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Introduction

Breast cancer (BC), the leading tumor in females, is a public 
health challenge and a fundamental cause of many deaths 
annually (1,2). Most BC patients (70%) express the estrogen 
receptor (ER+), and for these patients, a selective estrogen 
receptor modulator (SERM), such as tamoxifen, is one of 
the main treatments (3,4); however, a significant proportion 

have a poor response or even resistance to tamoxifen (5,6). 
Consequently, it is crucial and necessary to discover an 
efficacious treatment to ameliorate endocrine resistance in 
BC patients.

Metformin (Met), a biguanide, has been a common 
first-line therapeutic for type 2 diabetes mellitus (T2DM) 
for decades (7,8). Various epidemiological studies have 
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showed that metformin can lower the risk of different kind 
of cancers in T2DM patients by 30–50% (9,10). Further 
research has indicated that Met has antitumor effects. Both 
in vivo and in vitro results were consistent for its effect 
on pancreatic cancer (11). Its antitumor role is mainly 
mediated through the I/IGF and AMP-inducible protein 
kinase (AMPK) signaling pathways (10). Overactivation of 
the mTOR pathway is a key factor in endocrine resistance 
in BC (7,12,13), and the AMPK signaling pathway is mainly 
involved in inhibiting activation of the mTOR pathway 
by AMPK-mediated phosphorylation, thus inhibiting the 
growth of tumor cells. However, it is still unclear whether 
Met can reverse endocrine resistance through the mTOR 
signaling pathway, which is a new research direction. 

Long-noncoding RNA (lncRNA) GAS5 is expressed 
at low levels in various cancer types (e.g., bladder, breast, 
cervical and ovarian cancers). It is a tumor suppressor gene 
through its promotion of cell apoptosis and inhibition of 
cell growth (14-25). Research has shown that overexpression 
of lncRNA GAS5 will hinder the growth of gastric cancer 
or esophageal cancer cells by inhibiting the AKT/mTOR 
signaling pathway (26,27). In addition, overexpression of 
lncRNA GAS5 can also increase the chemosensitivity of 
triple-negative BC cells and induce cell apoptosis (28). 
Therefore, a potential target for chemotherapy resistance in 
BC is lncRNA GAS5; however, its specific mechanism is still 
unclear.

The studies on metformin and BC that have been 
carried out mainly focus on the proliferation and 
inhibition of tumor cells and their stem cells, and the 
sensitization of chemotherapeutic drugs, but there is no 
report on the reversal of endocrine therapy resistance. 
In this study, we firstly constructed a tamoxifen-resistant 
MCF-7 cell line (MCF-7R), and studied the ability of 
Met to reverse tamoxifen resistance. Furthermore, we 
explored the molecular mechanism using overexpression 
and downregulation of lncRNA GAS5. We present the 
following article in accordance with the MDAR reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-795/rc).

Methods

Chemical reagents and cell lines

Metformin and 4-hydroxytamoxifen (OHT, the main 
active metabolite of tamoxifen) were acquired from Sigma-
Aldrich (St. Louis, MO, USA) and the purity of each was 

at least 95.0% as determined by high-performance liquid 
chromatography (HPLC). Metformin was dissolved in  
1× phosphate-buffered saline in 5 M stock solution, and 
OHT was dissolved in dimethyl sulfoxide (DMSO) in 
25 mM stock solution. Both Met and tamoxifen were 
stored at –80 ℃, and diluted with respective fresh medium 
immediately before use. Rapamycin (RAPA) (purity ≥95%, 
HPLC) was obtained from Sigma-Aldrich and was dissolved 
in DMSO in a 20 nM solution for all experiments. The anti-
GAS5 small interfering RNA (siRNA) and pLenti-GAS5 
were obtained from RiboBio (Guangzhou, China). The 
primary antibodies against mTOR, p-mTOR, p-P70S6K, 
p-AMPK2, AMPK2, PCNA, Bcl-2 and tubulin were 
procured from Cell Signaling Technology (Danvers, MA, 
USA). The primary antibody against PTEN was purchased 
from Abcam (Cambridge, UK). Human BC cell line MCF-
7 was procured from the American Type Culture Collection 
(ATCC, USA) and cultivated in DMEM supplemented with 
1% glutamine, 10% fetal bovine serum (FBS), 100 U/mL 
penicillin, and 100 µg/mL streptomycin (Gibco, USA) at  
37 ℃ in a 5% CO2 humidity incubator. 

