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Introduction

Invasive cervical carcinoma (ICC) ranks as the fourth 
most common female malignancy and the fourth leading 
cause of cancer-related mortality in women worldwide. 
It is responsible for more than 7% of all malignancy-
related deaths in women (1,2), and 90% of cancer-related 
deaths in low-and middle-income countries (3,4). Although 
cervical cancer screening and human papillomavirus 

(HPV) vaccination provides effective prevention, the lack 
of accessibility of cancer screening and vaccine in certain 
regional areas poses a serious health burden (5). Almost all 
cases of ICC are caused by infection of the high-risk HPV (6). 

In t r igu ing ly,  no t  a l l  HPV in fec t ions  l e ad  to 
carcinogenesis. There is some evidence to suggest that 
HPV mediates a variety of mechanisms to evade innate and 
adaptive immune responses, thereby creating a complex 
tumor microenvironment (TME) which is conducive to 

Original Article

A predictive study of metabolism reprogramming in cervical 
carcinoma

Guoyu Dai1, Jie Ou2#, Bin Wu3#

1Department of Urology, Xiangya Hospital, Central South University, Changsha, China; 2Department of Gynecology, Xiangya Hospital, Central 

South University, Changsha, China; 3Department of Gynaecology and Obstetrics, Hunan University of Medicine, Huaihua, China 

Contributions: (I) Conception and design: All authors; (II) Administrative support: J Ou; (III) Provision of study materials or patients: J Ou, B Wu; 

(IV) Collection and assembly of data: J Ou; (V) Data analysis and interpretation: G Dai; (VI) Manuscript writing: All authors; (VII) Final approval of 

manuscript: All authors.
#These authors contributed equally to this work.

Correspondence to: Jie Ou. Department of Gynecology, Xiangya Hospital, Central South University, Changsha, China. Email: cristinaO@163.com; Bin 

Wu. Department of Gynaecology and Obstetrics, Hunan University of Medicine, Huaihua, China. Email: Meiliang692021@163.com. 

Background: Metabolic reprogramming has been identified as a hallmark of cancer, influencing the 
immunity in the tumor microenvironment. Because of the high-heterogeneity of cervical carcinoma, we aim 
to figure out the metabolic subtypes of cervical carcinoma indicating the prognosis.
Methods: We profiled the distinct metabolic signatures using data from transcriptomes obtained from The 
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Bioinformatics analyses 
were conducted to identify the possible biomarkers of overall survival and chemotherapy resistance. 
Results: Immune infiltration was closely related to metabolic pathways, especially in the carbohydrate 
pathway and the lipid and energy pathway. Two distinct clusters of differentially expressed genes were 
identified. Six genes were selected as possible indicators of prognosis, including ELK3, BIN2, MEI1, CCR7, 
CYP4F12, and DUOX1, relating to the immune status of tumor microenvironment. Under the risk score 
model based on metabolic genes, the high-risk group showed significantly lower survival (HR =6.802, with 
95% CI: 3.637−12.721, P<0.0001), higher possibility of chemotherapy resistance, and higher infiltration of 
anti-tumor immune cells compared to the low-risk group.
Conclusions: Metabolic reprogramming, especially in the carbohydrate pathway and the lipid and energy 
metabolic pathway, is associated with the immune cell microenvironment, which is crucial for the prognosis 
of Invasive cervical carcinoma (ICC), providing potential therapeutic targets in clinic.

Keywords: Cervical carcinoma; metabolic reprogramming; immune cell infiltration; prognosis

Submitted Jan 27, 2022. Accepted for publication Mar 18, 2022.

doi: 10.21037/atm-22-981

View this article at: https://dx.doi.org/10.21037/atm-22-981

14

https://crossmark.crossref.org/dialog/?doi=10.21037/atm-22-981


Dai et al. Metabolic reprogramming of cervical carcinomaPage 2 of 14

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(7):414 | https://dx.doi.org/10.21037/atm-22-981

persistent infections and eventually, carcinogenesis (7-9). 
For patients with stage I–III ICC, 15–61% of women will 
experience metastatic disease within the first 2 years after 
completing treatment (10). Once the disease progresses, 
second-line and subsequent-line treatment options 
are limited, and patients often have a poor prognosis. 
Currently, there is a paucity of any effective biomarkers or 
scoring system for evaluating the prognosis and response to 
immunotherapy in patients with ICC.

