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Background: The apparent diffusion coefficient (ADC) value using histogram analysis is helpful to predict 
responses to neoadjuvant chemotherapy (NAC) in breast cancer. However, the measurement method has not 
reached a consensus. This study was to assess the diagnostic performance of the ADC histogram analysis at 
predicting patient response prior to NAC in breast cancer patients using different region of interest (ROI) 
selection methods. 
Methods: A total of 75 patients who underwent diffusion weighted imaging (DWI) prior to NAC were 
retrospectively enrolled from February 2017 to December 2019. Images were measured using small 
2-dimensional (2D) ROI, large 2D ROI, and volume ROI methods. The measurement time and ROI 
size were recorded. Histopathologic responses were acquired using the Miller-Payne grading system after 
surgery. The inter- and intra-observer repeatability was analyzed and the ADC histogram values from the 
three ROI methods were compared. The efficacy of each method at predicting patient response prior to 
NAC was assessed using the area under the receiver operating characteristic curve (AUC) for the whole study 
population and subgroups according to molecular subtype.
Results: Among the 75 enrolled patients, 26 (34.67%) were responsive to NAC therapy. The ADC 
histogram values were significantly different among the three ROI methods (P≤0.038). Inter- and intra-
observer repeatability of the large 2D ROI method and the volume ROI method was generally greater than 
that observed with the 2D ROI method. The 10% ADC value of the large 2D ROI method showed the 
greatest AUC (0.701) in the whole study population and in the luminal subgroup (AUC 0.804). The volume 
ROI method required significantly more time than the other two ROI methods (P<0.001).
Conclusions: The small 2D ROI method is not appropriate for predicting response prior to NAC in 
breast cancer patients due to the poor repeatability. When choosing the ROI method and the histogram 
parameters for predicting response prior to NAC in breast cancer patients using ADC-derived histogram 
analysis, 10% of the large 2D ROI method is recommended, especially in luminal A subtype patients.
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Introduction

Neoadjuvant chemotherapy (NAC) has been shown to 
increase the disease-free and overall survival rates in 
patients with operable breast cancer and represents an 
appropriate regimen for patients with locally advanced 
breast cancer (1,2). Predicting responsiveness to NAC may 
help to identify patients who will benefit from alternative 
therapeutic regimens.

Imaging plays an important role in predicting response 
to NAC in breast cancer. The imaging method include 
ultrasound, mammography, Magnetic resonance imaging 
(MRI), integrated positron emission tomography (PET) with 
computed tomography (CT) (PET/CT) and PET/MRI, 
etc. The biomarkers for response prediction derived from 
imaging include tumor size (diameter, area, volume), apparent 
diffusion coefficient (ADC) value, signal enhancement 
ratio (SER), standard uptake value (SUV), etc. ADC aims 
at reflecting the biological properties of breast cancer 
trough parameters extracted from quantitative diffusion 
weighted imaging (DWI) that may change earlier before the 
morphological changes are detectable, during NAC.

Although ADC value has been shown to be helpful in 
predicting a patient’s responses to NAC (3,4), there are 
some inconsistencies (5-11). These conflicting results 
might be partly attributed to the absence of a standardize 
measurement method applied to obtain ADC value. 
Moreover, the conventionally used average ADC value 
cannot fully reflect tumor heterogeneity, which may result 
from cancer nests, ductal components, intratumoral necrosis, 
or fibrosis (12). Recently, a histogram analysis method has 
been introduced to investigate tumor heterogeneity (13).

The histogram method has been applied to predict 
the early response to NAC in patients with breast cancer 
and other types of malignancies (14-19). However, there 
is currently no consensus on the tumor region of interest 
(ROI) delineation method, some authors using volume ROIs 
method while others 2-dimensional (2D) ROIs (14,15,20,21). 
One study has applied histogram analysis to explore how 
ROIs can influence the measurement of the ADC value 
while predicting breast cancer response prior to NAC (22).

Therefore,  this  current  study invest igated the 
repeatability of three ROI methods; assessed the influence 
of different ROI methods on ADC-derived histogram 
values; and compared the clinical feasibility of different 
ROI methods using ADC-derived histogram analysis in 
predicting a response in breast cancer patients prior to 
administration of NAC. We present the following article in 
accordance with the STARD reporting checklist (available 

at https://atm.amegroups.com/article/view/10.21037/atm-
22-1078/rc).

