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Background: Metabolic reprogramming has been identified as a hallmark of cancer, influencing the
immunity in the tumor microenvironment. Because of the high-heterogeneity of cervical carcinoma, we aim
to figure out the metabolic subtypes of cervical carcinoma indicating the prognosis.

Methods: We profiled the distinct metabolic signatures using data from transcriptomes obtained from The
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Bioinformatics analyses
were conducted to identify the possible biomarkers of overall survival and chemotherapy resistance.
Results: Immune infiltration was closely related to metabolic pathways, especially in the carbohydrate
pathway and the lipid and energy pathway. Two distinct clusters of differentially expressed genes were
identified. Six genes were selected as possible indicators of prognosis, including ELK3, BIN2, MEI1, CCR7,
CYP4F12, and DUOXI, relating to the immune status of tumor microenvironment. Under the risk score
model based on metabolic genes, the high-risk group showed significantly lower survival (HR =6.802, with
95% CI: 3.637-12.721, P<0.0001), higher possibility of chemotherapy resistance, and higher infiltration of
anti-tumor immune cells compared to the low-risk group.

Conclusions: Metabolic reprogramming, especially in the carbohydrate pathway and the lipid and energy
metabolic pathway, is associated with the immune cell microenvironment, which is crucial for the prognosis

of Invasive cervical carcinoma (ICC), providing potential therapeutic targets in clinic.
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Introduction (HPV) vaccination provides effective prevention, the lack

of accessibility of cancer screening and vaccine in certain

Invasive cervical carcinoma (ICC) ranks as the fourth regional areas poses a serious health burden (5). Almost all

most common female malignancy and the fourth leading cases of ICC are caused by infection of the high-risk HPV (6).

cause of cancer-related mortality in women worldwide.
It is responsible for more than 7% of all malignancy-
related deaths in women (1,2), and 90% of cancer-related
deaths in low-and middle-income countries (3,4). Although

cervical cancer screening and human papillomavirus
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Intriguingly, not all HPV infections lead to
carcinogenesis. There is some evidence to suggest that
HPV mediates a variety of mechanisms to evade innate and
adaptive immune responses, thereby creating a complex
tumor microenvironment (TME) which is conducive to
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persistent infections and eventually, carcinogenesis (7-9).
For patients with stage I-1II ICC, 15-61% of women will
experience metastatic disease within the first 2 years after
completing treatment (10). Once the disease progresses,
second-line and subsequent-line treatment options
are limited, and patients often have a poor prognosis.
Currently, there is a paucity of any effective biomarkers or
scoring system for evaluating the prognosis and response to
immunotherapy in patients with ICC.

Metabolic reprogramming is one of the emerging
hallmarks of cancer (11) and has attracted much attention
over the past decade. The abnormal metabolic functions
of cancer cells were first proposed by Otto Warburg, who
discovered that cancer cells consumed more glucose relative
to normal cells. Since then, a number of researches have
focused on the cancer-related metabolic reprogramming
in the metabolic pathway, including metabolic changes
in glucose, amino acids, and lipids, to explore potential
therapeutic targets in cancer progression. More importantly,
emerging evidence indicates that cancer cells are able to
suppress anti-tumor immune response by competing for
and depleting essential nutrients or otherwise reducing the
metabolic fitness of tumor-infiltrating immune cells.

Although metabolic reprogramming has been recently
analyzed in pan-cancer or cancer-specific settings (12),
to date, there have been no studies examining metabolic
reprogramming in ICC.

We speculate that ICC can be divided into subtypes
with distinct metabolic states according to molecular
patterns, and this may provide evidence for individualized
patient prognosis. This study examined the common or
distinct molecular features in metabolic reprogramming
relating to EMT and immune cell infiltration to assess
their clinical relevance and drug resistance. We present the
following article in accordance with the TRIPOD reporting
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-981/rc).

