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Background: Searching for the production mechanism of synovial lesions helps to find precise 
therapeutic targets and improve prognosis. The previous identification and screening of differential genes in 
osteoarthritis (OA) pathogenesis were well combined to further build a risk prognosis model of OA, which is 
beneficial to the diagnosis and treatment of patients with OA.
Methods: The synovia-related chip data sets GSE82107, GSE12021, GSE55457, and GSE55235 were 
downloaded from the public database of Gene Expression Omnibus (GEO), and 40 cases of synovial tissues 
of OA and 36 cases of normal synovial tissues were included. R software was used to screen differentially 
expressed genes (DEGs), Gene Ontology (GO) functional enrichment, and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis. The STRING online analysis tool and Cytoscape 
software were used to further screen key genes, and a prognostic model of OA susceptibility risk was 
constructed.
Results: The results showed 1,921 differential genes, including 762 upregulated genes and 1,159 
downregulated genes, which were mainly involved cell growth, cell adhesion, skeletal muscle growth, iron 
ion binding, ubiquitin protein ligase binding, and hormone receptor binding. Co-acquisition based on  
10 key target genes of the protein interaction network, containing CTNNB1, GSK3B, STAT1, RHOC, 
HDAC9, PSEN1, KDM5C, BACE1, JAK3, and CUL1. The area under the concentration-time curve (AUC) 
was used to evaluate the prognostic model of OA risk, and the curve results showed that the prognostic 
model had high accuracy and validity (AUC =0.690).
Conclusions: Bioinformatics analysis was applied to screen out the DEG profiles of OA. This may provide 
functional predictions to provide new ideas for treatment of the disease and may be a biological marker 
for its diagnosis and a potential target for treatment. The construction of the risk and prognosis model is 
beneficial to the risk assessment of rehabilitation function recovery of patients with OA, the evaluation of the 

severity of the disease and the subsequent treatment guidance.
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Introduction

The incidence of osteoarthritis (OA) increases with age 
and has a prevalence in those over 65 years old of up to 
50% (1). In recent years, OA pathogenesis is not a set 
of targets or that some gene interaction relationship has 
significantly changed, but a set of targets or some genes 
leading to related functional modules or biological network 
failure, including the enzymatic degradation of cartilage 
extracellular matrix, a lack of new extracellular matrix 
synthesis, cell death and apoptosis, abnormal activation 
of chondrocytes, and differentiation. Therefore, finding 
new and more meaningful biomarkers and the signaling 
pathways they participate in will play an important role in 
preventing and treating the occurrence and development 
of OA. With the rapid development of high-throughput 
technology, biological data has grown exponentially, and 
high-throughput biodetection technology represented by 
gene chips is widely used (2). This technology can obtain a 
large amount of disease-related gene information in a short 
time, making it possible to conduct a comprehensive and 
detailed analysis of diseases at the genetic level (3-5).

OA is a chronic inflammatory and degenerative joint 
disease characterized by cartilage degeneration, synovitis, 
and osteophyte formation, often leading to chronic 
disability in the elderly (6). While the current pathogenic 
mechanism of the disease is still unclear, most past research 
topics focused on cartilage tissue. With the continuous 
deepening of research, the role of synovial lesions in the 
occurrence and development of OA has attracted great 
attention. More than 90% of OA patients were found 
to have confirmed synovial lesions, and their degree was 
associated with severe pain and joint dysfunction (7). In 
addition, the occurrence of synovitis has also been reported, 
which may promote cartilage degeneration. While the 
search for the generating mechanisms of synovial lesions 
helps find precise therapeutic targets, fundamentally 
solving the problem of OA depends on the identification 
of biological markers (8-10). Therefore, finding disease 
differential genes and related signaling pathways is an 
urgent issue in the pathogenesis and therapeutic target 
research of the disease. With the rapid development of gene 
chip and RNA sequencing technologies, bioinformatics 
analysis has become an important research direction, 
providing new clues and core data for identifying reliable 
differentially expressed genes (DEGs), microRNAs 
(miRNAs), circular RNAs (cirRNAs), and long-chain non-
coding RNAs (lncRNAs), and showing great advantages in 