Methods

Patients

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013) and approved by institutional 
ethics board of Renji Hospital (No. KY2021-116-B). 
Informed consent was not required due to the retrospective 
nature of the study. A total of 106 patients, from Renji 
hospital clinical database between February 2017 and 
December 2019, were enrolled for this retrospective study. 
The inclusion criteria are displayed in Figure 1. The inclusion 
criterials were applied: (I) Histologically confirmed breast 
cancer by core needle biopsy before NAC; (II) MRI prior to 
NAC; (III) NAC prior to surgery; (IV) surgery after NAC; 
(V) lesions measurable on ADC map. The following patients 
(n=31) were excluded: (I) 19 patients (61%) with poor image 
quality; (II) 6 patients (19%) with software unrecognizable; 
(III) 1 male patient (3%); and (IV) 5 patients (16%) with 
tumors containing large necrotic or cystic compartments. 
Finally, 75 female patients were recruited, with a mean 
age of 50 years (range, 26–73 years). The basic clinical 
characteristics of the patients are summarized in Table 1.

Histopathological analysis

Patients who responded to NAC therapy were defined by 
the absence of any identifiable invasive malignant cell or 
strictly ductal carcinoma in situ after surgery, according to the 
Miller-Payne grading system (23). The status of the estrogen 
receptor (ER), progesterone receptor (PR), and human 
epidermal growth factor receptor 2 (HER2) were assessed 
by immunohistochemistry. The ER and PR status were 
expressed as percentages (%). In classifying the HER2 gene 
expression, negative status was determined using scores of 
0 and 1+, while positive status was determined by a score of 
3+. When the score was 2+, fluorescent in situ hybridization 
(FISH) was performed to verify HER2 status (FISH+ 
positive). Breast cancer molecular subtypes were classified into 
three subtypes including luminal type, HER2-enriched, and 
triple negative, as described in previous studies (22,24-26).  
Luminal type was defined as tumor cells with nuclear ER 
and/or PR staining >10%. Luminal type breast cancers 
include two subtypes, luminal A and B. Luminal A was 
defined as ER and/or PR staining >10% and HER2 negative. 
Luminal B was defined as ER and/or PR staining >10% 

https://atm.amegroups.com/article/view/10.21037/atm-22-1078/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-1078/rc
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Histologically confirmed breast cancer by core needle biopsy before NAC

MRI prior to NAC

NAC prior to surgery

Surgery after NAC

Lesions measurable on ADC map

Eligible 106 patients

Final cohort 75 patients

31 patients excluded:
• Poor image quality (n=19)
• Software unrecognizable (n=6)
• Male (n=1)
• Large necrotic or cystic compartments (n=5)

Clinical database between February 2017 and December 2019

Figure 1 A flow chart of the study design depicting the number of patients. NAC, neoadjuvant chemotherapy; MRI, magnetic resonance 
imaging; ADC, apparent diffusion coefficient.

Table 1 Characteristics of the responders and non-responders before NAC

Characteristics Responders (n=26) Non-responders (n=49) P

Age (years), mean ± SD 50±12 50±11 0.965

Menstruation

Y 12 28 0.364

N 14 21

ER expression (%) 18.35±32.14 52.39±36.78 <0.001*

PR expression (%) 27.35±29.30 36.98±32.19 0.208

HER2 expression

Positive 18 21 0.030*

Negative 8 28

Luminal A

Y 5 25 0.007*

N 21 24

Table 1 (continued)
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and HER2 positive. HER2-enriched was defined as ER and 

PR staining <10% with HER2 positive. Triple negative was 

defined as ER and PR staining <10%, and HER2 negative.