Metabolic reprogramming is one of the emerging 
hallmarks of cancer (11) and has attracted much attention 
over the past decade. The abnormal metabolic functions 
of cancer cells were first proposed by Otto Warburg, who 
discovered that cancer cells consumed more glucose relative 
to normal cells. Since then, a number of researches have 
focused on the cancer-related metabolic reprogramming 
in the metabolic pathway, including metabolic changes 
in glucose, amino acids, and lipids, to explore potential 
therapeutic targets in cancer progression. More importantly, 
emerging evidence indicates that cancer cells are able to 
suppress anti-tumor immune response by competing for 
and depleting essential nutrients or otherwise reducing the 
metabolic fitness of tumor-infiltrating immune cells.

Although metabolic reprogramming has been recently 
analyzed in pan-cancer or cancer-specific settings (12), 
to date, there have been no studies examining metabolic 
reprogramming in ICC.

We speculate that ICC can be divided into subtypes 
with distinct metabolic states according to molecular 
patterns, and this may provide evidence for individualized 
patient prognosis. This study examined the common or 
distinct molecular features in metabolic reprogramming 
relating to EMT and immune cell infiltration to assess 
their clinical relevance and drug resistance. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-981/rc).

Methods

Datasets

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The 
following datasets were obtained for analysis: The Cancer 
Genome Atlas Cervical Squamous Cell Carcinoma and 
Endocervical Adenocarcinoma (TCGA-CESC) dataset 
including the expression data (https://tcga-xena-hub.

s3.us-east-1.amazonaws.com/download/TCGA.CESC.
sampleMap%2FHiSeqV2.gz), the phenotypic data (https://
tcga-xena-hub.s3.us-east-1.amazonaws.com/download/
TCGA.CESC.sampleMap%2FCESC_clinicalMatrix), 
and the survival data (https://tcga-xena-hub.s3.us-east-1.
amazonaws.com/download/survival%2FCESC_survival.
txt); the GSE44001 dataset from the Gene Expression 
Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi); and the human GTF from the 
Ensembl database (Homo_sapiens. GRCh38.99. GTF. 
Gz) (http://www.ensembl.org/info/data/ftp/index.html). 
The gene set related to immune cells from the List of Pan-
cancer Immune Metagenes was obtained from PubMed 
Identifier (PMID) 28052254; metabolism-related genes 
were derived from PMID 33917859; and hallmark gene 
sets (h.a ll. Version. Symbols. GMT) (http://www.gsea-
msigdb.org/gsea/index.jsp), epithelial (EPI) related genes, 
and mesenchymal (MES) related genes were derived from 
PMID 25214461. The clinical characteristics of the cases 
from the TCGA-CESE dataset are shown in Table 1, and 
the characteristics from the GSE44001 dataset are listed in 
Table 2.

Definition

Immune cell profiling
The R package GSVA (v1.34.0) software was used to 
calculate the enrichment score of each sample based on the 
collection of genes related to immune infiltrating cells. The 
R packet ConsensusClusterPlus (v1.50.0) was then applied 
to the samples based on the immune infiltration enrichment 
score. The unsupervised clustering algorithm used was pam 
and the distance was euclidean, and two immune infiltrating 
subgroups were obtained. Survival analysis of the two 
groups of samples was conducted using R package Survival 
(V3.2-7) and SurvMiner (V0.4.8). All data were displayed 
using Kaplan-Meier (KM) curves and heat maps. Clinical 
information such as HPV types, smoking years, menopause 
status, tumor grade, pathological M classification, and 
pathological N classification were compared between 
groups using Fisher’s test. 

Metabolic signature
According to the list of genes related to the metabolic 
pathways obtained from PMID 33917859, the metabolic 
pathways of samples were examined. Kruskal-Wallis 
tests were used to detect the differences in the metabolic 
enrichment scores between immune infiltration groups. 
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Table 1 The clinical data of the samples from the TCGA-CESC 
dataset

Clinical features TCGA-CESC

HPV_types

HPV16 103

HPV18 27

HPV30 1

HPV31 3

HPV33 3

HPV35 1

HPV39 3

HPV45 9

HPV52 5

HPV58 5

HPV59 3

HPV68 1

HPV69 1

HPV70 1

HPV73 1

Negative 10

NA 115

Smoking_years

>40 3

≤40 81

NA 208

Menopause_status

Peri 25

Post 81

Pre 125

Indeterminate 3

Unknown 58

Grade

G1 19

G2 129

G3 117

G4 1

GX 26

Table 1 (continued)

Table 1 (continued)

Clinical features TCGA-CESC

Pathologic_M

M0 107

M1 10

MX 175

Pathologic_N

N0 129

N1 56

NX 107

Pathologic_T

T1 137

T2 68

T3 17

T4 9

TX 61

Radiation_therapy

Yes 143

No 56

NA 93

BMI

>24 173

≤24 80

NA 39

FIGO

I 137

II 68

III 17

IV 9

Unknown 61

Cluster_cell

Cluster1 155

Cluster2 137

Cluster_metabolic

Cluster1 108

Cluster2 188

HPV, human papillomavirus; FIGO, International Federation of 
Gynecology; BMI, body mass index.
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The related genes common to all metabolic pathways were 
further analyzed and the UpSet graph was constructed. The 
relationship between immune infiltration and metabolic 
enrichment was assessed using Pearson correlation 
coefficient and the correlation heat maps was drawn using 
corrplot (V0.84) software.