screening candidate biomarkers for various diseases (11).  
However, since the samples originate from different 
sequencing platforms, the expressed messenger RNA 
(mRNA) results are inconsistent with the gene spectrum, 
and a large part of the bioinformatics analysis of OA is 
limited to a single chip data. While this may produce results 
which are limited and of poor reliability, multi-group 
microarray data can effectively solve this problem (12). 
Moreover, as many studies have progressed, large amounts 
of genetic information uploaded to public databases has 
not been effectively utilized (13). Related studies (14,15) 
only analyzed the expression and functional enrichment 
of OA differential genes, focusing more on the impact of 
OA risk analysis. However, few people have analyzed the 
differential genes in the prognosis of patients with OA and 
the construction of the risk prognosis model. In this study, 
the advantages of the previous two factors were skillfully 
combined to form a prognosis model for joint analysis 
of morbidity and prognosis. In addition, the data in the 
database included in this study are the latest research data, 
which has better effectiveness analysis.

Advantages of using bioinformatics techniques to analyze 
the incidence and prognosis of OA: (I) it is a combination 
of molecular biology and information technology to study 
biological problems by using the methods of applied 
mathematics, informatics, statistics, and computer science; 
(II) the data comes from the most authoritative database in 
the world, which is more credible and practical; (III) it is 
conducive to data sharing and academic exchange, etc.

Therefore, this study used multiple groups of previously 
used gene chip data to screen, analyze, and identify more 
biological meaningful markers and to provide new ideas 
in OA research. We present the following article in 
accordance with the TRIPOD reporting checklist (available 
at https://atm.amegroups.com/article/view/10.21037/atm-
22-1135/rc).

Methods

Data collection and preprocessing

Using “osteoarthritis” as the reference word, the corresponding 
gene chips were searched in the Gene Expression Omnibus 
(GEO) database of NCBI (https://www.ncbi.nlm.nih.
gov/geo/), and four data sets meeting the experimental 
requirements were downloaded. The sequence numbers 
were GSE12021, GSE55235, GSE55457, and GSE55584, 
and all were from the GPL96 platform, with the chip type 

https://atm.amegroups.com/article/view/10.21037/atm-22-1135/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-1135/rc
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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being an Affy-Metrix Human Genome U133a. The data set 
of the GSE12021 chip was submitted by Huber in 2010 (16)  
and included 13 normal synovial tissue samples, 20 OA 
tissue samples, and 20 synovial tissue samples of rheumatoid 
arthritis (RA). Data sets GSE55235, GSE55457, and 
GSE55584 were submitted by Woetzel et al. in 2014 (17), 
and included 20 normal synovial tissue samples, 26 OA 
synovial tissue samples, and 33 RA synovial tissue samples. 
In this study, normal synovial tissue samples and OA 
synovial tissue samples from four data sets were selected as 
samples for subsequent analysis. In this study, bioinformatics 
techniques were used to screen and identify differential 
genes in OA, functional enrichment analysis, protein-
protein interaction (PPI) network analysis, prognostic 
critical genes analysis, and sensitivity and specificity analysis 
of area under the concentration-time curve (AUC).

Screening and analysis of DEGs

Data from GSE12021, GSE55235, GSE55457, and 
GSE55584 datasets were merged, and batch corrected 
using the “sva” analysis package in R, then analyzed using 
“limma” analysis package 8, where DEGs were selected 
with P<0.05, |log2fold change (FC)| >1. We investigated 
the functional roles of hub genes with a degree ≥10 and 
used the cBioPortal (https://www.cbioportal.org/) online 
platform to analyze gene networks and co-expressed genes. 
The biological network gene oncology tool (BiNGO) 
(version 3.0.4) in the Cytoscape plug-in was then used to 
visualize the hub gene biological process (BP).

Functional enrichment analysis of genes

Gene Ontology (GO) functional enrichment of differential 
gene expression and the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis. GO 
analysis of biological mechanisms was used for identification 
of high-throughput genomic or transcriptome data. 
This includes molecular function (MF), BP, and cellular 
component (CC). The KEGG database was used to identify 
functional and biological correlations of candidate targets. 
The “ClusterProfiler” enrichment package in R language 
was used to analyze the GO function and KEGG pathway 
enrichment of differential genes.

PPI network analysis

PPI network construction and key gene analysis imported all 

differential genes into the STRING online database (https://
string-db.org/) for protein interaction analysis, and PPI 
was visualized using Cytoscape software. The Cytohubba 
plugin in the Cytoscape software was applied for the top  
10 differential genes in the degree value (degree) as a key 
gene in the PPI. The DisGeNET database (https://www.
disgenet.org/, version 5.0) is one of the platforms containing 
the genes and variants associated with human disease, and 
genes were retrieved in this database. The above targets 
were then successively imported into the database to obtain 
the target type information (protein class).

