the prognosis of patients and 
change cold tumors without immune cell infiltration into 
hot tumors rich in immune cells (29), thereby making them 
suitable for immunotherapy. This may also be a treatment 
for SKCM.
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A

B

Figure S1 Differences in pyroptosis-related genes and immune cells between high and low risk groups. (A) Differences in the expression of 
pyroptosis-related genes between high- and low-risk groups. (B) Comparison of immune cells between high- and low-risk groups calculated 
using the single-sample gene set enrichment analysis (ssGSEA) method based on The Cancer Genome Atlas (TCGA) database. *, P<0.05; **, 
P<0.01; ***, P<0.001.
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