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Background: Dilated cardiomyopathy (DCM) is currently the major cause of systolic heart failure. This 
study explored potential therapeutic targets and investigated the role of immune cell infiltration in DCM. 
Methods: Three DCM datasets (GSE3585, GSE9800, and GSE84796) from the Gene Expression 
Omnibus (GEO) database were merged into an integrated dataset, and batch effects were removed. 
Differentially expressed genes (DEGs) were screened and the associations between gene co-expression 
modules and clinical traits were assessed by weighted gene co-expression network analysis (WGCNA) in R 
software. Any DEGs from the integrated dataset overlapped with the significant module genes were defined 
as common genes (CGs). Enrichment analysis of the CGs was performed. The protein-protein interaction 
(PPI) network of the CGs was visualized and the hub gene was identified by using Cytoscape 3.8.2 software. 
The miRNA-transcription factor-mRNA (miRNA-TF-mRNA) network was constructed using Cytoscape to 

unveil the regulatory relationships in DCM. Finally, the CIBERSORT method (https://cibersort.stanford.
edu/) was used to investigate immune cell infiltration in DCM.
Results: A total of 53 DEGs were identified, and 5 gene co-expression modules were detected by WGCNA 
of the DCM and control group samples of cardiac tissue. Genes such as FRZB, ASPN, and PHLDA1 
were significantly upregulated, whereas IDH2 and ENDOG were significantly downregulated. Functional 
enrichment analysis showed that CGs were mainly enriched in the extracellular matrix (ECM) signaling 
pathway. ASPN was the hub gene in the PPI network. The miRNA-TF-mRNA network revealed that FRZB 
and ASPN were targeted by paired related homeobox 2 (Prrx2). We also found that miR-129-5p could 
regulate ASPN, PHLDA1, and IDH2 simultaneously. The immune infiltration analysis revealed higher 
levels of M1 macrophages in DCM samples than in the control samples. 
Conclusions: In conclusion, we speculate that miR-129-5p might target ASPN in regulating DCM via the 
ECM signaling pathway. Macrophage infiltration may be involved in ECM remodeling and eventually lead 
to DCM.
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Introduction

Dilated cardiomyopathy (DCM) refers to a myocardial 
disease characterized by ventricular dilation and impaired 
heart contractility (systolic and diastolic function), but the 
dysfunction cannot be sufficiently explained by pressure or 
volume overload or coronary artery disease (1). DCM is 
currently the major cause of systolic heart failure and is a 
heart transplant indication (2). However, the mechanisms 
underlying DCM are complex and not fully understood. 
Many experimental studies have shown that the cell-
mediated autoimmune mechanism triggered by viral 
infection plays an important role in the pathophysiological 
processes of DCM. The significance of inflammation to 
DCM development has also been recognized (3,4). 

MicroRNA (miRNA) is an endogenous small non-
coding RNA with a length of approximately 22 nucleotides. 
It plays an important role in RNA silencing and the post-
transcriptional regulation of gene expression (5). Research 
has shown that miRNA has important functions in various 
pathophysiological processes of cardiovascular diseases such 
as angiogenesis, cardiac cell contractility, plaque formation, 
cardiac rhythm arrangement, and cardiac cell growth (6). 
It has been reported that miRNAs can be involved in left 
ventricular reverse remodeling (LVRR) and extracellular 
matrix (ECM) fibrosis in DCM (7,8). Therefore, miRNAs 
can provide useful information for the pathophysiology  
of DCM. 

The immunological network also contributes to the 
pathogenesis of DCM (9). Viral myocarditis has been 
identified as a major cause of DCM (10). Previous studies 
have reported immune cell infiltration as a typical feature 
of the second stage of viral myocarditis. Natural killer 
(NK) cells and macrophages induce the initial host 
immune response, leading to the production of cytokines 
(tumor necrosis factor-α, interleukin-1, interleukin-2, 
and interferon-γ) and inflammatory cell infiltration. 
Antigen-specific T lymphocytes and antibody-producing 
B cells induce the secondary immune response. Immune-
mediated myocardial injuries play an important role in the 
progression from myocarditis to DCM (3,4,11). Researchers 
have also focused on the function of specific immune cells. 
For example, macrophages and T-helper 17 cells were 
identified as immune cells that regulate the transition from 
myocarditis to DCM (12). However, there are still few 
studies on the specific changes of various immune cells  
in DCM. 