Tamoxifen-resistant MCF-7 cell line

MCF-7 cells were grown in estrogen-deprived medium 
[phenol red-free RPMI 1640 supplemented with 10% 
charcoal-stripped FBS (Gibco, USA)] and then OHT added 
to medium at given concentration (1 μM) and cells left to 
grow for 21 days. The tamoxifen-resistant MCF-7 cell line 
(MCF-7R) was continued until the growth of the MCF-
7R cells was no longer inhibited, after which the MCF-7R 
cells were cultured with 0.1 μM OHT for at least 4 months 
before the downstream studies.

Quantitative real-time polymerase chain reaction  
(qRT-PCR), Lenti-EGFP-GAS5 and antiGAS5-siRNA 

We isolated the total RNA from MCF-7R cells using 
TRIzol reagent (Invitrogen, USA). qRT-PCR of RNA 
reverse transcribed cDNA was performed with Revertaid 
First Strand cDNA Synthesis Kit (Invitrogen, USA). Next, 
PowerUpTM SYBRTM Green Master Mix (Invitrogen) 
was used to conduct qPCR reactions on a Bio-Rad CFX 
Manager system (Bio-Rad, USA). ACTB served as the 
endogenous control and 2−∆∆Ct was calculated for the relative 
expression of lncRNA GAS5. The primer sequences used 
were: lncRNA GAS5-F: 5'-TCC CCA AGG AAG GAT 
GAG AA-3', R: 5'-CCA GGA GCA GAA CCA TTA AGC-

https://atm.amegroups.com/article/view/10.21037/atm-22-795/rc
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3'; ACTB-F: 5'-GGC ACT CTT CCA GCC TTC C-3', R: 
5'-GAG CCG CCG ATC CAC AC-3'.

Retroviral particles overexpressing GAS5, also known as 
Lenti-EGFP-GAS5, were infected with MCF-7R cells, and 
a stable overexpressed cell line was obtained by 2 μg/mL 
puromycin screening. AntiGAS5-siRNA was transfected 
into the MCF-7R cells to knockdown GAS5 using 
Lipofectamine™ 3000 Transfection Reagent (Invitrogen, 
USA), following the protocol of the manufacturer. 

Cell Counting Kit-8 (CCK-8) assay

MCF-7 and MCF-7R cells in the logarithmic phase of 
growth were plated onto 96-well plates (1×104 cells/well) 
and incubated for 24 h. Following processing with different 
drugs [5 mM Met, OHT (0, 0.1, 1, 10, 20, 40, 60, and 
100 μM), 20 nM RAPA] for 48 h, the cells were incubated 
for 2 h with 10 μL/well CCK8 solution. Absorbance was 
recorded at 450 nm using a Multiskan MK3 microplate 
reader (Thermo Fisher Scientific, USA) to appraise the 
inhibitory concentration (IC50) and resistance index (RI = 
IC50 of MCF-7R cells/IC50 of MCF-7 cells).

EdU assay

MCF-7R cells (5×104 cells/well) were seeded onto 24-well 
plates and processed with the different drugs (5 mM Met, 
1 μM OHT, 20 nM RAPA) for 48 h. The cells were then 
exposed to 5-ethynyl-2’-deoxyuridine (EdU, RiboBio, China) 
for 2 h. Next, the cells were fixed with 4% formaldehyde for 
30 min and permeabilized with 0.5% Triton-X-100, and then 
incubated with 100 μL/well of 1× Apollo® reaction cocktail 
at room temperature for 30 min. The cells were treated with 
1× Hoechst 33342 (Beyotime, China) for 30 min to stain the 
DNA contents, and finally visualized using a fluorescence 
microscope.

Apoptosis detection

MCF-7R cells were processed with the different drugs  
(5 mM Met, 1 μM OHT, 20 nM RAPA) for 48 h, then were 
accumulated and resuspended in 1× diluted binding buffer. 
Annexin V-FITC (BD Biosciences, USA) and 7-Amino-
Actinomycin D (7-AAD) (BD Biosciences, USA) were 
mixed to stain the cells in the dark. After incubation for  
15 min, the cells were scrutinized by flow cytometry and the 
percentage of apoptotic cells was evaluated.