Metabolic subtype 
Metabolic pathways with significant differences between 
immune infiltration groups were selected as important 
metabolic pathways. The expression matrix of related 
genes in the cleavage pathway was used for unsupervised 
clustering of the samples. The proportion of ambiguous 
clustering (PAC) algorithm was used to identify the optimal 
number of classifications and the metabolic subtypes were 
obtained. The R package ConsensusClusterPlus was used. 
The KMDIST clustering algorithm was applied, and the 
distance used was Canberra. The R package Survival and 
SURvMiner were then applied to analyze the survival of 
the subtypes and construct the KM curve. The distribution 
differences of menopause status, tumor grade, pathological 
M status, pathological N status, pathological T status, 
radiation therapy status, International Federation of 
Obstetrics and Gynecology (FIGO) grade, and cluster 
of immune cell within metabolic subtypes were detected 
by Fisher’s test, and histograms were drawn to show the 
significant differences. The hallmark gene set was used 
to perform Gene Set Enrichment Analysis (GSEA) of 
metabolic subtype samples. The enrichment score was 
obtained, plotted, and displayed using heat maps.

Statistical analysis

The differentially expressed genes (DEG) between 

samples of different subtypes were obtained using the 
R-package limma. The call threshold was |logFC| >1 
and the adjusted P value was set to <0.05 two sided. The 
enrichment pathways were obtained and bubble maps 
were constructed. Combined with the OS data, batch Cox 
univariate regression analysis was performed on the DEGs. 
Genes with the greatest correlation were selected for KM 
analysis and subsequent analyses. Least Absolute Shrinkage 
and Selection Operator (LASSO) regression dimension 
reduction was performed on the univariate Cox regression 
results, and a risk scoring model was constructed. This 
process utilized the R package GLMNET (V4.0-2), where 
Y was Surv (time, event) and family was Cox. To build a 
more accurate regression model, lambda screening was 
firstly carried out by cross-validation, and then the model 
corresponding to Lambaa. min was selected to further 
extract the expression matrix of related genes in the model, 
and to calculate the expression matrix of each sample based 

on the following formula: 
1

n
i ji jj

RScore = exp β
=

×∑ . where 

exp represents the expression level of the corresponding 
gene, β represents the regression coefficient (COEF) of 
the corresponding gene in the LASSO regression results, 
the RScore represents the sum of the expression level of 
the significantly related gene in each sample multiplied 
by the COEF of the corresponding gene, I represents the 
sample, and J represents the gene. Based on the risk score 
of the sample, the median was used as the node to divide 
the high- and low-risk groups. Combined with the OS data, 
KM curves were drawn and the P values were calculated. A 
P value <0.05 was considered statistically significant. The 
sample risk score was further used as the model prediction 
result, and the area under the curve (AUC) value of the 
model was calculated based on the survival data, and the 
receiver operating characteristic (ROC) curve was drawn.

Independent data set validation

The GSE44001 dataset was downloaded from the GEO 
database and samples with missing survival data were 
omitted. Using the median as the cut-off value, the 
samples were divided into a high-risk and a low-risk 
group. By combining the survival data, KM curves were 
constructed and the P value was calculated, where P<0.05 
was considered statistically significant. The risk score was 
further used as the prediction result. ROC curves were 
constructed and the AUC was calculated in combination 
with the survival data. The AUC values for 1-, 3-, and 5-year 

Table 2 The clinical data of the samples from the GSE44001 
dataset

GSE44001

OS

Alive 262

Dead 38

Stage

I 258

II 42

OS, overall survival.
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survival were greater than 0.6.

Results

The immune infiltrating subtypes and the endothelial-
mesenchymal transition (EMT) scores were closely related 
to metabolic pathways

The relevant CESC expression data and clinical data were 
downloaded from the UCSC Xena database, and samples 
with missing OS data and those with an OS of 0 months 
were removed. Finally, 292 cancer samples were obtained. 
The expression information of 16,515 protein-coding genes 
was extracted from the expression data, and subsequent 
analyses were completed with the expression matrix.