Analysis of key modules and functional enrichment 
analysis

PPI was analyzed by using Molecular COmplex DEtection 
(MCODE) in Cytoscape software. The standard setting:  
cut-off value of node score =0.2, K-core =2, degree cut-off =2,  
calculated the score value of MCODE. A score >6 was used 
as the screening criterion for significance modules, and the 
online database DAVID (https://david.ncifcrf.gov/) was used 
to conduct pathway enrichment analysis for genes in the 
selected modules.

Prognostic analysis of hub genes

The R software (version 4.0.2) is a collection of toolkits used 
for the annotation, processing, analysis, and visualization 
of biological data and consists of a series of packages. We 
retrieved our transcriptome data and the clinical group 
data of the screened hub genes in The Cancer Genome 
Atlas (TCGA) database. We then ran the analysis using R 
software to obtain the relevant mRNA expression of the 
mRNA of hub genes and mapped its corresponding risk 
curve, which represents the risk analysis of the prognosis 
of OA. In addition, we ran independent prognostic analysis 
and trend analysis in the R language environment. The 
independent prognostic analysis was expressed in the form 
of forest diagrams, while the trend analysis was expressed 
by the receiver operating characteristic (ROC) curves. 
Single-factor and multi-factor Cox regression analysis 
indicate the clinical staging, and the risk score represents an 
independent prognostic factor.

Statistical analysis

SPSS (23.0) statistical software was used for data analysis. 
The measurement data were expressed as mean ± standard 

https://www.cbioportal.org/
https://string-db.org/
https://string-db.org/
https://www.disgenet.org/
https://www.disgenet.org/
https://david.ncifcrf.gov/
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deviation (x±s) and tested by one-way analysis of variance 
(ANOVA). P<0.05 indicated that the difference was 
statistically significant. In this study, variance analysis 
was performed on the relevant data of the OA test group 
and the normal healthy volunteers control group. In the 
univariate Cox regression, multivariate Cox regression and 
ROC analysis, t test was required for the selected data.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Results

Screening and identification of differential genes

The dataset of GSE12021, GSE55235, GSE55457, and 
GSE55584 contained 33 normal synovial tissue samples and 
40 OA synovial tissue samples. A total of 1,921 differential 
genes were screened, including 762 up-regulated genes and 
1,159 down-regulated genes (Figure 1A), and heat maps 
visually show differences in gene expression between OA 
patients and healthy controls (Figure 1B).

PPI network construction and module analysis

We built the PPI network of DEGs using Cytoscape 
software and used its plug-in MCODE to obtain the most 
important modules. Results of the function analysis of the 

hub genes using DAVID showed the selected DEGs were 
mainly enriched in cell division, mitosis, nuclear division, 
and cell cycle, as shown in Table 1.

GO and KEGG pathway enrichment analysis

The function and pathway enrichment analysis of hub genes 
was performed using DAVID. The results of GO analysis 
showed changes in the BP terms of the hub genes were 
significantly increased in signal pathways, regulation of cell 
division, regulation of complement activation, and mitotic 
cell cycle. On the other hand, changes in the CC terms 
were concentrated in the cytoplasmic area, extracellular 
area of the cell membrane, area around the nucleus of the 
cytoplasm, concentrated chromosomal centromeres, and 
platelets in the hyaluronic acid granules. GO enrichment 
analysis showed 151 differential genes, including dioxase 
activity, iron ion binding, cell adhesion, and ubiquitin 
protein ligase collection, and 216 items were enriched 
for downregulated differential genes, mainly including 
inhibition of transport factor binding, nucleotide sugar 
transmembrane transport activity, and hormone receptor 
binding (Figure 2).