Methods
Datasets

The study was conducted in accordance with the
Declaration of Helsinki (as revised in 2013). The
following datasets were obtained for analysis: The Cancer
Genome Atlas Cervical Squamous Cell Carcinoma and
Endocervical Adenocarcinoma (TCGA-CESC) dataset
including the expression data (https://tcga-xena-hub.
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s3.us-east-1.amazonaws.com/download/TCGA.CESC.
sampleMap%2FHiSeqV2.gz), the phenotypic data (https://
tcga-xena-hub.s3.us-east-1.amazonaws.com/download/
TCGA.CESC.sampleMap%2FCESC_clinicalMatrix),
and the survival data (https://tcga-xena-hub.s3.us-east-1.
amazonaws.com/download/survival % 2FCESC_survival.
txt); the GSE44001 dataset from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi); and the human GTF from the
Ensembl database (Homo_sapiens. GRCh38.99. GTF.
Gz) (http://www.ensembl.org/info/data/ftp/index.html).
The gene set related to immune cells from the List of Pan-
cancer Immune Metagenes was obtained from PubMed
Identifier (PMID) 28052254; metabolism-related genes
were derived from PMID 33917859; and hallmark gene
sets (h.a 1. Version. Symbols. GMT) (http://www.gsea-
msigdb.org/gsea/index.jsp), epithelial (EPI) related genes,
and mesenchymal (MES) related genes were derived from
PMID 25214461. The clinical characteristics of the cases
from the TCGA-CESE dataset are shown in Table 1, and
the characteristics from the GSE44001 dataset are listed in
Table 2.

Definition

Immune cell profiling

The R package GSVA (v1.34.0) software was used to
calculate the enrichment score of each sample based on the
collection of genes related to immune infiltrating cells. The
R packet ConsensusClusterPlus (v1.50.0) was then applied
to the samples based on the immune infiltration enrichment
score. The unsupervised clustering algorithm used was pam
and the distance was euclidean, and two immune infiltrating
subgroups were obtained. Survival analysis of the two
groups of samples was conducted using R package Survival
(V3.2-7) and SurvMiner (V0.4.8). All data were displayed
using Kaplan-Meier (KM) curves and heat maps. Clinical
information such as HPV types, smoking years, menopause
status, tumor grade, pathological M classification, and
pathological N classification were compared between
groups using Fisher’s test.

Metabolic signature

According to the list of genes related to the metabolic
pathways obtained from PMID 33917859, the metabolic
pathways of samples were examined. Kruskal-Wallis
tests were used to detect the differences in the metabolic
enrichment scores between immune infiltration groups.
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Table 1 The clinical data of the samples from the TCGA-CESC Table 1 (continued)

dataset
Clinical features TCGA-CESC Clinical features TCGA-CESC
HPV_types Pathologic_M
HPV16 103 MO 107
HPV18 27 M1 10
HPV30 1 MX 175
HPV31 3 Pathologic_N
HPV33 3 NO 129
HPV35 1 N1 56
HPV39 3 NX 107
HPV45 9 Pathologic_T
HPV52 5 i 137
HPV58 5 T2 68
HPV59 3 T3 17
HPV68 1 T4 9
HPV69 1 X 61
HPV70 1 Radiation_therapy
HPV73 1 Yes 143
Negative 10 No 56
NA 115 NA 93
Smoking_years BMI
>40 3 >24 173
<40 81 =24 80
NA 208 NA 39
Menopause_status FIGO
Peri o5 ' 137
Post 81 I 68
Pre 125 i 17
Indeterminate 3 v 9
Unknown 58 Unknown 61
Grade Cluster_cell
G1 19 Cluster1 155
G2 129 Cluster2 137
G3 117 Cluster_metabolic
G4 1 Cluster1 108
GX 26 Cluster2 188

HPV, human papillomavirus; FIGO, International Federation of

Table 1 (continued) Gynecology; BMI, body mass index.
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Table 2 The clinical data of the samples from the GSE44001
dataset

GSE44001
0s
Alive 262
Dead 38
Stage
I 258
I 42

OS, overall survival.

The related genes common to all metabolic pathways were
further analyzed and the UpSet graph was constructed. The
relationship between immune infiltration and metabolic
enrichment was assessed using Pearson correlation
coefficient and the correlation heat maps was drawn using
corrplot (V0.84) software.

Metabolic subtype

Metabolic pathways with significant differences between
immune infiltration groups were selected as important
metabolic pathways. The expression matrix of related
genes in the cleavage pathway was used for unsupervised
clustering of the samples. The proportion of ambiguous
clustering (PAC) algorithm was used to identify the optimal
number of classifications and the metabolic subtypes were
obtained. The R package ConsensusClusterPlus was used.
The KMDIST clustering algorithm was applied, and the
distance used was Canberra. The R package Survival and
SURvMiner were then applied to analyze the survival of
the subtypes and construct the KM curve. The distribution
differences of menopause status, tumor grade, pathological
M status, pathological N status, pathological T status,
radiation therapy status, International Federation of
Obstetrics and Gynecology (FIGO) grade, and cluster
of immune cell within metabolic subtypes were detected
by Fisher’s test, and histograms were drawn to show the
significant differences. The hallmark gene set was used
to perform Gene Set Enrichment Analysis (GSEA) of
metabolic subtype samples. The enrichment score was
obtained, plotted, and displayed using heat maps.