Microarray technology and bioinformatics analysis are 

widely used in genome-wide gene expression analysis. They 
have been extensively employed to identify novel diagnostic 
and prognostic disease biomarkers and therapeutic targets 
in human diseases (13,14). However, there are few studies, 
to our knowledge, focused on miRNAs, their target genes, 
and immune cells in the cardiac tissue of patients with 
DCM. This study combined 3 DCM datasets (GSE3585, 
GSE9800, and GSE84796) from the Gene Expression 
Omnibus (GEO) to form an integrated dataset. Batch 
differences were then eliminated. After screening for 
differentially expressed genes (DEGs), we assessed the 
associations between gene co-expression modules and 
clinical traits using weighted gene co-expression network 
analysis (WGCNA). Enrichment analysis was performed, 
and a protein-protein interaction (PPI) network and 
miRNA-transcription factor-mRNA (miRNA-TF-
mRNA) network were constructed successively to identify 
the key genes, miRNAs, and pathways associated with 
DCM. CIBERSORT (https://cibersort.stanford.edu/) is 
an algorithm for estimating immune cell abundance by 
a versatile computational method called support vector 
regression (15). Finally, cells were detected using the 
CIBERSORT method to investigate immune cell infiltration 
in DCM. The study was initiated to identify underlying 
mechanisms, potential biomarkers, or therapeutic targets in 
DCM. We present the following article in accordance with 
the STREGA reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-732/rc).

Methods

Gene expression dataset

RNAseq data are available on the Gene Expression 
Omnibus database (GEO, https://www.ncbi.nlm.nih.
gov/geo/). A total of 1,452 microarray expression profile 
datasets for human DCM were retrieved from a search of 
the GEO database. After careful review, 3 gene expression 
profiles (GSE3585, GSE9800, and GSE84796) were 
collected. The GSE3585 profile was based on the GPL96 
platform Affymetrix Human Genome U133A array (HG-
U133A), the GSE9800 profile was based on the GPL887 
platform Agilent-012097 Human 1A Microarray V2 
(G4110B), and the GSE84796 profile was based on the 
GPL14550 Agilent-028004 SurePrint G3 Human GE 
8x60K microarray. All data are freely available online, and 
this study did not involve any experiments conducted on 
humans or animals. The study was conducted in accordance 

https://atm.amegroups.com/article/view/10.21037/atm-22-732/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-732/rc
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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with the Declaration of Helsinki (as revised in 2013).

Data processing and identification of DEGs

R is a free software environment for statistical computing 
and graphics. The R software (Version 4.0.5) was applied 
for data processing and DEGs identification. The Linear 
Models for Microarray Analysis (LIMMA) package 
and impute package were used to preprocess the 3 raw 
datasets, matching probe ID and gene names, removing 
missing values, normalizing data, and performing log2 
conversions (16,17). The LIMMA package was used to 
merge the 3 datasets into an integrated dataset. And the 
surrogate variable analysis (SVA) package, installed from 
Bioconductor (https://bioconductor.org/), was used to 
remove batch effects and other unwanted variations from 
among the 3 datasets (18). The LIMMA package was used 
to screen for DEGs further, with the cutoff values set as a 
corrected P value <0.05 and |log2 Fold change (FC)| >0.5. 
The R-language ggplot2 and pheatmap packages were used 
to draw a volcano map and a heat map of the DEGs. 

Weighted gene co-expression network analysis (WGCNA)

WGCNA was performed with the R-language WGCNA 
package (19). The variance of each gene expression value 
was calculated and ranked. The top 25% were selected to 
build the network for WGCNA. The flashClust package 
was used for optimal hierarchical clustering (19). Outlier 
samples were removed to construct a reliable network. 
The soft threshold power was calculated using the pick-
Soft-Threshold function in R. The adjacency matrix was 
created using the soft threshold. Then we transformed the 
adjacency matrix into a topological overlap matrix (TOM). 
The TOM was then applied to compute the corresponding 
dissimilarity (1-TOM). The gene co-expression modules 
were detected by using the dynamic tree cut approach. 
Modules were merged if the distance between them was 
less than 0.2. After relating modules to clinical traits, 
module membership (MM) and gene significance (GS) 
were calculated. Correlation networks between the module 
eigengenes and the clinical traits were then visualized. 
Common genes (CGs) were identified as DEGs from 
the integrated dataset and significant module genes that 
overlapped.