Western blot

The extraction of total protein in MCF-7R cells was 
performed using boiling loading buffer. The protein lysates 
were separated by 10% SDS-PAGE and subsequently 
transferred to PVDF membrane. After that, non-specific 
proteins were blocked by 5% non-fat milk, and the PVDF 
membranes were incubated with primary antibodies at  
4 ℃ overnight. One day later, incubation of the membranes 
was completed with the aid of the secondary antibodies 
at ambient temperature for 90 min. Following rinsing 
with TBST buffer, the protein membranes were signaled 
through the use of SuperSignal™ West Dura Extended 
Duration Substrate and subjected to X-ray imaging.

Statistical analysis

The statistical outcomes are given as mean ± SD and 
calculated with SPSS 22.0 and GraphPad Prism 7.00 
software. For comparison between groups, the unpaired 
Student’s t-test was applied. Assessments were repeated at 
least three times and P<0.05 was regarded as a meaningful 
difference.

Results

Effects of OHT and Met on the viability of MCF-7 and 
MCF-7R cells

The data indicated that the growth of MCF-7R and MCF-
7 cells was significantly hindered by OHT in a dose-
dependent manner. However, the MCF-7R cells showed a 
lower rate of inhibition compared with the MCF-7 cells, 
indicating tamoxifen resistance (Figure 1A). The IC50 of 
tamoxifen-treated MCF-7R and MCF-7 cells for 48 h was 
65.53 μM and 16.11 μM, respectively, and the drug RI of 
the MCF-7R cells was 4.06. These findings indicated that 
we had successfully constructed a tamoxifen-resistant BC 
cell line MCF-7R.

We then detected the expression of mTOR signaling 
pathway associated proteins in MCF-7R cells using a 
concentration gradient of OHT. MCF-7R cells of 1 μM 
OHT, 5 μM OHT and control group were constructed 
respectively. The levels of expression of the mTOR, 
p-mTOR and p-P70S6k proteins in MCF-7R cells 
constructed by 1 μM OHT were notably higher than in 
the cells in the control group and 5 μM group (Figure 1B). 
In addition, the cells constructed by 1 μM OHT were in 
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better condition than those with 5 μM OHT. Therefore, 
the 1 μM OHT constructed cells best met the experimental 
requirements and were used for the follow-up assessments.

As shown in Figure 1C, the growth of MCF-7R cells was 
inhibited by Met in a dose-dependent manner: 7.5 mM 
was the most effective. The IC50 of MCF-7R cells treated 
with Met for 48 h was 14.02 mM. After comprehensive 
consideration, 5 mM Met was used in subsequent 
experiments for additional examination of its effects on BC 
cells.

Effect of Met on the growth of MCF-7R cells

MCF-7R cells were further treated with Met and OHT 
for 48 h and their growth was assessed by CCK8 assay. As 
shown in Figure 2A, 1 μM OHT had almost no effect on 
depressing the growth of MCF-7R cells, but 5 mM Met 
showed a substantial effect. Combined treatment with Met 
and OHT significantly depressed the growth of cells, which 
was similar to the effect of the combination of the mTOR 
inhibitor RAPA and OHT.

We used the EdU assay to determine the DNA 

replication of cells as a reflection of cell growth. Compared 
with the control group without any treatment, there was 
no substantial alternation in the growth of MCF-7R cells 
after treatment with 1 μM OHT or 5 mM Met. However, 
the DNA replication of MCF-7R cells was significantly 
depressed after treatment with OHT + Met (Figure 2B,2C). 
In conclusion, these findings showed that Met hindered the 
growth of MCF-7R cells and further reduced the resistance 
of MCF-7R cells to tamoxifen.

Effect of metformin on apoptosis of MCF-7R cells

The effects of Met and OHT on apoptosis of MCF-7R 
cells were studied by flow cytometry. The combination of 
Met and OHT induced significant apoptosis of MCF-7R as 
compared with OHT alone. This combination had a similar 
effect as the combination of RAPA and OHT (Figure 3).