PPI and key gene analysis

The STRING database (https://string-db.org) was used to 
construct PPI networks, and the threshold for interaction 
was set at 0.7. The filtered differential genes were imported 
into the STRING online database to obtain the PPI of the 
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Table 1 GO and KEGG pathway enrichment analysis of DEGs in the most significant module

Term Count % P value FDR

hsa04610:Complement and coagulation cascades 13 0.015564575 1. UE-05 0.014323205

hsa04512:ECM-receptor interaction 13 0.015564575 1.20E-04 0.154467703

hsa04974:Protein digestion and absorption 13 0.015564575 1.35E-04 0.172767737

hsa04U5:p53 signaling pathway 9 0.010775475 0.00415009 5.202475569

hsa04510:Focal adhesion 17 0.020353675 0.006182138 7.657719001

hsa04110:Cell cycle 12 0.0143673 0.008516724 10.40605319

hsa05202:Transcriptional misregulation in cancer 14 0.01676185 0.012777216 15.22807973

hsa04151:PI3K-Akt signaling pathway 23 0.027537325 0.014475026 17.08206542

hsa05146:Amoebiasis 10 0.01197275 0.021524457 24.38706471

hsa04514:Cell adhesion molecules 12 0.0143673 0.021828745 24.6885954

hsa04114:Oocyte meiosis 10 0.01197275 0.028056965 30.62192317

hsa04068:FoxO signaling pathway 11 0.013170025 0.035073485 36.78815863

hsa04270:Vascular smooth muscle contraction 10 0.01197275 0.037600738 38.88239916

hsa05166:HTLV-I infection 17 0.020353675 0.03777001 39.02035566

hsa05144:Malaria 6 0.00718365 0.040274546 41.02828533

hsa03320:PPAR signaling pathway 7 0.008380925 0.044757247 44.47065359

hsa04914:Progesterone-mediated oocyte 8 0.0095782 0.051422539 49.24770846

hsa05200:Pathways in cancer 23 0.027537325 0.05218087 49.76649163

hsa04614:Renin-angiotensin system 4 0.0047891 0.057734986 53.41962981

hsa04611:Platelet activation 10 0.01197275 0.065349769 58.03077189

hsa04670:Leukocyte transendothelial migration 9 0.010775475 0.077846058 64.69536318

hsa04925:Aldosterone synthesis and secretion 7 0.008380925 0.09381443 71.79207124

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes; FDR, false discovery rate.

differential genes, and the network contained 313 nodes with 
2,160 edges, 167 up-regulated genes, and 144 downregulated 
genes. The Cytohubba plug-in of Cytoscape software was 
applied to analyze the topological parameters of the network 
and indicate the importance of the gene in the network in 
the size of degree value. If the degree increased, the more 
genes were associated with it, and the more important the 
gene (Figure 3).

Landscape analysis of mutated genes in OA

Landscape analysis of mutant genes is a complex single-
sample analysis, which can be used to study the mutation 
situation of a certain gene in the disease, including the 

physical location of mutation, panoramic waterfall map 
of mutation type, and the further analysis of mutation 
subgroups. We downloaded OA related gene mutation data, 
transcriptome data, and clinical data from TCGA database, 
and downloaded and visualized somatic mutations in patients 
using the MAf Tools software package in R software. A 
horizontal histogram showed patients with OA had a high 
frequency of gene mutation, and we found the mutation rate 
of OA susceptibility genes was 1.87%, suggesting patients 
with a high expression of OA susceptibility genes had a 
certain risk of disease. Missense mutations were the most 
significant in the 536 samples of patients with OA, in which 
the mutations of OA susceptibility genes were related to 
mononucleotide mutations, focusing on nonsense mutations, 
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insertion mutations, and deletion mutations (Figure 4).

Evaluation of prognostic model of OA (ROC curve 
analysis)

The ROC results, with the abscissa as false positive rate 
(FPR) and the ordinate as true positive rate (TPR), were 
used to analyze the diagnostic efficacy of OA susceptibility 
genes in the pathogenesis of OA. The AUC (0.690) of the 
OA susceptibility gene, indicating that the HUB gene may 
be a potential diagnostic molecule. The area values under 
the ROC curve are between 0.5 and 1, and the closer the 
AUC is to 1, the better the diagnostic effect. The accuracy 
of the AUC ranged from 0.5 to 0.7, while that of the AUC 
ranged from 0.7 to 0.9. The accuracy of AUC was higher 

than 0.9, The risk prognosis model of patients with OA 
constructed in this study has high feasibility, good predictive 
ability, and certain clinical practicability (AUC =0.690) 
(Figure 5).

Discussion

OA is the most common total joint disease. While obesity, 
age, excessive exercise, inflammation, heredity. and trauma 
are closely related to its development, the etiology and 
pathogenesis of OA are unclear (18). Analysis of the 
underlying pathogenesis of OA is important for diagnosis and 
prognosis and the identification of drug therapy targets (19). 
As high-throughput sequencing and microarray technology 
can simultaneously provide information on the expression 
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Figure 3 Visualization of PPI protein interaction network analysis. PPI, protein-protein interaction.

levels of thousands of genes in the human genome, this 
approach has been widely used to predict potential diagnostic 
and therapeutic targets for OA (20).