Based on the genes associated with 28 immune infiltrating 
cells, ssGSEA was used to calculate the infiltrating scores in 
each sample. Two subtypes were obtained by unsupervised 
clustering, with 155 samples in cluster 1 and 137 samples 
in cluster 2. The KM curve showed a significant difference 
in survival between the two groups, and the decline of the 
survival curve of cluster 2 was significantly slower than that 
of cluster 1 (P=0.028; Figure 1A). There were significant 
differences in HPV type, pathological M status, and 
pathological N status between the immune subtypes. Based 
on the 28 immune infiltrating cell scores, cluster 2 samples 
generally had high immune infiltrating cell enrichment 
scores, while most cells in cluster 1 samples had low 
immune infiltrating cell enrichment scores. The enrichment 
scores of macrophages, regulatory T cell, central memory 
CD4 T cell, and activated CD4 T cell in cluster 2 samples 
were significantly higher than those in cluster1 (Figure 1B).

Seven genes related to metabolic pathways were 
obtained and the enrichment scores of seven metabolic 
pathways in all samples were calculated. There were 
significant differences between immune subtypes in the 
carbohydrate pathway, as well as the lipid and energy 
pathway (Figure 1C). Further analyses demonstrated 
that the lipid and vitamin pathway shared the most 
characteristic genes (n=26), followed by the vitamin and 
vitamin pathway (n=14) (Figure 1D).

The correlation between the enrichment scores of the 
28 immune infiltrating cells and metabolic enrichment 
scores was further calculated. The heat maps demonstrated 
that activated CD4 T cells, activated CD8 T cells, central 
memory CD8 T cells, natural killer cells, and plasmacytoid 
dendritic cells were significantly correlated with the 
metabolic enrichment scores, suggesting that immune 

infiltrating subtypes are closely related to metabolic 
pathways (Figure 1E).

The correlation between EMT score and metabolic 
enrichment score was assessed. The results revealed that the 
EMT cluster 1 of the immune infiltrating subtype cluster 
1 was significantly positively correlated with amino acids, 
lipids, TCA, and nucleotides, and significantly negatively 
correlated with carbohydrate and energy. The EMT cluster 
2 showed significant positive correlation with amino acids, 
lipids, and TCA, and significant negative correlation with 
carbohydrate and energy. Furthermore, the correlation 
between EMT score and different metabolic pathways also 
differed between the two immune subtypes (Figure 1F).

The two metabolic subtypes contained clusters of genes that 
were involved in the carbohydrate pathway, as well as the 
lipid and energy metabolic pathway

There were significant differences in the immunoassay 
subtypes in the carbohydrate pathway and the lipid and 
energy pathway, consisting of 1103 characteristic genes. 
Two metabolic subtypes were obtained by unsupervised 
clustering (Figure 2A). The KM curve showed a significant 
differences in survival between the 2 metabolic subtypes 
(Figure 2B). The heat map and principal component analysis 
(PCA) both demonstrated that the expression of related 
genes in three important metabolic pathways differed 
between the two metabolic subtypes (Figure 2C,2D).

The correlation between metabolic subtypes and clinical 
characteristics was examined, including menopause, 
pathology grade, pathological M status, pathological N 
status, pathological T status, radiation therapy status, 
FIGO, and immune cell clusters The results revealed that 
the distribution of metabolic subtypes differed significantly 
between samples with different pathological M status and 
immune cell clusters (Figure 2E).

Gene set variation analysis (GSVA) between the two 
metabolic subtypes

As shown in Figure 3A, the enrichment scores of 15 
hallmark pathways were significantly different between the 
two subtypes. Further analysis of the differentially expressed 
genes between subtypes revealed 1,257 differentially 
expressed genes between cluster 1 and cluster 2, including 
237 upregulated and 1,020 downregulated genes in cluster 2 
(Figure 3B).