Effect of Met on lncRNA GAS5 and mTOR signaling 
pathway

To investigate the interactions between lncRNA GAS5 and 
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Figure 1 Effects of metformin (Met) and 4-hydroxytamoxifen (OHT) on the growth of MCF-7 and MCF-7R cells. (A) Cell Counting 
Kit-8 (CCK-8) analysis of the growth of MCF-7 and MCF-7R cells treated using OHT (0, 0.1, 1, 10, 20, 40, 60, and 100 µM) for 48 h. 
(B) Western blot conducted to evaluate the expressions of mTOR signaling-related proteins in MCF-7R cells constructed with different 
concentrations of OHT. (C) CCK-8 assessment for examining the growth of MCF-7R cells following administration of Met (0, 1, 2.5, 5, 7.5, 
and 10 mM) for 48 h. *, P<0.05, **, P<0.01 compared with control group (without any treatment). 
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tamoxifen resistance, the expression levels of lncRNA GAS5 
in both MCF-7 and MCF-7R cells were evaluated, and we 
found lncRNA GAS5 was significantly reduced in MCF-
7R cells, whereas the reduction in MCF-7 cells was not 
notable. OHT had no remarkable effect on lncRNA GAS5 
expression levels in either cell line, but the combination of 
Met and OHT significantly increased its expression in both 
cells (Figure 4A).

In addition, we detected the mTOR signaling-related 
proteins using western blot. As shown in Figure 4B, the 
p-AMPK2 and PTEN protein expression levels were 
remarkably increased in Met-treated MCF-7R cells, and 
the expression levels of p-P70S6K, mTOR, and p-mTOR 
proteins were significantly decreased. The combination 
of Met and OHT also activated the p-AMPK2 protein 
and inhibited the mTOR protein and its phosphorylation, 

but did not demonstrate a significant effect on the total 
expression level of AMPK2 protein in MCF-7R cells. 
Collectively, these results showed that Met promoted the 
expression of lncRNA GAS5 while inhibiting the mTOR 
signaling pathway in MCF-7R cells. Therefore, we 
speculate that lncRNA GAS5 is involved in the regulation of 
mTOR signaling by Met.

Effect of lncRNA GAS5 overexpression on MCF-7R cells

After overexpressing lncRNA GAS5 in MCF-7R cells 
(Figure 5A), we found that the growth of lncRNA GAS5-
overexpressed MCF-7R cells was significantly reduced 
according to EdU assay (Figure 5B,5C), but there was no 
effect on cell apoptosis (Figure 5D,5E). The western blot 
results indicated that the mTOR and p-mTOR proteins’ 

Figure 2 Effect of metformin on the growth of MCF-7R cells. MCF-7R cells were processed with different drugs [5 mM metformin 
(Met), 1 µM 4-hydroxytamoxifen (OHT) and 20 nM rapamycin (RAPA)] for 48 h. (A) CCK8 assessment evaluated cell growth. (B,C) 
EdU analysis of the growth of MCF-7R cells (red shows EdU-positive cells and blue shows the cells’ nuclei, immunofluorescent staining).  
Scale =100 µm. **, P<0.01, ***, P<0.001 compared with control group (without any treatment). Outcomes are given as mean ± SD of three 
independent assessments (n≥3).
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expression levels were substantially decreased, and the 
expression of PCNA, a growth-associated protein, was also 
significantly decreased (Figure 5B,5C), as was the expression 
level of the apoptosis-suppressor protein Bcl-2 (Figure 5F).

Effects of lncRNA GAS5 knockdown on MCF-7R cells

To further understand the effects of lncRNA GAS5 in the 
Met-regulated mTOR signaling pathway, we established 
lncRNA GAS5-knockdown MCF-7R cell lines (Figure 6A). 
The combination of OHT and Met was administered to the 
lncRNA GAS5-knockdown MCF-7R cells, which promoted 
a growth trend of MCF-7R cells, but had no effect on the 
apoptosis rate (Figure 6B-6E). Western blot also revealed 
that lncRNA GAS5-silenced MCF-7R cells substantially 
reduced the expression level of mTOR, but enhanced 
the expression level of p-mTOR protein. Meanwhile, the 
expression levels of the Bcl-2 and PCNA proteins tended to 
increase (Figure 6F).

Discussion

Met is a lipophilic biguanide that is used as the first-line 
treatment for glucose control in patients with T2DM, 
due to its safety, efficacy and tolerability. According to 
the results of large-scale observational and cohort studies, 
administration of Met is related to a lowered risk of cancer 
and has a significant sensitization effect in chemotherapy 
(7,29,30). However, because its effect on reversing 
endocrine resistance remains unexplained, we investigated 
its molecular mechanism using endocrine-resistant BC cells. 
Our results showed that Met depressed the overactivation 
of the mTOR signaling pathway by upregulating the 
expression level of lncRNA GAS5, resulting in inhibition of 
the growth of BC cells, increased apoptosis, and ultimately, 
reversing the endocrine resistance of BC cells.