Statistical analysis

The differentially expressed genes (DEG) between
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samples of different subtypes were obtained using the
R-package limma. The call threshold was IlogFCl >1
and the adjusted P value was set to <0.05 two sided. The
enrichment pathways were obtained and bubble maps
were constructed. Combined with the OS data, batch Cox
univariate regression analysis was performed on the DEGs.
Genes with the greatest correlation were selected for KM
analysis and subsequent analyses. Least Absolute Shrinkage
and Selection Operator (LASSO) regression dimension
reduction was performed on the univariate Cox regression
results, and a risk scoring model was constructed. This
process utilized the R package GLMNET (V4.0-2), where
Y was Surv (time, event) and family was Cox. To build a
more accurate regression model, lambda screening was
firstly carried out by cross-validation, and then the model
corresponding to Lambaa. min was selected to further
extract the expression matrix of related genes in the model,
and to calculate the expression matrix of each sample based

on the following formula: RScore, = z;lexpﬁ x B, where

exp represents the expression level of the corresponding
gene, P represents the regression coefficient (COEF) of
the corresponding gene in the LASSO regression results,
the RScore represents the sum of the expression level of
the significantly related gene in each sample multiplied
by the COEF of the corresponding gene, I represents the
sample, and J represents the gene. Based on the risk score
of the sample, the median was used as the node to divide
the high- and low-risk groups. Combined with the OS data,
KM curves were drawn and the P values were calculated. A
P value <0.05 was considered statistically significant. The
sample risk score was further used as the model prediction
result, and the area under the curve (AUC) value of the
model was calculated based on the survival data, and the
receiver operating characteristic (ROC) curve was drawn.

Independent data set validation

The GSE44001 dataset was downloaded from the GEO
database and samples with missing survival data were
omitted. Using the median as the cut-off value, the
samples were divided into a high-risk and a low-risk
group. By combining the survival data, KM curves were
constructed and the P value was calculated, where P<0.05
was considered statistically significant. The risk score was
further used as the prediction result. ROC curves were
constructed and the AUC was calculated in combination
with the survival data. The AUC values for 1-, 3-, and 5-year
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survival were greater than 0.6.

Results

The immune infiltrating subtypes and the endothelinl-
mesenchymal transition (EMT) scores were closely related
to metabolic pathways

The relevant CESC expression data and clinical data were
downloaded from the UCSC Xena database, and samples
with missing OS data and those with an OS of 0 months
were removed. Finally, 292 cancer samples were obtained.
The expression information of 16,515 protein-coding genes
was extracted from the expression data, and subsequent
analyses were completed with the expression matrix.

Based on the genes associated with 28 immune infiltrating
cells, ssGSEA was used to calculate the infiltrating scores in
each sample. Two subtypes were obtained by unsupervised
clustering, with 155 samples in cluster 1 and 137 samples
in cluster 2. The KM curve showed a significant difference
in survival between the two groups, and the decline of the
survival curve of cluster 2 was significantly slower than that
of cluster 1 (P=0.028; Figure 14). There were significant
differences in HPV type, pathological M status, and
pathological N status between the immune subtypes. Based
on the 28 immune infiltrating cell scores, cluster 2 samples
generally had high immune infiltrating cell enrichment
scores, while most cells in cluster 1 samples had low
immune infiltrating cell enrichment scores. The enrichment
scores of macrophages, regulatory T cell, central memory
CD4 T cell, and activated CD4 T cell in cluster 2 samples
were significantly higher than those in clusterl (Figure 1B).

Seven genes related to metabolic pathways were
obtained and the enrichment scores of seven metabolic
pathways in all samples were calculated. There were
significant differences between immune subtypes in the
carbohydrate pathway, as well as the lipid and energy
pathway (Figure 1C). Further analyses demonstrated
that the lipid and vitamin pathway shared the most
characteristic genes (n=26), followed by the vitamin and
vitamin pathway (n=14) (Figure 1D).

The correlation between the enrichment scores of the
28 immune infiltrating cells and metabolic enrichment
scores was further calculated. The heat maps demonstrated
that activated CD4 T cells, activated CD8 T cells, central
memory CD8 T cells, natural killer cells, and plasmacytoid
dendritic cells were significantly correlated with the
metabolic enrichment scores, suggesting that immune

© Annals of Translational Medicine. All rights reserved.