Magnetic resonance imaging (MRI)

All patients underwent MRI using a 3.0 T MR scanner 
(Philips Medical Systems, Achieva, Best, The Netherlands) 

Table 1 (continued)

Characteristics Responders (n=26) Non-responders (n=49) P

Luminal B

Y 14 20 0.281

N 12 29

Luminal type

Y 19 45 0.029*

N 7 4

HER2 enriched

Y 4 1 0.027*

N 22 48

Triple negative

Y 3 3 0.411

N 23 46

TIC type

I 5 13 0.580

II 16 22

III 5 9

Enhanced pattern

Mass 22 30 0.053

Non-mass 4 19

D (cm), mean ± SD 3.98±1.98 3.96±2.02 0.683

Size

Small 2D ROI (cm2), median (IQR) 0.15 (0.16) 0.16 (0.22) 0.684

Large 2D ROI (cm2), median (IQR) 5.58 (5.09) 4.98 (6.63) 0.832

Volume ROI (cm3), median (IQR) 12.39 (15.97) 11.08 (16.61) 0.920

Tumor type

IC 11 18

IDC 14 28

ILC 0 3

Others 1 0

*, indicates statistical significance (P<0.05). NAC, neoadjuvant chemotherapy; SD, standard deviation; ER, estrogen receptor; PR, 
progesterone receptor; HER2, human epidermal growth factor receptor 2; TIC, time-intensity curve; D, maximum tumor diameter; 2D, 
2-dimensional; ROI, region of interest; IQR, inter quartile range; IC, invasive carcinoma (which type of invasive carcinomas was not further 
classified); IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; Y, yes; N, no.
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in the prone position, using a four-channel breast array coil.
All MR images were acquired using the following 

sequences: an axial DWI sequence, a fat-suppressed T2-
weighted sagittal sequence, and an axial T1-weighted 
sequence. Finally, an axial dynamic contrast-enhanced MRI 
(DCE-MRI) was performed with three-dimensional (3D) 
T1-weighted fast spoiled gradient-echo sequences before 
and after injection of a contrast agent (0.1 mmol/kg body 
weight Gd-DPTA, Bayer Healthcare, Magnevist, Germany). 
For DWI, images were acquired with a single shot spin-
echo-planar sequence, using the following parameters: 
repetition time/echo time (TR/TE), 2,681/82 ms; field of 
view, 230×240 mm; matrix, 224×224; slice thickness, 3 mm; 
40 slices with 0 mm gap; number of excitation (NEX), 3; 
b-values, 0 and 800 sec/mm2.

Imaging analysis

Two breast radiologists (Xiaochuan Geng with 8 and 
Dandan Zhang with 2 years of experience in breast MRI) 
independently performed the ROI placements, which was 
repeated two months later. Both radiologists were blinded 
to the histological results and response to NAC. DWI 
image analysis was performed with MATLAB (MathWorks, 
version R2012b, Natick, Massachusetts, USA), and ADC 
maps were generated using a monoexponential model using 
the following formula:

b
lnSlnS

ADC b0 −=  [1]

where S0 and Sb represent DWI signal intensity at b=0 and 
800 s/mm2, respectively. Using lesion hyperintensity on 
high b-value DWI and DCE-MRI images as reference, 
ROIs were drawn manually on ADC maps using MATLAB. 
Necrosis, cystic, and hemorrhage sites were carefully 
avoided. Three ROI methods were applied (Figure 2). The 
small 2D ROI method was delineated in the area where the 
lowest intensity inside the lesion was visualized. The large 
2D ROI method covered a single slice showing the largest 
area of the whole lesion. The volume ROI method covered 
the whole lesion on all slices, that were then combined to 
form a 3D-ROI. The histogram of the ADC values was then 
calculated using the MATLAB software for every method. 
The parameters derived from the histogram analysis 
included the mean; standard deviation (SD); minimum; 
maximum; 10% and 25%, median, 75%, and 90% 
percentiles; skewness; and kurtosis. Finally, measurement 
time was computed using tic and toc functions on 

MATLAB. Skewness was used to measure the asymmetry, 
and kurtosis was used to measure the peakedness of the 
distribution (26). The ROI size, enhanced pattern, TIC 
type, were also recorded.