It is important to note that our results implied that 
the growth of tamoxifen-resistant MCF-7R cells was not 
significantly inhibited when treated with OHT alone, was 

Figure 3 Induction of apoptosis of MCF-7R cells by metformin (Met). Flow cytometry was used to visualize the apoptosis of MCF-7R cells 
following processing with different drugs [5 mM Met, 1 µM 4-hydroxy tamoxifen (OHT) and 20 nM rapamycin (RAPA)] for 48 h. **, P<0.01 
vs. control (without any treatment). Outcomes are given as mean ± SD of three independent assessments (n≥3).
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significantly affected when Met was added. This finding 
further supported the view that Met may reverse the endocrine 
resistance of BC cells, by an as yet unspecified mechanism.

Overactivation of the mTOR signaling pathway is a 
key process in the advancement of endocrine resistance 
in BC (12,13). mTOR, a serine/threonine kinase, is 
fundamental to cell growth, involving the integration 
of diverse extracellular signals of energy, nutrition, 
and growth factors and participation in the biological 
processes of gene transcription, ribosome synthesis, protein 
translation, etc. (31,32). At present, the mTOR inhibitor 
everolimus has been used in clinical practice. Everolimus 
combined with endocrine drugs can reverse endocrine 
drug resistance, which has obvious advantages. However, 
the existing mTOR inhibitors have disadvantages such 
as large side effects and high price. Therefore, it is very 
important to find inexpensive and safe mTOR signaling 
pathway inhibitors that can produce good socioeconomic 
effects. Our results elucidated that the expression of both 
the mTOR and p-mTOR proteins in MCF-7R cells was 
significantly decreased after treatment with Met, as was 
the expression of the downstream effector p-P70S6K, but 
the expression of p-AMPK2 was substantially enhanced, 
which was in agreement with the outcomes reported by 
Ma et al. (33) AMPK, known as an energy sensor in cells, 
has been confirmed by many studies to be activated by Met 
and hinder the expression of mTOR (7,34). As our results 

showed, Met may stimulate the activation of AMPK2, 
and p-AMPK2 then inhibits the expression of mTOR in 
MCF-7R cells. Ribosomal S6 protein kinase (P70S6K), 
one of the mTOR effectors, is responsible for ribosomal 
protein synthesis (35). With inhibition of mTOR protein 
expression, the phosphorylation of its downstream protein 
P70S6K is also depressed. But how to ultimately reverse 
endocrine resistance needs further research. 

LncRNA is involved in the regulation of various 
processes in BC cells, which is closely related to the 
occurrence, development and prognosis of BC, and is a 
new target for the treatment of BC. LncRNA GAS5, a 5’ 
terminal oligopyrimidine (5’-TOP) RNA, has low levels of 
expression in various cancers, but it can not only hinder the 
growth but also boost the apoptosis of tumor cells (14-25). 
In our study, qPCR analysis revealed that the expression 
level of lncRNA GAS5 in MCF-7R cells was decreased with 
statistical significance compared with MCF-7 cells. It did 
not increase significantly when treated with OHT until 
Met was added. These results are supported by those of Gu  
et al. who delineated that lncRNA GAS5 overexpression 
might enhance sensitivity to tamoxifen (36). 

Based on the above researches, we constructed MCF-7R 
cell lines that overexpressed lncRNA GAS5, among which 
the expression levels of mTOR and p-mTOR proteins 
related to the mTOR signaling pathway were found to be 
significantly decreased. This result was consistent with the 
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investigation of Xue et al. (37) Moreover, Li et al. reported 
that upregulation of lncRNA GAS5 could notably inhibit 
the progression of triple-negative BC, induce cell apoptosis 
and enhance chemotherapy sensitivity (28). Our results also 
indicated that overexpression of lncRNA GAS5 significantly 
reduced the rate of fluorescing cells labeled with EdU 
among MCF-7R cells, indicating inhibited cell growth. 
Meanwhile, after lncRNA GAS5 was overexpressed, the 
expression levels of the PCNA protein related to growth 

and of the Bcl-2 protein related to inhibiting apoptosis 
were significantly decreased. That finding indicated that 
overexpressed lncRNA GAS5 can hinder the growth of 
MCF-7R cells, probably through the mTOR signaling 
pathway. To further identify whether Met inhibits cell 
growth and reverses endocrine resistance through 
regulation of the mTOR signaling pathway via lncRNA 
GAS5, we silenced lncRNA GAS5 in MCF-7R cells. After 
combined treatment with OHT and Met, the expression 