The differentially expressed genes were analyzed 
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Figure 1 The immune infiltrating subtypes and the EMT scores were closely related to metabolic pathways. (A) KM curves of the two immune 
infiltrating subtypes. (B) A heat map showing the distribution of clinical traits and the accumulation score of each immune cell type in the two 
clusters under the immune infiltrating subtype. (C) The enrichment scores of 7 metabolic pathways. (D) The UpSet diagram of the common 
genes in the metabolic pathways. (E) Correlation analysis of the metabolic signature score and the immune infiltration score. (F) Correlation 
analysis of the metabolic signature enrichment score and the EMT enrichment score. ***P<0.001; **P<0.01; *P<0.05. KM, Kaplan-Meier; EMT, 
epithelial mesenchymal transformation; BMI, body mass index; FIGO, International Federation of Gynecology; HPV, human papillomavirus.
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Figure 2 The two metabolic subtypes contained clusters of genes that were involved in the carbohydrate pathway and the lipid and energy 
metabolic pathway. (A) An unsupervised clustering heat map of the samples based on the characteristic genes of three important metabolic 
pathways. (B) The KM curves of survival analysis for each subtype. (C) PCA of different subtypes. (D) A heat map of the gene expression 
in the important metabolic enrichment pathways. (E) The clinical characteristics of the two subtypes. ****P<0.0001; *P<0.05; ns, not 
significant; KM, Kaplan-Meier; PCA, principal component analysis. 
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for functional enrichment. The Gene Ontology (GO) 
enrichment analysis can be divided into three parts, 
namely, biological process (BP), cell component (CC), and 
molecular function (MF). Epidermis development, skin 
development, and T cell activation were the main pathways 
enriched in the BP for cluster 1 upregulated genes. The 
pathways of CC enrichment mainly included external side 
of plasma membrane and collagen-containing extracellular 
matrix. MF enrichment pathways included receptor ligand 
activity and extracellular matrix structural constituent. 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis revealed that the main pathways that were enriched 
included cytokine-cytokine receptor interaction and the 
PI3K-Akt signaling pathway (Figure 3C-3F).

Six genes were selected as prognostic indicators and 29 
genes were selected for the risk scoring model

Univariate Cox regression analysis identified 178 genes 
with significant correlation, and the 6 genes with the 
greatest correlation were selected for KM analysis. The 
results showed that the survival curve of samples with 
high ELK3 (ETS Transcription Factor ELK3) expression 
decreased faster than that of samples with low ELK3 
expression, suggesting that high expression of ELK3 may 
adversely affect the prognosis of patients. Conversely, 
the survival curve of samples with low expression of 
BIN2 (Bridging Integrator 2), MEI1 (Meiotic Double-
Stranded Break Formation Protein 1), CCR7 (C-C Motif 
Chemokine Receptor 7), CYP4F12 (Cytochrome P450 
Family 4 Subfamily F Member 12), and DUOX1 (Dual 
Oxidase 1) decreased faster than that of samples with high 
expression of these genes, suggesting that low expression 
of these genes may adversely affect the prognosis of 
patients (Figure 4A-4G). LASSO regression analysis was 
performed on the genes identified in the univariate Cox 
regression, Lambda varies with the coefficient of the 
variable, Lambda. Min obtained by cross validation and 
the regression coefficient corresponding to the screened 
variables are shown in figure 4H-4J respectively. A total 
of 29 genes were obtained for construction of the risk 
scoring model, and the following formula was obtained: 
Risk Score =MAK * (−0.1933) + RASSF5 * (−0.1157) + 
DES * (-0.0770) + MEI1 * (-0.0770) + LHX2 * (−0.0721) 
+ CD177 * (−0.0655) + ALOX12B * (−0.0546) + SGK1 * 
(-0.0536) + C3orf70 * (−0.0509) + CH25H * (-0.0463) + 
ZNF831 * (−0.0366) + CHIT1 * (−0.0310) + LILRA4 * 
(−0.0248) + CCL17 * (-0.0223) + EPHB6 * (−0.0209) + 

KLHL6 * (−0.0035) + BIN2 * (−0.0011) +SLC24A3*0.0082 
+ DNAJC12 * 0.0227 + PCOLCE2 * 0.0229 + SCN2A * 
0.0331 + CRABP1 * 0.0362 + CA12 * 0.0481 + PRKAA2 * 
0.0515 + GPR157 * 0.0614 + GJB2 * 0.0782 + POSTN * 
0.0949 + CXCL3 * 0.1150 + ELK3 * 0.2073. The samples 
were divided into a high- and low-risk group based on the 
median risk score. Combined with the OS data, the KM 
analysis demonstrated that the survival curves of the two 
groups were significantly different. 

The sample risk score was then used for the prediction 
model, and the AUC was calculated based on the survival 
data. The AUC of the 1-, 3-, and 5-year survival were 
all greater than 0.8, indicating that the model had good 
performance (Figure 4K,4L).

Univariable and multivariable analysis revealed that the 
risk-score is an independent indicative factor of prognosis, 
however, neither FIGO stage nor pathological stage were 
risk factors for prognosis (Table 3).

Independent data set validation demonstrated that the risk 
scoring model had good performance

The GSE44001 data was downloaded from the GEO 
database, scores were calculated according to the model, 
and KM curves were drawn. The results demonstrated 
significant differences in the KM curves between the high- 
and low-risk groups (P<0.0001; Figure 5A). The sample risk 
scores were then used for the model prediction, and the 
AUC of the model was calculated based on survival data. 
The AUC of 1-, 3-, and 5-year survival were all greater 
than 0.6, indicating that the model performance was good 
(Figure 5B). Figure 5C shows the curves of risk scores of all 
the samples in the model, and a scatter plot of the survival 
time by Figure 5D. A heat map of the gene expression was 
drawn between high and low risk groups in the risk model 
(Figure 5E).