Page 5 of 14

infiltrating subtypes are closely related to metabolic
pathways (Figure 1E).

The correlation between EMT score and metabolic
enrichment score was assessed. The results revealed that the
EMT cluster 1 of the immune infiltrating subtype cluster
1 was significantly positively correlated with amino acids,
lipids, T'CA, and nucleotides, and significantly negatively
correlated with carbohydrate and energy. The EMT cluster
2 showed significant positive correlation with amino acids,
lipids, and T'CA, and significant negative correlation with
carbohydrate and energy. Furthermore, the correlation
between EMT score and different metabolic pathways also
differed between the two immune subtypes (Figure IF).

The two metabolic subtypes contained clusters of genes that
were involved in the carbobydrate pathway, as well as the
lipid and energy metabolic pathway

There were significant differences in the immunoassay
subtypes in the carbohydrate pathway and the lipid and
energy pathway, consisting of 1103 characteristic genes.
Two metabolic subtypes were obtained by unsupervised
clustering (Figure 2A4). The KM curve showed a significant
differences in survival between the 2 metabolic subtypes
(Figure 2B). The heat map and principal component analysis
(PCA) both demonstrated that the expression of related
genes in three important metabolic pathways differed
between the two metabolic subtypes (Figure 2C,2D).

The correlation between metabolic subtypes and clinical
characteristics was examined, including menopause,
pathology grade, pathological M status, pathological N
status, pathological T status, radiation therapy status,
FIGO, and immune cell clusters The results revealed that
the distribution of metabolic subtypes differed significantly
between samples with different pathological M status and
immune cell clusters (Figure 2E).

Gene set variation analysis (GSVA) between the two
metabolic subtypes

As shown in Figure 34, the enrichment scores of 15
hallmark pathways were significantly different between the
two subtypes. Further analysis of the differentially expressed
genes between subtypes revealed 1,257 differentially
expressed genes between cluster 1 and cluster 2, including
237 upregulated and 1,020 downregulated genes in cluster 2
(Figure 3B).

The differentially expressed genes were analyzed
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Figure 1 The immune infiltrating subtypes and the EMT scores were closely related to metabolic pathways. (A) KM curves of the two immune

infiltrating subtypes. (B) A heat map showing the distribution of clinical

traits and the accumulation score of each immune cell type in the two

clusters under the immune infiltrating subtype. (C) The enrichment scores of 7 metabolic pathways. (D) The UpSet diagram of the common

genes in the metabolic pathways. (E) Correlation analysis of the metabolic signature score and the immune infiltration score. (F) Correlation
analysis of the metabolic signature enrichment score and the EMT enrichment score. ***P<0.001; **P<0.01; *P<0.05. KM, Kaplan-Meier; EMT,
epithelial mesenchymal transformation; BMI, body mass index; FIGO, International Federation of Gynecology; HPV, human papillomavirus.
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Figure 2 The two metabolic subtypes contained clusters of genes that were involved in the carbohydrate pathway and the lipid and energy
metabolic pathway. (A) An unsupervised clustering heat map of the samples based on the characteristic genes of three important metabolic
pathways. (B) The KM curves of survival analysis for each subtype. (C) PCA of different subtypes. (D) A heat map of the gene expression
in the important metabolic enrichment pathways. (E) The clinical characteristics of the two subtypes. ***P<0.0001; *P<0.05; ns, not

significant; KM, Kaplan-Meier; PCA, principal component analysis.
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for functional enrichment. The Gene Ontology (GO)
enrichment analysis can be divided into three parts,
namely, biological process (BP), cell component (CC), and
molecular function (MF). Epidermis development, skin
development, and T cell activation were the main pathways
enriched in the BP for cluster 1 upregulated genes. The
pathways of CC enrichment mainly included external side
of plasma membrane and collagen-containing extracellular
matrix. MF enrichment pathways included receptor ligand
activity and extracellular matrix structural constituent.
Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis revealed that the main pathways that were enriched
included cytokine-cytokine receptor interaction and the
PI3K-Akt signaling pathway (Figure 3C-3F).