Statistical analysis

Continuous variables were expressed as mean ± SD or 
median [interquartile range (IQR)] according to the 
distribution. Categorical variables were presented as 
a count. The inter- and intra-observer repeatability 
for the 3 ROI methods were analyzed using interclass 
correlation coefficient (ICC; 0.00–0.20 represents poor 
correlation; 0.21–0.40 indicates fair correlation; 0.41–0.60 
indicates moderate correlation; 0.61–0.80 represents good 
correlation; and 0.81–1.00 represents excellent correlation). 
The histogram ADC parameters (mean, standard deviation, 
minimum, maximum, median, 10%, 25%, 75%, 90% of 
ADC values) of the responders versus the non-responders 
were compared using unpaired Student’s t-tests for the 
3 ROI methods. The differences in the histogram ADC 
parameters among the 3 ROI methods were compared using 
one-way analysis of variance (ANOVA). The measurement 
time was averaged and compared using paired-sample 
Student’s t-tests. Receiver operating characteristic (ROC) 
curves were constructed to assess the ability of the 3 ROI 
methods to differentiate responders from non-responders. 
According to arbitrary guidelines, the accuracy of prediction 
was defined as less accurate (AUC: 0.5–0.7), moderately 
accurate (AUC: 0.7–0.9), highly accurate (AUC: 0.9–1). 
Comparisons between ROC curves were performed with 
the method used by DeLong et al. (27).

A P value less than 0.05 was considered statistically 
significant. Statistical analysis was performed using SPSS 
(IBM, version 21.0, Armonk, New York, USA), Medcalc 
(MedCalc Software Ltd., version 19.0.7, Ostend, Belgium) 
and EmpowerStats (2009 X&Y Solutions. Inc., IN, USA).

Results

Clinical characteristics

Table 1  presents the clinical characteristics of the 
patients. Out of the 75 patients, 26 (35%) showed a 
histopathologically confirmed response. Based on the 
immunohistochemistry results, there were significant 
differences in the ER and HER2 status between responders 
and non-responders (P<0.001 and P=0.030, respectively; 
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Table 1). There were 5 (7%) HER2-enriched tumors, 6 
(8%) triple negative tumors, and 64 (85%) luminal type 
breast cancers including 30 (40%) luminal A and 34 (45%) 
luminal B. A significant difference in the distribution of 
luminal type, luminal A, and HER2-enriched tumors was 
noted between responders and non-responders (P=0.029£, 
0.007, and P=0.027, respectively). There was no significant 
difference in the size of the ROI.

Inter- and intra-observer repeatability analysis

Inter- and intra-observer repeatability of the large 2D ROI 
and volume ROI methods were generally higher than those 
of the small 2D ROI method. In the case of inter- and 
intra-observer repeatability associated with the large 2D 
ROI and volume ROI methods, intra-observer repeatability 

were generally higher than inter-observer repeatability, and 
some parameters (mean, 10%, 25%, median in large 2D 
ROI and mean, 10%, 25%, median, 75% in volume ROI) 
of the ICCs were excellent (0.820–0.934). The results are 
summarized in Table 2.

A comparison of the ADC values among the three ROI 
methods

The ADC values of all patients were significantly different 
among the three ROI methods, with P<0.001 for all variables 
except for skewness (P=0.038) and the 10% percentile 
(P=0.006) (Table 3). The volume ROIs had the lowest 
minimum (0.17±0.17×10−3 mm2/s; P<0.001 compared with 
the minimum values of other ROI methods) and the largest 
maximum (2.33±0.55×10−3 mm2/s; P<0.001) ADC values.

A B C

D E F

Figure 2 Images from a 49-year-old female patient with invasive ductal carcinoma confirmed by core needle biopsy in the left breast. (A) 
T1-weighted image. (B) Contrast-enhanced T1-weighted image. (C) DWI image with b=800 sec/mm2. (D) Small 2D ROI (arrow). (E) 
Large 2D ROI were delimited on the ADC map. (F) Three-dimensional rendering of the volume ROI covering the whole lesion. DWI, 
diffusion weighted imaging; 2D, 2-dimensional; ROI, region of interest; ADC, apparent diffusion coefficient.
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A comparison of the ADC values between responders and 
non-responders

Concerning the small 2D ROI method aspect, the mean, 
10%, 25%, median, 75%, and 90% ADC values were 
all significantly higher in responders compared to non-
responders (P≤0.049). In the large 2D ROI method, the 
minimum, 10%, 25%, and median ADC values were higher 
in responders compared to non-responders (P≤0.033). 
The same results were observed in the volume ROI 
minimum, 10%, 25%, and median ADC values (P≤0.041). 
Furthermore, the 10%, 25%, and median ADC values of 
the responders were significantly higher than those of non-
responders in all 3 ROI methods (Table 4).