Gene ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis of CGs

GO analysis is a common, useful method for pathway-
enrichment analyses and biological interpretation. GO 
terms can be classified into 3 categories: biological process 
(BP), molecular function (MF), and cellular component 
(CC). KEGG (https://www.genome.jp/kegg/) is a widely 
used pathway-related database. GO analysis and KEGG 
pathway enrichment analysis of CGs in this study were 
performed using the database for annotation, visualization, 
and integrated discovery (DAVID) 6.8 (https://david.ncifcrf.
gov/). A corrected P value ≤0.05 and gene counts ≥2 were 
considered significant.

PPI network construction and hub gene identification

The search tool for the retrieval of interacting genes 
(STRING) database (www.string-db.org) primarily realizes 
the function of predicting PPI through comprehensive 
data from experimental results, abstracts from literature 
reports, and other databases. In this study, the STRING 
database was used to analyze the PPI network of the 
CGs, and a minimum interaction score ≥0.4 was set as the 
cutoff value. Subsequently, the PPI network was visualized 
using Cytoscape 3.8.2 software (20). CytoHubba, a plugin 
provided by Cytoscape, was used to identify the core genes 
in the network with 12 algorithms and provide accurate and 
comprehensive analyses of disease-related genes in DCM.

Construction of the miRNA-TF-mRNA regulatory 
network

The miRTarBase (21), Starbase (22), and Targetscan (23) 
databases were used to predict the target miRNAs of the 
CGs. A Venn diagram was created to detect overlapping 
miRNA lists from all 3 databases. Enrichr (http://amp.
pharm.mssm.edu/Enrichr/) is a comprehensive gene 
set enrichment analysis web server that contains a large 
collection of diverse gene-set libraries available for analysis. 
The transcription factor database (TRANSFAC) and 
JASPAR position weight matrices (PWMs) sections in 
Enrichr were used to identify the transcription factors (TFs) 
that regulate the CGs. A P value ≤0.05 was selected as 
the cutoff point. After evaluating the miRNA-TF-mRNA 
regulatory relationship, Cytoscape 3.8.2 software was used 

https://bioconductor.org/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
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to visualize the regulatory network.

Immune cell infiltration analysis

CIBERSORT is an analytical tool that estimates the 
abundances of member cell types in a mixed cell population 
using gene expression data. We downloaded the LM22 
signature matrix from the CIBERSORT website (https://
cibersort.stanford.edu/) and obtained the expression profiles 
of 22 types of immune cells. We used the CIBERSORT 
algorithm to quantify the relative proportion of infiltrating 
immune cells in DCM. A P value ≤0.05 was set as the 
cutoff point. Percentages for each type of immune cell in 
the samples were calculated and displayed in bar plots. The 
R-language pheatmap package was used to draw the heat 
map of 22 different types of immune cells in the samples, 
and the corrplot package was used to draw the correlation 
heat map, showing the correlation of 22 infiltrating immune 
cells. The vioplot package was used to visualize and 
compare the levels of immune cells in the DCM and control 
samples.

Statistical analysis

R software (version 4.0.5) was used for statistical analyses. 
The R packages applied in each step were mentioned above 
and could be downloaded from Bioconductor (https://
bioconductor.org/). All statistical tests were two-sided, and 
P value <0.05 was considered statistically significant.