T h e  r e l a t i o n s h i p  b e t w e e n  r i s k  a n d  b e d s i d e 
characteristics was assessed. The results showed that the 
risk scores varied significantly with different HPV types, 
pathological T status, FIGO score, body mass index (BMI), 
immune cell clusters, and metabolic groups, suggesting 
that the correlating traits were consistent with our risk 
model (Figure 5F).

Resistance to chemotherapy and immune cell infiltration 
among the different risk groups

The response of samples in the low-risk group to 138 
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Table 3 Independence tests of the TCGA-CESC data

Parameter
Univariable analysis Multivariable analysis

HR (95% CI) P value HR (95% CI) P value

Risk (high vs. low) 7.233 (3.922−13.339) <0.001 6.802 (3.637−12.721) <0.001

grade (G3-4 vs. G1-2) 0.837 (0.560−1.251) 0.467 0.843 (0.562−1.265) 0.488

FIGO (III–IV vs. I–II) 1.968 (1.468−2.639) <0.001 1.717 (1.286−2.292) 0.002

FIGO, International Federation of Gynecology.

drugs was predicted (Table S1). The results revealed that 
the high-risk group had better resistance to nilotinib, 
methotrexate,  c isplat in,  AICAR, BIRB.0796,  and 
lenalidomide (Figure 6A-6F).

Furthermore, there were significantly greater numbers 
of M0 macrophages, activated mast cells, and neutrophils 
in the high-risk group compared to the low-risk group 
(P<0.05).  Conversely,  the low-risk group showed 
significantly higher numbers of CD8 T cells, follicular 
helper T cells, regulatory T cells (Tregs), M1 macrophages, 
resting dendritic cells, and mast cells compared to the high-
risk group (P<0.05; Figure 6G).

Discussion

Metabolic reprogramming is an essential pathway for 
events that mediate malignant transformation, and it 
therefore plays a crucial role in the prognosis of ICC (13). 
This current study demonstrated that immune infiltrating 
subtypes is closely related to metabolic pathways, 
especially the carbohydrate pathway, as well as the lipid 
and energy metabolic pathway. Furthermore, the EMT 
scores demonstrated a relationship between metabolic 
reprogramming, TME, and EMT (14). There were also 
significant differences in HPV types, pathological M status, 
and pathological N status between the immune subtypes, 
suggesting that the TME is affected by both cervical 
carcinoma and HPV infection.

Based on the specific metabolic pathways, two clusters 
of metabolic subtypes with significant difference were 
identified. The differentially expressed genes in cluster 1 
were enriched in cytokine-cytokine receptor interaction and 
the PI3K-Akt signaling pathway, with the latter being the 
most commonly activated pathway in human cancers (14).  
Oncogenic activation of the PI3K-Akt pathway reprograms 
cellular metabolism by augmenting the activity of nutrient 
transporters and metabolic enzymes, thereby supporting 
the anabolic demands of aberrantly growing cells (15). 

Metabolism-related prognostic factors based on immune 
typing were used to construct a risk proportional regression 
model to predict prognosis. Six genes, including ELK3, 
BIN2, MEI1, CCR7, CYP4F12, and DUOX1 were selected 
as indicators of prognosis, among which DUOX-1 as a 
member of NADPH oxidase family, is recognized as a 
special functional enzyme that can regulate the production 
of reactive oxygen species, has been indicated to mediates 
the host defense system of epithelial cells, and influences 
the infiltration state of immune cells in microenvironment.

The high-risk group suffered lower survival rates 
compared to the low-risk group, with high probability 
of resistance to chemotherapeutic agents including 
nilotinib, methotrexate, cisplatin, AICAR, BIRB.0796, and 
lenalidomide. It should be noted that cisplatin plays an 
important role in auxiliary treatment in advanced cervical 
carcinoma before or after surgery or in conjunction with 
radiation therapy. Therefore, this study may provide 
some clues on the choice of chemotherapy for clinicians. 
The risk model also provided some insights regarding 
immune cell infiltration in the TME. The low-risk group 
featured high immune cell infiltration such as CD8 
T cells, M1 macrophages, and resting dendritic cells. 
Indeed, previous studies have suggested that immune 
cell infiltration in the microenvironment can influence 
the efficacy of immunotherapy, and cells such as CD8 T 
cells and M1 macrophages in the microenvironment can 
support immunotherapy (16,17). Therefore, the risk score 
model may provide insights into the potential efficacy of 
immunotherapy in patients with ICC.