Six genes were selected as prognostic indicators and 29
genes were selected for the risk scoving model

Univariate Cox regression analysis identified 178 genes
with significant correlation, and the 6 genes with the
greatest correlation were selected for KM analysis. The
results showed that the survival curve of samples with
high ELK3 (ETS Transcription Factor ELK3) expression
decreased faster than that of samples with low ELK3
expression, suggesting that high expression of ELK3 may
adversely affect the prognosis of patients. Conversely,
the survival curve of samples with low expression of
BIN2 (Bridging Integrator 2), MEIl (Meiotic Double-
Stranded Break Formation Protein 1), CCR7 (C-C Motif
Chemokine Receptor 7), CYP4F12 (Cytochrome P450
Family 4 Subfamily F Member 12), and DUOX1 (Dual
Oxidase 1) decreased faster than that of samples with high
expression of these genes, suggesting that low expression
of these genes may adversely affect the prognosis of
patients (Figure 44-4G). LASSO regression analysis was
performed on the genes identified in the univariate Cox
regression, Lambda varies with the coefficient of the
variable, Lambda. Min obtained by cross validation and
the regression coefficient corresponding to the screened
variables are shown in figure 4H-4] respectively. A total
of 29 genes were obtained for construction of the risk
scoring model, and the following formula was obtained:
Risk Score =MAK * (~0.1933) + RASSF5 * (<0.1157) +
DES * (-0.0770) + MEI1 * (-0.0770) + LHX2 * (-0.0721)
+ CD177 * (-0.0655) + ALOX12B * (-0.0546) + SGK1 *
(-0.0536) + C30rf70 * (-0.0509) + CH25H * (-0.0463) +
ZNF831 * (-0.0366) + CHIT1 * (-0.0310) + LILRA4 *
(-0.0248) + CCL17 * (-0.0223) + EPHB6 * (<0.0209) +

© Annals of Translational Medicine. All rights reserved.
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KLHLG6 * (-0.0035) + BIN2 * (-0.0011) +SLC24A3*0.0082
+ DNAJCI12 * 0.0227 + PCOLCE2 * 0.0229 + SCN2A *
0.0331 + CRABP1 * 0.0362 + CA12 * 0.0481 + PRKAA2 *
0.0515 + GPRI157 * 0.0614 + GJB2 * 0.0782 + POSTN *
0.0949 + CXCL3 * 0.1150 + ELK3 * 0.2073. The samples
were divided into a high- and low-risk group based on the
median risk score. Combined with the OS data, the KM
analysis demonstrated that the survival curves of the two
groups were significantly different.

The sample risk score was then used for the prediction
model, and the AUC was calculated based on the survival
data. The AUC of the 1-, 3-, and 5-year survival were
all greater than 0.8, indicating that the model had good
performance (Figure 4K,4L).

Univariable and multivariable analysis revealed that the
risk-score is an independent indicative factor of prognosis,
however, neither FIGO stage nor pathological stage were
risk factors for prognosis (1able 3).

Independent data set validation demonstrated that the risk
scoring model bad good performance

The GSE44001 data was downloaded from the GEO
database, scores were calculated according to the model,
and KM curves were drawn. The results demonstrated
significant differences in the KM curves between the high-
and low-risk groups (P<0.0001; Figure 5A4). The sample risk
scores were then used for the model prediction, and the
AUC of the model was calculated based on survival data.
The AUC of 1-, 3-, and S-year survival were all greater
than 0.6, indicating that the model performance was good
(Figure 5B). Figure 5C shows the curves of risk scores of all
the samples in the model, and a scatter plot of the survival
time by Figure D. A heat map of the gene expression was
drawn between high and low risk groups in the risk model
(Figure SE).

The relationship between risk and bedside
characteristics was assessed. The results showed that the
risk scores varied significantly with different HPV types,
pathological T status, FIGO score, body mass index (BMI),
immune cell clusters, and metabolic groups, suggesting
that the correlating traits were consistent with our risk
model (Figure 5F).

Resistance to chemotherapy and immune cell infiltration

among the different risk groups

The response of samples in the low-risk group to 138
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Figure 4 Six genes were selected as indicators of prognosis and 29 genes were applied in the risk scoring model. (A) The top 20 forest maps
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the coefficient of the variable. (I) Lambda. Min obtained by cross validation. (J) The regression coefficient corresponding to the screened
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© Annals of Translational Medicine. All rights reserved.