Results 

Identification of DEGs

Three gene expression profiles (GSE3585, GSE9800, and 
GSE84796) were selected for this study. The GSE3585 
dataset included 7 heart biopsy samples of DCM patients 

and 5 normal cardiac samples, the GSE9800 dataset 
contained 12 DCM heart tissue samples and 6 normal 
cardiac tissue samples, and the GSE84796 consisted of 10 
DCM cardiac samples and 7 normal heart tissue samples. 
Specific information about the 3 datasets is presented in 
Table 1. A total of 53 DEGs were significantly differentially 
expressed, of which 34 were significantly upregulated 
genes and 19 were downregulated (Table S1). The top 5 
upregulated genes were frizzled-related protein (FRZB/
FRP), asporin (ASPN), pleckstrin homology-like domain 
family A member 1 (PHLDA1), complement factor H 
related 2 (CFH), and ornithine decarboxylase 1 (ODC1). 
The top 5 downregulated genes were protein phosphatase 
1 regulatory inhibitor subunit 1A (PPP1R1A), chromosome 
1 open reading frame 105 (C1orf105 ) ,  i soci trate 
dehydrogenase 2 (IDH2), endonuclease G (ENDOG), and 
coiled-coil domain-containing 69 (CCDC69). The heatmap 
and volcano plot of the DEGs are shown in Figure 1A,1B, 
respectively. 

Identification of gene co-expression networks and modules

The genes with variance ranked in the top 25% (n=1,578) 
were selected for cluster analysis. The outlier identification 
threshold was set to 30, and 1 outlier sample was identified 
and excluded. The soft-threshold power beta value was 
set to 4, and the R-squared value was set to 0.8. Modules 
were detected using the dynamic tree cut approach, and 
modules with highly correlated eigengenes were merged 
with a merge height set to 0.2. A total of 5 modules were 
obtained. Genes in the same module had high connectivity 
and similar function (Figure 2A). Each module was 
assigned a unique color identifier and expression profile 
summarized by a module eigengene (ME). The ME in the 
yellow module (r=0.52, P=2E-04) exhibited the highest 
significant positive correlation with DCM, compared with 

Table 1 Basic data of the three microarray databases derived from the GEO database

Dataset ID Platform Sample size (DCM/control) Region

GSE3585 GPL96: [HG-U133A] Affymetrix Human Genome 
U133A Array

7/5 Germany

GSE9800 GPL887: Agilent-012097 Human 1A Microarray 
(V2) G4110B 

12/6 Japan

GSE84796 GPL14550: Agilent-028004 SurePrint G3 Human 
GE 8x60K Microarray

10/7 France

GEO, Gene Expression Omnibus; DCM, dilated cardiomyopathy.

https://cibersort.stanford.edu/
https://cibersort.stanford.edu/
https://bioconductor.org/
https://bioconductor.org/
https://cdn.amegroups.cn/static/public/ATM-22-732-Supplementary.pdf
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Figure 1 Heat map and volcano plot for the DEGs identified in the integrated dataset. (A) Each column of the heat map represents a 
tissue sample, and each row represents a DEG. The red and blue colors represent upregulation and downregulation, respectively. (B) 
Red dots indicate upregulated DEGs, and blue dots indicate downregulated DEGs. DEG, differentially expressed gene; DCM, dilated 
cardiomyopathy.
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other modules (Figure 2B). Therefore, the yellow module 
was considered the key module in this study. A correlation 
plot was drawn up to show correlations between MM and 
GS for the modules associated with DCM. There was a 
significant positive correlation (r=0.72, P=1.6E-34) between 
a gene’s MM and GS in the yellow module (Figure 2C). 
Overlap between the DEGs from the integrated dataset and 
significant module genes identified 41 CGs (Figure 2D).

Functional enrichment analyses of CGs

The results of GO analysis indicated that CGs were mainly 
enriched in BPs, including collagen fibril organization, 
regulation of blood pressure, keratan sulfate catabolic 
process, and skeletal system development. In the CC 
ontology, the CGs were significantly enriched in the 
extracellular space, proteinaceous ECM, ECM, and 
extracellular region. MF analysis showed that the CGs were 
significantly enriched in heparin binding, platelet-derived 
growth factor binding, ECM structural constituents, and 
virus receptor activity. The results of KEGG pathway 
analysis showed that CGs were primarily enriched 
in protein digestion and absorption, ECM-receptor 
interaction, amoebiasis, and platelet activation (Figure 3, 
Table S2).