Our study figured out the connection of metabolic 
reprogramming beyond the Warburg effect for cancer 
cells and their microenvironment, providing potential key 
genes of metabolic pathways in regulating the immunity 
of TME, however, there is still need to conduct more 
molecular and cellular examinations to explore the specific 
mechanism of metabolites regulating the immunity of 
TME in ICC.

https://cdn.amegroups.cn/static/public/ATM-22-981-supplementary.pdf
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Figure 6 Resistance to chemotherapy and immune cell infiltration in the different risk groups. (A-F) Prediction of drug resistance in the 
high- and low-risk samples. (G) Statistical difference in the proportion of immune infiltrating cells between the high- and low-risk groups. 
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Table S1 The responses of samples in the high- and low-risk groups to 138 drugs

P fc adj.P Up_or_down

Nilotinib 2.13E-14 1.035666 2.94E-12 Up

Methotrexate 4.71E-13 1.043231 6.49E-11 Up

Cisplatin 7.85E-12 1.0656 1.08E-09 Up

AICAR 1.37E-11 1.037319 1.89E-09 Up

BIRB.0796 2.74E-11 1.014673 3.79E-09 Up

Lenalidomide 4.83E-10 1.003542 6.67E-08 Up

AZD6244 1.50E-09 1.016741 2.07E-07 Up

PLX4720 2.26E-09 1.023689 3.12E-07 Up

ATRA 2.55E-09 1.049134 3.52E-07 Up

GSK269962A 3.34E-09 0.964112 4.61E-07 Down

Pazopanib 3.73E-09 0.992904 5.14E-07 Down

Metformin 3.95E-09 1.019667 5.45E-07 Up

Embelin 3.98E-09 0.986132 5.50E-07 Down

JW.7.52.1 1.02E-08 0.93403 1.40E-06 Down

ABT.888 1.52E-08 1.001141 2.10E-06 Up

Vinblastine 2.96E-08 0.954214 4.08E-06 Down

GW.441756 4.22E-08 1.012552 5.82E-06 Up

BIBW2992 5.46E-08 1.185146 7.53E-06 Up

SL.0101.1 9.80E-08 1.025617 1.35E-05 Up

RO.3306 1.05E-07 0.971267 1.45E-05 Down

CHIR.99021 1.27E-07 0.980466 1.75E-05 Down

VX.702 1.35E-07 1.019436 1.86E-05 Up

WZ.1.84 1.84E-07 1.022198 2.53E-05 Up

FH535 3.52E-07 0.965764 4.86E-05 Down

MG.132 4.16E-07 1.053765 5.74E-05 Up

Midostaurin 5.68E-07 0.824222 7.84E-05 Down

Docetaxel 6.15E-07 0.957854 8.48E-05 Down

ABT.263 9.76E-07 1.066289 0.000135 Up

CGP.082996 9.89E-07 1.026162 0.000137 Up

Dasatinib 1.06E-06 1.03506 0.000146 Up

Gemcitabine 1.18E-06 0.623009 0.000163 Down

BMS.509744 1.25E-06 1.052177 0.000172 Up

JNK.Inhibitor.VIII 1.40E-06 1.008745 0.000194 Up

MK.2206 1.40E-06 1.245825 0.000194 Up

AMG.706 3.72E-06 1.006179 0.000514 Up

Gefitinib 4.49E-06 1.045854 0.000619 Up

AP.24534 5.06E-06 0.950602 0.000698 Down

BI.2536 6.04E-06 0.913706 0.000833 Down

Vinorelbine 1.65E-05 1.00732 0.00228 Up

Vorinostat 1.77E-05 1.163389 0.002442 Up

BMS.754807 5.10E-05 0.952981 0.007039 Down

BMS.536924 5.64E-05 1.028773 0.007783 Up

Thapsigargin 6.42E-05 1.232013 0.008856 Up

WH.4.023 7.25E-05 1.021941 0.010011 Up

GDC.0449 8.68E-05 1.005536 0.011977 Up

Temsirolimus 0.000249 0.381767 0.034421 Down

AZD.0530 0.000388 1.030021 0.053608 Up

ZM.447439 0.000479 1.064756 0.066072 Up

Z.LLNle.CHO 0.000699 0.932139 0.096529 Down

CEP.701 0.000725 1.38561 0.100002 Up

JNJ.26854165 0.000743 0.967856 0.102554 Down

Erlotinib 0.000747 1.008009 0.103071 Up