The ROC curves were generated to evaluate the 
diagnostic performances of the 3 ROI methods in predicting 
patient response (Figure 3). All areas under the curve (AUCs) 
for the 3 ROI methods ranged from 0.470 (maximum of 
the large 2D ROIs) to 0.701 (10% of the large 2D ROIs) 
(Table 4). When a 10% ADC cutoff value of 0.75×10−3 mm2/s  
was used in the large 2D ROI method, the following 
diagnostic predictive values were acquired: sensitivity of 
80.8%; specificity of 57.1%; positive predictive value (PPV) 
of 50.0%; negative predictive value (NPV) of 84.9%; and 
accuracy of 65.3%. The 10% area under the curve in large 
2D ROIs was considered superior, however it was not 
significantly higher than 25% in the large 2D ROI method 
(AUC 0.688; P=0.589) and 10% in the volume ROI method 
(AUC 0.686; P=0.651).

A comparison of the histogram parameters between 
responders and non-responders according to molecular 
subtype

The histogram analysis results predicting response in 
different molecular subtype are displayed in Table 5 and 
Figure 4. Some histogram ADC values were significantly 
higher in responders with luminal A tumors using the 3 

Table 2 Inter- and intra-observer repeatability for the three ROI 
methods

Metrics Inter-observer ICC Intra-observer ICC

Small 2D ROI

Mean 0.661 0.603

SD 0.091 0.207

Skewness 0.174 0.266

Kurtosis 0.281 0.084

Min 0.641 0.607

10% 0.631 0.603

25% 0.641 0.611

Median 0.639 0.598

75% 0.594 0.564

90% 0.566 0.431

Max 0.539 0.355

Large 2D ROI

Mean 0.820 0.925

SD 0.492 0.772

Skewness 0.445 0.554

Kurtosis 0.236 0.366

Min 0.486 0.666

10% 0.845 0.881

25% 0.86 0.912

Median 0.821 0.934

75% 0.766 0.921

90% 0.685 0.88

Max 0.519 0.788

Volume ROI

Mean 0.846 0.906

SD 0.765 0.793

Skewness 0.441 0.662

Kurtosis 0.545 0.761

Min 0.598 0.505

10% 0.924 0.875

25% 0.910 0.913

Median 0.832 0.905

75% 0.787 0.883

Table 2 (continued)

Table 2 (continued)

Metrics Inter-observer ICC Intra-observer ICC

90% 0.764 0.867

Max 0.753 0.744

All units of the parameters are ×10-3 mm2/s except for skewness 
and kurtosis. ROI, region of interest; ICC, intraclass correlation 
coefficient; 2D, 2-dimensional; SD, standard deviation; ROI, 
region of interest.
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Table 3 A comparison of ADC histogram values of the three ROI methods in all patients

Metrics Small 2D ROI Large 2D ROI Volume ROI P

Mean 0.82±0.25 1.09±0.24 1.10±0.22 <0.001*

SD 0.12±0.06 0.25±0.11 0.29±0.09 <0.001*

Skewness 0.25±0.68 0.23±0.55 0.45±0.50 0.038*

Kurtosis 2.85±1.10 3.75±1.39 4.30±1.68 <0.001*

Min 0.62±0.27 0.41±0.33 0.17±0.17 <0.001*

10% 0.67±0.27 0.80±0.23 0.76±0.21 0.006*

25% 0.73±0.26 0.93±0.23 0.91±0.21 <0.001*

Median 0.82±0.25 1.08±0.24 1.08±0.22 <0.001*

75% 0.89±0.25 1.24±0.26 1.27±0.25 <0.001*

90% 0.99±0.25 1.41±0.32 1.48±0.29 <0.001*

Max 1.07±0.29 1.90±0.60 2.33±0.55 <0.001*

All units of the parameters are ×10−3 mm2/s except for skewness and kurtosis. *, indicates statistical significance (P<0.05). ADC, apparent 
diffusion coefficient; ROI, region of interest; 2D, 2-dimensional; SD, standard deviation.