PPI network construction and hub gene identification

After removing disconnected nodes, we used the STRING 
tool to establish a PPI network that contained 24 nodes 
and 73 edges. The network included 21 upregulated and 
3 downregulated genes (Figure 4). Next, we used the 
CytoHubba plugin to identify the highly connected genes 
(hub genes) in this network. The results showed that 
collagen type III alpha 1 chain (COL3A1) had the highest 
degrees of connectivity, followed by periostin (POSTN), 
collagen type I alpha 1 chain (COL1A1), ASPN, lumican 
(LUM), fibromodulin (FMOD), connective tissue growth 
factor (CTGF), osteoglycin (OGN), collagen type I alpha 2 
chain (COL1A2), and dermatopontin (DPT) (Table S3). All 
these hub genes were upregulated in DCM.

MiRNA-TF-mRNA regulatory network analysis

After the miRNA-mRNA network and TF-mRNA network 
were predicted, the miRNA-TF-mRNA regulatory 
relationships were assessed. The regulatory network 
included 99 miRNAs, 9 transcription factors, and 39 genes. 

Cytoscape software was used to visualize the integrative 
miRNA-TF-mRNA co-expression network (Figure 5). We 
discovered that FRZB and ASPN were targeted by paired 
related homeobox 2 (Prrx2) within the network. We also 
found that miR-129-5p could regulate ASPN, PHLDA1, 
and IDH2 at the same time.

Immune cell infiltration analysis

Bar plots and heat maps showed the percentages of different 
immune cells in each sample (Figure 6). The immune cell 
infiltration violin plot showed that samples with DCM 
had higher levels of M1 macrophages than those in the 
control group (Figure 7A). The immune cell correlation 
relationships showed that eosinophils positively correlated 
with naïve CD4 T cells (r=0.9), activated memory CD4 
T cells positively correlated with neutrophils (r=0.78), 
and resting mast cells positively correlated with M0 
macrophages (r=0.75). Monocytes and resting NK cells 
positively correlated (r=0.74), and there was also a positive 
correlation between resting NK cells and activated dendritic 
cells (r=0.73). Neutrophils positively correlated with CD8 
T cells (r=0.72). On the other hand, resting mast cells 
and activated mast cells negatively correlated (r=−0.66), as 
did naïve CD4 T cells and resting memory CD4 T cells 
(r=−0.53) and CD8 T cells and activated NK cells (r=−0.51) 
(Figure 7B).

Discussion

DCM is the most common cardiomyopathy globally, yet its 
pathogenesis has not been fully elucidated to date. In the 
past, research on gene expression files was limited by small 
sample sizes and research skills. This study identified 53 
differential genes between the DCM group and the control 
group of the integrated datasets, of which 34 genes were 
upregulated, and 19 genes were downregulated. Genes 
such as FRZB, ASPN, and PHLDA1 were significantly 
upregulated, whereas IDH2 and ENDOG were significantly 
downregulated. 

DCM characteristics such as ventricular dilatation, 
hypertrophy, deterioration of cardiac function, and cardiac 
fibrosis have previously been observed in secreted frizzled-
related protein-1 (sFRP-1 or sFRZB-1) knockout mice (24). 
It was reported that sFRP-1 was involved in cardiomyocyte 
stiffness in DCM (25), and secreted frizzled-related 
protein 2 (sFRP2) has been found to prevent inflammatory 
precursors and cardiac fibroblasts from transforming into 

https://cdn.amegroups.cn/static/public/ATM-22-732-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-732-Supplementary.pdf
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pathogenic myofibroblasts, a critical process in DCM (26). 
In addition, ASPN has been found to increase significantly 
in DCM left ventricle samples (27), while the PHLDA1 
gene mutation is differentially expressed in DCM and 
control groups (28). In 1 study, the conditional mutant 
IDH2 mice exhibited DCM, characterized by severely 
reduced wall motion and increased dilatation (29). Similar 
effects have also been described in humans, and patients 

with IDH2 mutations have been proven more likely to get 
DCM (30). One retrospective study showed that patients 
with acute myeloid leukemia and IDH2 mutations were 
more prone to cardiac dysfunction (31). In other studies, 
dimethyl α-ketoglutarate inhibited maladaptive autophagy 
IDH2-dependently in DCM (32), and ENDOG reportedly 
impacted canine DCM development through the apoptotic 
pathway (33). 
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The present study used WGCNA to identify 5 gene 
modules, among which the yellow module, including 208 
genes, exhibited the highest significant positive correlation 
with DCM. We selected CGs from the intersection of 
genes identified in the WGCNA significant module and 
DEGs from the LIMMA analysis to make our results 
more rigorous. Functional enrichment analyses of the CGs 
revealed that DCM was primarily related to collagen fibril 
organization and the ECM. 