Ann Transl Med 2022;10(7):414 | https://dx.doi.org/10.21037/atm-22-981



Annals of Translational Medicine, Vol 10, No 7 April 2022

Table 3 Independence tests of the TCGA-CESC data
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Univariable analysis

Multivariable analysis

Parameter

HR (95% ClI) P value HR (95% Cl) P value
Risk (high vs. low) 7.233 (3.922-13.339) <0.001 6.802 (3.637-12.721) <0.001
grade (G3-4 vs. G1-2) 0.837 (0.560-1.251) 0.467 0.843 (0.562-1.265) 0.488
FIGO (IlI-IV vs. I-l) 1.968 (1.468-2.639) <0.001 1.717 (1.286-2.292) 0.002

FIGO, International Federation of Gynecology.

drugs was predicted (Table S1). The results revealed that
the high-risk group had better resistance to nilotinib,
methotrexate, cisplatin, AICAR, BIRB.0796, and
lenalidomide (Figure 6A-6F).

Furthermore, there were significantly greater numbers
of MO macrophages, activated mast cells, and neutrophils
in the high-risk group compared to the low-risk group
(P<0.05). Conversely, the low-risk group showed
significantly higher numbers of CD8 T cells, follicular
helper T cells, regulatory T cells (Tregs), M1 macrophages,
resting dendritic cells, and mast cells compared to the high-
risk group (P<0.05; Figure 6G).

Discussion

Metabolic reprogramming is an essential pathway for
events that mediate malignant transformation, and it
therefore plays a crucial role in the prognosis of ICC (13).
This current study demonstrated that immune infiltrating
subtypes is closely related to metabolic pathways,
especially the carbohydrate pathway, as well as the lipid
and energy metabolic pathway. Furthermore, the EMT
scores demonstrated a relationship between metabolic
reprogramming, TME, and EMT (14). There were also
significant differences in HPV types, pathological M status,
and pathological N status between the immune subtypes,
suggesting that the TME is affected by both cervical
carcinoma and HPV infection.

Based on the specific metabolic pathways, two clusters
of metabolic subtypes with significant difference were
identified. The differentially expressed genes in cluster 1
were enriched in cytokine-cytokine receptor interaction and
the PI3K-Akt signaling pathway, with the latter being the
most commonly activated pathway in human cancers (14).
Oncogenic activation of the PI3K-Akt pathway reprograms
cellular metabolism by augmenting the activity of nutrient
transporters and metabolic enzymes, thereby supporting
the anabolic demands of aberrantly growing cells (15).

© Annals of Translational Medicine. All rights reserved.

Metabolism-related prognostic factors based on immune
typing were used to construct a risk proportional regression
model to predict prognosis. Six genes, including ELK3,
BIN2, MEIL, CCR7, CYP4F12, and DUOXI1 were selected
as indicators of prognosis, among which DUOX-1 as a
member of NADPH oxidase family, is recognized as a
special functional enzyme that can regulate the production
of reactive oxygen species, has been indicated to mediates
the host defense system of epithelial cells, and influences
the infiltration state of immune cells in microenvironment.

The high-risk group suffered lower survival rates
compared to the low-risk group, with high probability
of resistance to chemotherapeutic agents including
nilotinib, methotrexate, cisplatin, AICAR, BIRB.0796, and
lenalidomide. It should be noted that cisplatin plays an
important role in auxiliary treatment in advanced cervical
carcinoma before or after surgery or in conjunction with
radiation therapy. Therefore, this study may provide
some clues on the choice of chemotherapy for clinicians.
The risk model also provided some insights regarding
immune cell infiltration in the TME. The low-risk group
featured high immune cell infiltration such as CD8
T cells, M1 macrophages, and resting dendritic cells.
Indeed, previous studies have suggested that immune
cell infiltration in the microenvironment can influence
the efficacy of immunotherapy, and cells such as CD8 T
cells and M1 macrophages in the microenvironment can
support immunotherapy (16,17). Therefore, the risk score
model may provide insights into the potential efficacy of
immunotherapy in patients with ICC.

Our study figured out the connection of metabolic
reprogramming beyond the Warburg effect for cancer
cells and their microenvironment, providing potential key
genes of metabolic pathways in regulating the immunity
of TME, however, there is still need to conduct more
molecular and cellular examinations to explore the specific

mechanism of metabolites regulating the immunity of
TME in ICC.
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Figure 5 The GSE44001 dataset was used to verify the efficacy of the risk model. (A) The Kaplan-Meier curve was used to verify the
LASSO regression construction model. (B) ROC curve showing verification of the model. (C) Risk score curves of all the samples. (D) A
scatter plot of the survival time for all the samples. (E) A heat map of the gene expression in the risk model. (F) The correlation between risk
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Figure 6 Resistance to chemotherapy and immune cell infiltration in the different risk groups. (A-F) Prediction of drug resistance in the

high- and low-risk samples. (G) Statistical difference in the proportion of immune infiltrating cells between the high- and low-risk groups.