Figure 5 Effect of overexpression of lncRNA GAS5 on MCF-7R cells. (A) Quantitative real-time polymerase chain reaction (qRT-PCR) 
analysis of the expression level of lncRNA GAS5 in MCF-7R cells following lncRNA GAS5 overexpression. (B,C) EdU analysis of the growth 
of MCF-7R cells after lncRNA GAS5 overexpression (red shows EdU-positive cells and blue shows the cells’ nuclei, immunofluorescent 
staining). Scale bar =100 µm. (D,E) Flow cytometry to evaluate apoptosis of MCF-7R cells after lncRNA GAS5 overexpression. (F) Western 
blot results for the expression levels of mTOR signaling-related proteins in MCF-7R cells after lncRNA GAS5 overexpression. *, P<0.05, **, 
P<0.01 and ***, P<0.001 vs. pLenti-NC. Outcomes are given as mean ± SD of three independent assessments (n≥3).
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level of p-mTOR protein was significantly increased 
instead of being decreased. On the contrary, the mTOR 
signaling pathway was activated and cell proliferation was 
promoted to a certain extent, indicating that Met did not 
have a marked effect on MCF-7R cells with lncRNA GAS5 
knockdown. It further proved that lncRNA GAS5 fulfills 
a key task in Met inhibiting the growth of MCF-7R cells. 

Therefore, when Met treated the MCF-7R cells, it may 
have activated the expression of AMPK and hindered the 
expression of mTOR, which reduced the phosphorylation 
of downstream P70S6K, thus in turn inhibiting the growth 
of cells and finally reversing resistance to tamoxifen. All of 
these were regulated by lncRNA GAS5.

However, cell apoptosis showed no significant changes 

Figure 6 Effect of lncRNA GAS5 knockdown on MCF-7R cells. lncRNA GAS5-knockdown MCF-7R cells were processed with OHT 
and metformin (Met) in combination. (A) Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of the expression level of 
lncRNA GAS5 in MCF-7R cells following lncRNA GAS5 knockdown. (B,C) EdU analysis of the DNA replication activity in MCF-7R cells 
after lncRNA GAS5 knockdown (red shows EdU-positive cells and blue shows the cells’ nuclei, immunofluorescent staining). Scale bar =100 
µm. (D,E) Flow cytometry for apoptosis of MCF-7R cells following lncRNA GAS5 knockdown. (F) Western blot to detect mTOR signaling-
related proteins’ expression in MCF-7R cells after lncRNA GAS5 knockdown. **, P<0.01 vs. OHT + Met + si-NC; ***, P<0.001 vs. si-NC. 
Outcomes are given as mean ± SD of three independent assessments (n≥3). si-NC mean normal control group.
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with lncRNA GAS5 overexpression or knockdown. Although 
upregulation of lncRNA GAS5 affected the expression of 
Blc-2 protein, there was no statistical significance for the 
results of flow cytometry. Because apoptosis of cells is a 
very complex biological process, affected by many factors, 
further studies of its mechanism are needed.

Moreover, early studies reported that mTOR inhibitors 
could significantly increase the expression of lncRNA GAS5 
and hinder the growth of hormone-sensitive cell lines (e.g., 
prostate and BC cells) (15,37,38). Therefore, in this study, 
we used RAPA as a positive control and found that the 
effect of Met was similar to that of RAPA, which further 
confirmed that Met may be an effective mTOR inhibitor.

Conclusions

Our study indicated that Met could depress the expansion 
and induce the apoptosis of endocrine-resistant BC cells, 
based on the upregulation of the expression level of 
lncRNA GAS5 and the inhibition of overactivation of the 
mTOR signaling pathway, thus reversing the endocrine 
resistance of BC cells. Met plays a positive role in delaying 
the drug resistance of BC and improving the prognosis 
of BC patients, which provides a safe, effective and 
economical treatment plan for endocrine drug resistant 
BC. Furthermore, the inhibiting influence on BC cells 
by Met was similar to that of the mTOR inhibitor RAPA. 
Both are expected to novel drugs in clinical practice for 
BC treatment. However, this study was carried out at the 
cellular level in vitro and does not reflect the processes in 
whole organisms. Further trials still need to be carried out 
in animals and clinical patients.
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