The ECM provides structural support and participates 
in most basic cell behaviors, such as proliferation, adhesion, 
and migration, and is a major component of the cellular 
microenvironment (34). The myocardial ECM mainly 
comprises type I collagen, type III collagen, and elastin. 
Type I collagen is associated with thicker and stiffer fibers, 
while type III collagen is associated with thinner and 
more compliant fibers. Both type I and type III collagen 
expressions increase in DCM, and these fibrous collagens 
assemble into stable fibrillar networks by cross-linking, 
which is an essential process for ECM stabilization (35). 
However, newly produced collagen lacks stable cross-
links and may cause ventricular dilatation. The ratio of 
type I to type III collagen can be considered an indicator 
of myocardial dilation. This ratio increases in DCM and 
is associated with increased stiffness and reduced elasticity 
in the cardiac wall (36,37). The results of the functional 
enrichment analyses of CGs in this study were concordant 
with previous studies. 

ASPN is an ECM protein that belongs to the class I 
small leucine-rich repeat proteoglycan (SLRP) family. 

ASPN can bind to type I collagen and may induce collagen 
mineralization (38). Among its related pathways are the 
degradation of the ECM and ECM proteoglycans. GO 
annotations related to this gene include calcium ion binding 
and collagen binding. The present study found ASPN to 
be significantly upregulated in the DCM group. FRZB 
functions as modulators of Wnt signaling through direct 
interaction with Wnts (39). The Wnt signaling pathway 
works as an important modulator of ECM expression and 
regulates ECM assembly (40). PHLDA1 has been reported 
as involved in the regulation of the cell cycle (41), and the 
physical forces at the cell-ECM interfaces can regulate 
the cell cycle balance (42). IDH2 plays an important 
role in intermediary metabolism and energy production, 
while it has been reported that ECM can regulate energy 
metabolism and act as potential therapeutic targets for 
metabolic diseases (43). ENDOG is a protein-coding gene 
related to apoptosis modulation and signaling. Apoptosis 
plays an important role in the synthesis, deposition, and 
remodeling of ECM proteins (44). Based on these findings, 
we conjectured that FRZB, ASPN, PHLDA1, IDH2, and 
ENDOG could regulate DCM through the ECM signaling 
pathway.

Myocardial fibrosis is a major feature of DCM. Prrx2 
is a protein-coding gene and belongs to the paired 
family of homeobox proteins. The expression patterns of 
Prrx2 provide evidence consistent with a role in cellular 
proliferation (45). The upregulation of Prrx2 has been 
found to promote cardiac fibrosis in myocardial infarction 
mice by targeting Wnt5a (46), and Prrx2 has been reported 
to function in the downstream activity in embryonic 
fibroblasts (47). Within the miRNA-TF-mRNA regulatory 
network, we discovered that Prrx2 could regulate both 
FRZB and ASPN. Our results also suggested that the 
miR-129-5p can act as the bridge to connect ASPN, 
PHLDA1, and IDH2. Inhibition of miR-129-5p can 
promote the synthesis of type I collagen and thus drive cell  
f ibrogenesis (48), and downregulated miR-129-5p 
contributes to increased collagen expression in scleroderma 
fibroblasts (49). We speculated that miR-129-5p might 
target ASPN in regulating DCM through the ECM 
signaling pathway. And miR-129-5p/ASPN might be 
viewed as a potential therapeutic target for DCM.