P ().0001; **P<0.01; *P<0.05.
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Supplementary

Table S1 The responses of samples in the high- and low-risk groups to 138 drugs

P fc adj.P Up_or_down
Nilotinib 2.13E-14 1.035666 2.94E-12 Up
Methotrexate 4.71E-13 1.043231 6.49E-11 Up
Cisplatin 7.85E-12 1.0656 1.08E-09 Up
AICAR 1.37E-11 1.037319 1.89E-09 Up
BIRB.0796 2.74E-11 1.014673 3.79E-09 Up
Lenalidomide 4.83E-10 1.003542 6.67E-08 Up
AZD6244 1.50E-09 1.016741 2.07E-07 Up
PLX4720 2.26E-09 1.023689 3.12E-07 Up
ATRA 2.55E-09 1.049134 3.52E-07 Up
GSK269962A 3.34E-09 0.964112 4.61E-07 Down
Pazopanib 3.73E-09 0.992904 5.14E-07 Down
Metformin 3.95E-09 1.019667 5.45E-07 Up
Embelin 3.98E-09 0.986132 5.50E-07 Down
JW.7.52.1 1.02E-08 0.93403 1.40E-06 Down
ABT.888 1.52E-08 1.001141 2.10E-06 Up
Vinblastine 2.96E-08 0.954214 4.08E-06 Down
GW.441756 4.22E-08 1.012552 5.82E-06 Up
BIBW2992 5.46E-08 1.185146 7.53E-06 Up
SL.0101.1 9.80E-08 1.025617 1.35E-05 Up
RO.3306 1.05E-07 0.971267 1.45E-05 Down
CHIR.99021 1.27E-07 0.980466 1.75E-05 Down
VX.702 1.35E-07 1.019436 1.86E-05 Up
WZz.1.84 1.84E-07 1.022198 2.53E-05 Up
FH535 3.52E-07 0.965764 4.86E-05 Down
MG.132 4.16E-07 1.053765 5.74E-05 Up
Midostaurin 5.68E-07 0.824222 7.84E-05 Down
Docetaxel 6.15E-07 0.957854 8.48E-05 Down
ABT.263 9.76E-07 1.066289 0.000135 Up
CGP.082996 9.89E-07 1.026162 0.000137 Up
Dasatinib 1.06E-06 1.03506 0.000146 Up
Gemcitabine 1.18E-06 0.623009 0.000163 Down
BMS.509744 1.25E-06 1.052177 0.000172 Up
JNK.Inhibitor.VIII 1.40E-06 1.008745 0.000194 Up
MK.2206 1.40E-06 1.245825 0.000194 Up
AMG.706 3.72E-06 1.006179 0.000514 Up
Gefitinib 4.49E-06 1.045854 0.000619 Up
AP.24534 5.06E-06 0.950602 0.000698 Down
BIl.2536 6.04E-06 0.913706 0.000833 Down
Vinorelbine 1.65E-05 1.00732 0.00228 Up
Vorinostat 1.77E-05 1.163389 0.002442 Up
BMS.754807 5.10E-05 0.952981 0.007039 Down
BMS.536924 5.64E-05 1.028773 0.007783 Up
Thapsigargin 6.42E-05 1.232013 0.008856 Up
WH.4.023 7.25E-05 1.021941 0.010011 Up
GDC.0449 8.68E-05 1.005536 0.011977 Up
Temsirolimus 0.000249 0.381767 0.034421 Down
AZD.0530 0.000388 1.030021 0.053608 Up
ZM.447439 0.000479 1.064756 0.066072 Up
Z.LLNle.CHO 0.000699 0.932139 0.096529 Down
CEPR.701 0.000725 1.38561 0.100002 Up
JNJ.26854165 0.000743 0.967856 0.102554 Down
Erlotinib 0.000747 1.008009 0.103071 Up
Bleomycin 0.00077 0.82522 0.106227 Down
Etoposide 0.000872 0.998704 0.120369 Down
Lapatinib 0.000885 1.081237 0.122178 Up
Pyrimethamine 0.001375 0.980879 0.189728 Down
RDEA119 0.001564 0.95745 0.215894 Down
CMK 0.00189 1.031195 0.260806 Up
0S1.906 0.002154 0.982592 0.297188 Down
PHA.665752 0.003202 1.004468 0.441939 Up
XMD8.85 0.00592 1.022693 0.817007 Up