Differential gene analysis in this study shows the 
complexity of the pathogenesis of OA, which is not a 
simple single gene target acting alone, but a complex 
result of multiple gene target interactions (21). KEGG 
pathway enrichment results showed these differential genes 
were mainly involved in the MAPK signaling pathway, 
fatty acid metabolism pathway, apoptosis pathway, JAK-
STAT signaling pathway, primary immune pathway, and 
hematopoietic cell lineage pathway. The MAPK signaling 
pathway can regulate chondrocyte proliferation, apoptosis, 
extracellular matrix metabolism, inflammatory factor 
secretion, and other processes, and play an important role 
in the pathological process of OA. Khan et al. (22) showed 
that the 3-phosphoinositol-dependent protein kinase (PDK) 
can promote chondrocyte apoptosis in OA through the p38 
MAPK signaling pathway (23,24), while Yang et al. (25) 
found DUal-specificity phosphatase (DUSP) overexpression 
in OA inhibited the activation of MAPK signaling and the 
expression of the OA-associated matrix. Zhang et al. (26) 
revealed the JAK/STAT signaling pathway was regulated 
by significantly upregulated by proinflammatory cytokine 
gene expression, while MMP-13 expression in the IL-1-
treated human chondrosarcoma cell lines induced JAK2 and 

STAT1/STAT2 activation and MMP-13 gene expression 
which was blocked by the pan-tyrosine kinase inhibitor 
AG490 (27-30). However, it was also found that treatment of 
this chondrocyte line with IL-1 also activated p38-MAPK.

GO analysis showed that down-regulated DEGs 
were mainly enriched in vascular development. Vascular 
endothelial growth factor A (VEGF A) is an important 
regulatory factor in bone development, and its expression 
was significantly increased in articular cartilage and 
synovium in advanced OA (31). VEGF A is involved in 
OA cartilage degeneration, osteophyte formation, sclerosis 
of subchondral bone cysts, and specific disease processes, 
such as, synovitis. Further, in cooperation with the IL-
1β of VEGF A can significantly reduce the aggregation 
of proteoglycan and type II collagen gene expression and 
protein level, and inhibition of VEGF signaling can delay 
OA progression (32). Interestingly, recent studies (33-35) 
suggest the VEGF A signaling pathway has a dual function, 
which can promote angiogenesis and induce vascular 
degeneration. Our results showed that the VEGF A gene 
had low expression in the synovium of OA. We suspect this 
may be because the overexpression of VEGF protein in the 
body reversed the expression of the VEGF A gene, resulting 
in gene down-regulation. At the same time, it cannot be 
ruled out that the inconsistent results may be related to 
different gene pool selection. In conclusion, VEGF A plays 
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Figure 4 Variable splicing analysis of prognostic genes of OA. (A) Lollipop chart showing the distribution of mutations in OA susceptibility 
genes, with somatic mutation rates and names indicated by headings and subheadings respectively; (B) Oncoplot shows the somatic 
landscape of the OA susceptibility gene cohort, with genes ordered by mutation frequency and samples ordered by disease histology. SNV, 
single nucleotide variant; OA, osteoarthritis.

an important role in the occurrence and development of OA, 
and its specific mechanism needs to be further explored (36).

PPI network analysis of these differential genes was 
carried out using the STRING online database, and the 
key target located in the center was obtained, in which, 
STAT1 is an indispensable component in regulating the 
inflammatory response of macrophages (37). If activated 
STAT1 is phosphorylated and translocated to the genes 
that regulate inflammation in the nucleus, JAK3, as a non-

receptor tyrosine kinase, interacts with the common γ chain 
(IL2RG) of the cytokine receptor complex.

In conclusion, this study revealed CTNNB1 and GSK3B, 
as well as the STAT1, RHOC, HDAC9, PSEN1, KDM5C, 
BACE1, and JAK3 hub genes including CUL1, may play 
an important role in OA, and these biological markers 
may become drug targets and diagnostic markers of the 
disease. This study provides new insights into the molecular 
biology of OA and paves the way for the discovery of new 
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biomarkers for its diagnosis.
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