The virus-induced autoimmune response plays a key 
role in the pathophysiologic process of DCM (50). Various 
immune cells trigger the anti-myocardial autoimmune 
process and continuously attack the myocardial tissues 
with specific immunopathogenic features by mediating 
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Figure 4 PPI network constructed with the CGs. Red nodes represent 
upregulated genes, and blue nodes represent downregulated genes. 
PPI, protein-protein interaction; CGs, common genes.
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innate and adaptive responses. However, previous 
immune infiltration analysis for DCM has not been very  
informative (51). We used CIBERSORT to evaluate the 
expression levels of 22 immune cells in DCM. The results 
showed that there was a significant difference in immune 
cell infiltration between DCM cardiac samples and normal 
heart tissue samples. The expression of M1 macrophages 
increased significantly in the DCM group. Therefore, 
M1 macrophages may be potential core immune cells, 
involved in the progression of DCM. Macrophages can 
be categorized into 2 types: M1 (proinflammatory) or 
M2 (anti-inflammatory). M1 macrophages can produce 
proinflammatory chemokines such as IL-6, IL-12 and tumor 
necrosis factor (TNF). In infected tissues, macrophages 
are first differentiated into the M1 subtype to resist  
pathogens (52). Viral myocarditis is an important cause 

of DCM and has been linked to Coxsackievirus B 
(CVB) infection. Even if the pathogen has been cleared, 
the virus may induce an immune response that causes 
inflammation (53). Recent studies have confirmed 
that macrophages play an important role in the host 
immune response in myocarditis. One study found the 
DCM myocardium infiltrated by CD4(+) and CD8(+) T 
lymphocytes and macrophages (54). Increased osteopontin 
levels in macrophages have also been reported to be 
a determinant of fibrosis and cardiac remodeling in a 
CVB3-induced myocarditis model (55). Another study 
detected a significantly elevated number of infiltrates 
in the experimental autoimmune myocarditis (EAM) 
model myocardium. It was indicated that the activation 
of macrophages was crucial to the EAM induction (56). 
Research has shown that high collagen expression in 

Figure 5 The miRNA-TF-mRNA regulatory network. Red nodes represent predicted mRNAs, purple nodes represent miRNAs, and blue 
nodes represent TFs. mRNAs, messenger RNAs; miRNAs, microRNAs; TFs, transcription factors.
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Figure 7 Distribution and visualization of immune cell infiltration. (A) Violin plot showing the distributions of immune cell types in the DCM 
and control groups. Green represents the adjacent control sample, and red represents the DCM sample. (B) Correlation relationships for all 22 
immune cells. The vertical axis and the horizontal axis indicate the 22 types of immune cells. The red blocks denote strong positive correlations, 
the blue blocks correspond to strong negative correlations, and the white blocks represent no correlation. DCM, dilated cardiomyopathy.
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fibroblasts can be regulated by collagen degradation by 
M1 macrophage proteinases (57). Macrophages and other 
immune cells can directly stimulate fibrosis by activating 
cardiac fibroblasts and can indirectly stimulate fibrosis by 
synthesizing various profibrotic molecules (58). Therefore, 
macrophage infiltration may induce ECM remodeling 
by regulating fibrosis, thus functioning in DCM. There 
was a close association between the potential genes 
and miRNAs identified in our study and the immune 
cell infiltration. ASPN has been reported to inhibit the 
TLR2- and TLR4-induced proinflammatory cytokine 
expression in macrophages (59). PHLDA1 expression 
was reported to be a negative regulator of LPS-induced 
proinflammatory cytokine in macrophages (60). And miR-
129-5p was identified to be involved in the autophagy and 
apoptosis of macrophages (61,62). Our findings provided 
a potential theory of DCM development, and suggested 
that M1 macrophages could possibly be used as a potential 
therapeutic target for DCM. 

There were some limitations to our study. Firstly, we 
only focused on the significantly expressed genes and 
pathways of the enrichment analysis. Additionally, the 
association of immune cell infiltration and miRNAs should 
be further explored. Finally, the results of this study are 
yet to be verified through relevant in vivo and in vitro 
experiments. We will focus on the functional research on 
key genes such as ASPN, FRZB and IDH2 subsequently. 
The problems of the limitations will be investigated in 
future studies.