Table 4 A comparison of ADC histogram values between responders and non-responders

Metrics Responders (n=26)* Non-responders (n=49)* P Sensitivity (%) Specificity (%) Cutoff value* AUC

Small 2D ROI

Mean 0.92±0.21 0.79±0.25 0.024# 88.46 40.82 0.710 0.634

SD 0.12±0.06 0.12±0.06 0.826 61.54 48.98 0.113 0.495

Skewness 0.22±0.62 0.27±0.71 0.752 69.23 44.90 0.115 0.502

Kurtosis 2.96±0.87 2.80±1.19 0.568 53.85 67.35 2.808 0.584

Min 0.72±0.24 0.59±0.27 0.063 84.62 34.69 0.515 0.594

10% 0.77±0.23 0.64±0.28 0.044# 84.62 36.73 0.562 0.594

25% 0.84±0.22 0.70±0.27 0.021# 92.31 36.73 0.593 0.619

Median 0.92±0.21 0.78±0.25 0.020# 88.46 42.86 0.698 0.644

75% 0.99±0.22 0.86±0.25 0.029# 84.62 42.86 0.794 0.638

90% 1.08±0.23 0.96±0.26 0.049# 50.00 73.47 1.048 0.643

Max 1.18±0.28 1.04±0.30 0.056 88.46 34.69 0.911 0.624

Large 2D ROI

Mean 1.17±0.25 1.06±0.23 0.054 69.23 61.22 1.067 0.647

SD 0.21±0.08 0.27±0.12 0.062 84.62 44.90 0.255 0.619

Skewness 0.17±0.59 0.26±0.53 0.521 88.46 28.57 0.621 0.558

Kurtosis 3.79±1.76 3.71±1.18 0.810 26.92 85.71 2.719 0.517

Min 0.54±0.34 0.34±0.30 0.010# 50.00 79.59 0.620 0.658

10% 0.90±0.23 0.74±0.22 0.004# 80.77 57.14 0.750 0.701

Table 4 (continued)
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Table 4 (continued)

Metrics Responders (n=26)* Non-responders (n=49)* P Sensitivity (%) Specificity (%) Cutoff value* AUC

25% 1.03±0.23 0.88±0.21 0.007# 76.92 55.10 0.887 0.688

Median 1.17±0.25 1.04±0.22 0.033# 57.69 75.51 1.128 0.645

75% 1.31±0.27 1.21±0.26 0.153 69.23 55.10 1.196 0.616

90% 1.44±0.31 1.41±0.33 0.704 80.77 36.73 1.248 0.548

Max 1.82±0.44 1.94±0.66 0.440 73.08 36.73 1.614 0.470

Volume ROI

Mean 1.17±0.23 1.07±0.21 0.057 80.77 55.10 1.033 0.648

SD 0.27±0.07 0.31±0.10 0.113 46.15 75.51 0.247 0.577

Skewness 0.41±0.42 0.47±0.54 0.596 42.31 71.43 0.577 0.486

Kurtosis 4.00±1.23 4.44±1.85 0.288 46.15 71.43 3.445 0.562

Min 0.26±0.20 0.12±0.13 0.001# 50.00 87.76 0.264 0.681

10% 0.85±0.21 0.72±0.21 0.008# 84.62 57.14 0.712 0.686

25% 0.99±0.21 0.87±0.20 0.018# 69.23 65.31 0.935 0.666

Median 1.16±0.23 1.05±0.21 0.041# 76.92 53.06 1.023 0.650

75% 1.34±0.26 1.25±0.24 0.161 57.69 67.35 1.279 0.620

90% 1.52±0.29 1.46±0.29 0.416 69.23 51.02 1.396 0.586

Max 2.24±0.48 2.39±0.58 0.277 76.92 46.94 2.449 0.580

ROC curves were generated for all ADC measurements for each ROI method. Sensitivity, specificity, and AUC were calculated under the 
optimal cut-off value listed for each item, which was determined according to the nearest point to the upper left corner of the ROC curve 
diagram. #, indicates statistical significance (P<0.05). *, all units of the parameters are ×10−3 mm2/s except for skewness and kurtosis. ADC, 
apparent diffusion coefficient; 2D, 2-dimensional; ROI, region of interest; SD, standard deviation; ROC, receiver operating characteristic; 
AUC, area under the curve.
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ROI methods, and responders with luminal type tumors 
using the large 2D and volume ROI methods, except for 
SD in the large 2D ROI method for luminal type patients. 
For luminal A breast cancer, the histogram parameters of 
the 3 ROI methods, with significant differences between 
responders and non-responders, had similar AUCs ranging 
from 0.744 to 0.804. In luminal A type, 10% of large 2D 
ROI method showed the highest AUCs (0.804), with the 
following diagnostic predictive values: sensitivity of 80.0%; 
specificity of 80.0%; PPV of 44.5%; NPV of 95.2%; cut-
off value of 0.760×10−3 mm2/s; and accuracy of 80.0%. In 
luminal type, the SD of the large 2D ROI method had 
the highest AUC (0.689), with the following diagnostic 
predictive values: sensitivity of 89.5%; specificity of 
46.7%; PPV of 41.5%; NPV of 91.3%; cut-off value of  
0.255×10−3 mm2/s; and accuracy of 59.4%. 