Bleomycin 0.00077 0.82522 0.106227 Down

Etoposide 0.000872 0.998704 0.120369 Down

Lapatinib 0.000885 1.081237 0.122178 Up

Pyrimethamine 0.001375 0.980879 0.189728 Down

RDEA119 0.001564 0.95745 0.215894 Down

CMK 0.00189 1.031195 0.260806 Up

OSI.906 0.002154 0.982592 0.297188 Down

PHA.665752 0.003202 1.004468 0.441939 Up

XMD8.85 0.00592 1.022693 0.817007 Up

AZD6482 0.006414 1.023138 0.885147 Up

A.443654 0.009637 0.936696 1 Down

A.770041 0.21759 1.011155 1 Up

AG.014699 0.583545 0.997655 1 Down

AKT.inhibitor.VIII 0.091752 0.972102 1 Down

AS601245 0.260655 0.987919 1 Down

AUY922 0.103817 0.953971 1 Down

Axitinib 0.176765 1.007231 1 Up

AZ628 0.007483 0.930797 1 Down

AZD.2281 0.207922 0.997335 1 Down

AZD7762 0.662882 0.962853 1 Down

AZD8055 0.061019 1.398311 1 Up

BAY.61.3606 0.778947 0.998672 1 Down

Bexarotene 0.056749 0.993644 1 Down

Bicalutamide 0.157609 0.996994 1 Down

BI.D1870 0.182155 0.988291 1 Down

BMS.708163 0.389737 0.997936 1 Down

Bortezomib 0.038047 0.964748 1 Down

Bosutinib 0.42826 1.005368 1 Up

Bryostatin.1 0.031509 1.016214 1 Up

BX.795 0.245126 0.971458 1 Down

Camptothecin 0.017875 0.999726 1 Down

CCT007093 0.099188 0.992717 1 Down

CCT018159 0.034351 1.000896 1 Up

CGP.60474 0.013172 0.9945 1 Down

CI.1040 0.109228 0.990294 1 Down

Cyclopamine 0.37763 1.006859 1 Up

Cytarabine 0.018418 1.081252 1 Up

DMOG 0.121715 0.994278 1 Down

Doxorubicin 0.009407 1.16697 1 Up

EHT.1864 0.267771 1.001574 1 Up

Elesclomol 0.227043 0.968321 1 Down

Epothilone.B 0.390502 1.00443 1 Up

FTI.277 0.078931 0.997224 1 Down

GDC0941 0.781074 1.004155 1 Up

GNF.2 0.710794 0.999962 1 Down

GSK.650394 0.42826 0.991056 1 Down

GW843682X 0.525076 0.999308 1 Down

Imatinib 0.162974 1.00189 1 Up

IPA.3 0.25252 0.986694 1 Down

JNK.9L 0.691274 0.994434 1 Down

KIN001.135 0.791735 1.000042 1 Up

KU.55933 0.09638 1.011215 1 Up

LFM.A13 0.949712 1.001095 1 Up

Mitomycin.C 0.026901 3.433746 1 Up

MS.275 0.043787 0.81404 1 Down

NSC.87877 0.521467 1.003172 1 Up

NU.7441 0.025959 1.008498 1 Up

Nutlin.3a 0.00826 1.005647 1 Up

NVP.BEZ235 0.010567 0.931693 1 Down

NVP.TAE684 0.341311 0.952978 1 Down

Obatoclax.Mesylate 0.116463 1.089879 1 Up

PAC.1 0.087048 0.984294 1 Down

Paclitaxel 0.127843 0.994248 1 Down

Parthenolide 0.41465 0.995508 1 Down

PD.0325901 0.990599 1.007021 1 Up

PD.0332991 0.817477 0.9908 1 Down

PD.173074 0.092825 0.984945 1 Down

PF.02341066 0.094452 0.993725 1 Down

PF.4708671 0.482632 1.001987 1 Up

PF.562271 0.101193 0.989845 1 Down

QS11 0.26957 0.989348 1 Down

Rapamycin 0.009293 1.002918 1 Up

Roscovitine 0.258312 0.991664 1 Down

Salubrinal 0.199055 0.985458 1 Down

SB.216763 0.255405 0.99586 1 Down

SB590885 0.015365 1.008326 1 Up

Shikonin 0.024425 0.246615 1 Down

Sorafenib 0.251372 0.993635 1 Down

S.Trityl.L.cysteine 0.012135 1.023283 1 Up

Sunitinib 0.026052 1.008915 1 Up

Tipifarnib 0.409909 0.999762 1 Down

TW.37 0.334325 0.981746 1 Down

VX.680 0.254248 0.999934 1 Down

WO2009093972 0.036282 0.967696 1 Down

X17.AAG 0.024601 0.875729 1 Down

X681640 0.020736 0.976836 1 Down
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