Conclusions

We speculate that miR-129-5p might target ASPN in 
regulating DCM through the ECM signaling pathway. 
Macrophage infiltration may lead to ECM remodeling and 
ultimately induce DCM.
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Supplementary

Table S1 DEGs identified in the three integrated datasets

Gene symbol Up/down regulation logFC P value

FRZB Up 1.165105482 1.74E-07

PHLDA1 Up 0.597089286 3.28E-07

ASPN Up 1.044125975 3.39E-07

CFH Up 0.957198888 2.76E-06

ODC1 Up 0.50478927 8.72E-06

ATP10D Up 0.53649503 3.26E-05

OMD Up 0.847559371 4.01E-05

TSC22D3 Up 0.6614161 0.000136

LRRC17 Up 0.72475092 0.000164

DPT Up 0.623966442 0.0002

COL1A2 Up 0.637546144 0.000321

SFRP4 Up 1.053731958 0.000385

OGN Up 0.868700631 0.000455

CXCR4 Up 0.985731242 0.000484

COL3A1 Up 0.64436839 0.000673

PIK3IP1 Up 0.583009267 0.000883

ACE2 Up 0.632017279 0.000985

NPPB Up 2.002072319 0.001148

CTGF Up 0.734968945 0.001377

MXRA5 Up 0.6393268 0.001456

NPPA Up 0.89706059 0.001795

SCRG1 Up 0.617794477 0.002428

IGFBP2 Up 0.540245111 0.002716

POSTN Up 0.853311859 0.003052

RASL11B Up 0.628420997 0.003557

LUM Up 0.603016401 0.004928

COL1A1 Up 0.51368708 0.006032

FMOD Up 0.632510749 0.007007

NAP1L3 Up 0.820553842 0.007808

ITK Up 0.779948693 0.008944

STYK1 Up 0.584066585 0.018427

NPR3 Up 0.526544295 0.018467

LTBP2 Up 0.640958469 0.020436

LAX1 Up 0.539479733 0.049019

PPP1R1A Down −0.65868 5.94E-07

C1orf105 Down −1.17338 1.14E-06

IDH2 Down −0.59402 1.94E-06

ENDOG Down −0.58604 2.62E-06

CCDC69 Down −0.53694 3.02E-06

PYGM Down −0.65979 1.42E-05

MID1IP1 Down −0.72805 5.55E-05

PTDSS1 Down −0.56072 6.19E-05

ATP2A2 Down −0.54897 8.81E-05

MYH6 Down −0.88604 0.000123

FCN3 Down −0.75035 0.000146

MOG Down −0.61171 0.000152

PTP4A3 Down −0.57048 0.000302

RARRES1 Down −1.04067 0.002039

RRAD Down −0.78475 0.006446

LYVE1 Down −0.61581 0.00991

CORIN Down −0.69927 0.019628

SERPINA3 Down −0.64048 0.023801

MYL7 Down −0.60221 0.029289

DEG, differentially expressed gene. 
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Table S2 Top 4 significantly enriched GO terms and KEGG pathways of CGs

Category Term Description Count P value

BP term GO:0030199 Collagen fibril organization 6 2.14E-08

BP term GO:0008217 Regulation of blood pressure 6 2.94E-07

BP term GO:0042340 Keratan sulfate catabolic process 4 2.14E-06

BP term GO:0001501 Skeletal system development 6 1.19E-05

CC term GO:0005615 Extracellular space 21 1.91E-13

CC term GO:0005578 Proteinaceous extracellular matrix 10 3.16E-09

CC term GO:0031012 Extracellular matrix 10 7.52E-09

CC term GO:0005576 Extracellular region 17 4.34E-08

MF term GO:0008201 Heparin binding 6 1.85E-05

MF term GO:0048407 Platelet-derived growth factor binding 3 2.27E-04

MF term GO:0005201 Extracellular matrix structural constituent 4 3.57E-04

MF term GO:0001618 Virus receptor activity 3 0.009

KEGG pathway hsa04974 Protein digestion and absorption 4 0.001

KEGG pathway hsa04512 ECM-receptor interaction 3 0.019

KEGG pathway hsa05146 Amoebiasis 3 0.028

KEGG pathway hsa04611 Platelet activation 3 0.040

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; CGs, common genes; BP, biological process; CC, cellular 
component; MF, molecular function.

Table S3 Top 10 hub genes with higher degree of connectivity

Gene symbol Gene description Score

COL3A1 Collagen type III alpha 1 chain 13

POSTN Periostin 13

COL1A1 Collagen type I alpha 1 chain 12

ASPN Asporin 10

LUM Lumican 10

FMOD Fibromodulin 10

CTGF Connective tissue growth factor 9

OGN Osteoglycin 9

COL1A2 Collagen type I alpha 2 chain 9

DPT Dermatopontin 7
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