Measurement time

The average measurement time differed significantly among 
the 3 ROI methods (P<0.001) with the volume ROI method 
requiring significantly more time (80.36±42.95 s) than the 
small 2D ROI and the large 2D ROI methods (6.08±1.29 
and 8.04±3.26 s, respectively; P<0.001).

Discussion

ADC histogram parameters may be useful in predicting 

the responsiveness of breast cancer patients to NAC prior 
to administration. This study compared the repeatability 
and diagnostic performance of different ROI placement 
methods, including the small 2D ROI, large 2D ROI, and 
volume ROI methods. The results demonstrated that the 
ADC histogram values varied with different ROI methods. 
The large 2D ROI and volume ROI methods had excellent 
intra- and inter-observer repeatability in some parameters. 
The performance of 10% in the large 2D ROI method was 
superior, even in luminal A subtype tumors. In addition, 
the volume ROI required an increased measurement time 
compared to the other two ROI methods.

A number of reports have compared ROIs for breast 
cancer NAC response prediction (16,22,28). However, they 
failed to discuss the inter- and intra-observer repeatability 
and the volume ROI method was not included (16,22,28). In 
agreement with our findings, Newitt et al. reported good to 
excellent inter- and intra-observer repeatability for volume 
ADC, however, only mean values were reported (29). To the 
best of our knowledge, this current retrospective study is 
the first to examine the repeatability of three ROI methods 
in predicting response in breast cancer patients prior to 
NAC. The results demonstrated that the ICC of the median 
ADC value in intra-observer repeatability while using the 
large 2D ROI method was the highest, which was also 
higher than that reported in the study by Bickel et al. (highest 
ICC was obtained for the mean in the intra-observer using 
the large 2D ROI, 0.8848) (21). However, the large 2D 
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Figure 4 ROC curve to assess the differentiation between responders and non-responders prior to neoadjuvant chemotherapy in different 
subtypes. (A) 90%, max of small 2D ROI method, min, 10%, 25% of large 2D ROI method, min of volume ROI method in luminal A. (B) 
SD, min, 10% of large 2D ROI method, min of volume ROI method in luminal type. ROC, receiver operating characteristic; AUC, area 
under the curve; 2D, 2-dimensional; ROI, region of interest; SD, standard deviation.
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ROI method in the latter study was different from the one 
presented in our study. Indeed, the authors delimited the 
whole lesion on one slice that had the lowest ADC values 
as assessed visually, which was more subjective than in our 
present study. Giannotti et al. confirmed that the ICCs in 
the intra-observer were higher than the inter-observer (30), 
and the ICCs using the large 2D ROI method were higher 
than those of the small 2D ROI method, in agreement with 
our results. However, Giannotti and colleagues did not 
mention the patient group pathology and only discussed the 
mean ADC value. For the small 2D ROI method, the ROI 
area could be very similar to the other regions of the lesion. 
It is difficult to reach a consensus for observers. Although 
having a statistical significance, the small 2D ROI method 
is not appropriate in predicting response, mainly due to its 
poor repeatability. Similarly, Arponen et al. reported that 
the ICCs of the large 2D ROI method (0.817 for intra-
observer, 0.831 for inter-observer) were higher than those 
of the small 2D ROI method (0.707 for intra-observer, 
0.589 for inter-observer) (31). In contrast, Nogueira and 
colleagues reported better inter-observer repeatability for 
the small 2D ROI method [ICC =0.98, confidence interval 
(CI): 0.986–0.997] (32). However, the latter investigation 
used fewer parameters than that used in the current study, 
such as the mean, median, minimum, maximum, and SD, 
and therefore, the heterogeneity of the breast cancer cannot 
be fully demonstrated.