AZD6482 0.006414 1.023138 0.885147 Up
A.443654 0.009637 0.936696 1 Down
A.770041 0.21759 1.011155 1 Up
AG.014699 0.583545 0.997655 1 Down
AKT.inhibitor.VIII 0.091752 0.972102 1 Down
AS601245 0.260655 0.987919 1 Down
AUY922 0.103817 0.953971 1 Down
Axitinib 0.176765 1.007231 1 Up
AZ628 0.007483 0.930797 1 Down
AZD.2281 0.207922 0.997335 1 Down
AZD7762 0.662882 0.962853 1 Down
AZD8055 0.061019 1.398311 1 Up
BAY.61.3606 0.778947 0.998672 1 Down
Bexarotene 0.056749 0.993644 1 Down
Bicalutamide 0.157609 0.996994 1 Down
BI.D1870 0.182155 0.988291 1 Down
BMS.708163 0.389737 0.997936 1 Down
Bortezomib 0.038047 0.964748 1 Down
Bosutinib 0.42826 1.005368 1 Up
Bryostatin.1 0.031509 1.016214 1 Up
BX.795 0.245126 0.971458 1 Down
Camptothecin 0.017875 0.999726 1 Down
CCT007093 0.099188 0.992717 1 Down
CCT018159 0.034351 1.000896 1 Up
CGP.60474 0.013172 0.9945 1 Down
Cl.1040 0.109228 0.990294 1 Down
Cyclopamine 0.37763 1.006859 1 Up
Cytarabine 0.018418 1.081252 1 Up
DMOG 0.121715 0.994278 1 Down
Doxorubicin 0.009407 1.16697 1 Up
EHT.1864 0.267771 1.001574 1 Up
Elesclomol 0.227043 0.968321 1 Down
Epothilone.B 0.390502 1.00443 1 Up
FT1.277 0.078931 0.997224 1 Down
GDC0941 0.781074 1.004155 1 Up
GNF.2 0.710794 0.999962 1 Down
GSK.650394 0.42826 0.991056 1 Down
GW843682X 0.525076 0.999308 1 Down
Imatinib 0.162974 1.00189 1 Up
IPA.3 0.25252 0.986694 1 Down
JNK.9L 0.691274 0.994434 1 Down
KIN001.135 0.791735 1.000042 1 Up
KU.55933 0.09638 1.011215 1 Up
LFM.A13 0.949712 1.001095 1 Up
Mitomycin.C 0.026901 3.433746 1 Up
MS.275 0.043787 0.81404 1 Down
NSC.87877 0.521467 1.003172 1 Up
NU.7441 0.025959 1.008498 1 Up
Nutlin.3a 0.00826 1.005647 1 Up
NVP.BEZ235 0.010567 0.931693 1 Down
NVP.TAE684 0.341311 0.952978 1 Down
Obatoclax.Mesylate 0.116463 1.089879 1 Up
PAC.1 0.087048 0.984294 1 Down
Paclitaxel 0.127843 0.994248 1 Down
Parthenolide 0.41465 0.995508 1 Down
PD.0325901 0.990599 1.007021 1 Up
PD.0332991 0.817477 0.9908 1 Down
PD.173074 0.092825 0.984945 1 Down
PF.02341066 0.094452 0.993725 1 Down
PF.4708671 0.482632 1.001987 1 Up
PF.562271 0.101193 0.989845 1 Down
QS11 0.26957 0.989348 1 Down
Rapamycin 0.009293 1.002918 1 Up
Roscovitine 0.258312 0.991664 1 Down
Salubrinal 0.199055 0.985458 1 Down
SB.216763 0.255405 0.99586 1 Down
SB590885 0.015365 1.008326 1 Up
Shikonin 0.024425 0.246615 1 Down
Sorafenib 0.251372 0.993635 1 Down
S.Trityl.L.cysteine 0.012135 1.023283 1 Up
Sunitinib 0.026052 1.008915 1 Up
Tipifarnib 0.409909 0.999762 1 Down
TW.37 0.334325 0.981746 1 Down
VX.680 0.254248 0.999934 1 Down
W0O2009093972 0.036282 0.967696 1 Down
X17.AAG 0.024601 0.875729 1 Down
X681640 0.020736 0.976836 1 Down
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