Significant differences in the histogram ADC values were 
detected among the 3 ROI methods. The volume ROIs 
were delineated slice by slice, while large 2D ROIs and 
small 2D ROIs contained only one slice. Indeed, the lowest 
and the highest cellular density may not occur in one slice. 
This explains why our volume ROI method had the lowest 
minimum and highest maximum ADC value. In conclusion, 
it is likely that ADC-derived histogram values can be 
influenced by the ROI method applied.

ADC-derived histogram analysis might have the potential 
to predict patient response prior to NAC, especially in 
certain molecular subtypes of breast cancer. Most previous 
reports have suggested that the pretreatment ADC value 
cannot predict response to NAC in breast cancer patients 
(10,15,16,20,28,33,34). To our knowledge, only Kim et al., 
Cho et al., and Minarikova et al. have studied responses 
prior to administration of NAC using histogram analysis  
(14-16,20), and concluded that ADC values were not 
capable of predicting response. Our results are in contrast 
to the above mentioned studies. The disagreement may be 
related to the fact that we have included more histogram 

parameters than the previous studies (Kim et al.: mean, 
25%, median, 75%, and skewness; Cho et al.: mean, 
SD, minimum, maximum, kurtosis, and skewness; and 
Minarikova et al.: mean, median, 15%, 25%, 75%, and 
90%) (14-16,20). Our results, based on relatively lower 
parameters (10%, 25%, and median in both ROI methods), 
suggested that ADC-derived histogram values can 
discriminate responders from non-responders. The lower 
ADC parameters may represent the most malignant areas 
of breast cancer (26). Our outcomes showed that the largest 
AUC was acquired in 10% ADC value in the large 2D 
ROI, which was similar to Kim et al. (0.70 in 75% D) and 
higher than Minarikova et al. (0.673 in 25% ADC) (14,16). 
Moreover, the abovementioned authors did not include a 
further discussion on the influence of ROI methods.

Our findings confirmed that, in the luminal A subtype, the 
diagnostic performance improved in the large 2D ROI and 
volume ROI methods. In breast cancers, different molecular 
subtypes have different prognosis and biological features, 
which are significantly relevant in clinical practice (35).  
Thus, it is important to choose an optimal ROI method 
for predicting NAC response depending on the different 
molecular subtypes in breast cancer. Bufi et al. reported an 
AUC of 0.787 in luminal type breast cancer, which is lower 
than that observed in our study (36). However, this latter 
investigation only used the large 2D ROI method and the 
mean for ADC values. Other authors have also failed to find 
any significance between responders and non-responders 
in luminal A or luminal type tumors (7,37). In these latter 
studies, only the 2D ROI method was used and only the 
mean for the ADC values was calculated. The AUC was the 
highest in the 10% of the large 2D ROI method in luminal 
A tumors, which was also the highest in the large 2D ROI 
method when molecular subtypes were not separated. Thus, 
our results showed that 10% in the large 2D ROI method is 
optimal for the luminal A subgroup, as well as for the whole 
study population, and the prediction performance was further 
improved in the luminal A subgroup.

There were some limitations to this report. First, this 
was a retrospective study, which may have given rise to 
selection bias. And the study cohort was relatively small, 
thus the statistical power may be reduced. More detailed 
analysis according to subtypes such as HER2 enriched and 
triple negative could not be conducted. These initial results 
should be further confirmed with a larger sample size in the 
future. Second, the ROIs were measured manually rather 
than automatically. Third, ROIs were not compared during 
or after NAC, as some lesions had disappeared during 
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or after NAC, and this may result in a substantial bias. 
However, this study is the first to focus on measurement 
methods in the prediction of NAC response in breast cancer 
patients using histogram analysis (14-16,20,38).

Conclusions

In conclusion, histogram ADC values can be influenced 
by the three ROI methods. The small 2D ROI method is 
not recommended in predicting response prior to NAC 
in breast cancer patients due to its poor repeatability. 
The predicting performance of ADC prior to NAC in 
breast cancer varies in different molecular subtype. When 
choosing the ROI method and histogram parameters in 
predicting response in breast cancer patients prior to NAC, 
10% of the large 2D ROI method is recommended, in 
particular in luminal A subtype tumors. 
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