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Introduction

Artificial intelligence (AI) is generally accepted as having 
started with the invention of robots. The term robot itself 
entered the international vocabulary through the Czech 
writer Karel Capek’s play, “R.U.R” (Rossumovi univerzální 
roboti, Rossum’s Universal Robots, 1921) (1). AI is a general 

expression which refers to all the techniques that enable 
computers to mimic human intelligence. It is based on 
algorithms that gives machines the ability to reason and 
perform functions such as problem-solving, object and 
word recognition, inference of world states, and decision-
making (2). It includes machine learning (ML) and deep 
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learning (DL) (3). ML allows a computer to improve 
performance with experience and often involves training 
an algorithm by exposing it to ‘training data’. There are 
three types of ML algorithms: (I) supervised learning, that 
uses labeled datasets to train algorithms to classify data or 
predict outcomes accurately; it focuses on classification 
of new data and on prediction of unknown parameters. 
(II) Unsupervised learning, which refers to algorithms 
identifying patterns or structure within a dataset where there 
are no outputs to predict. These algorithms are useful to 
find novel ways of classifying patients, drugs, or other groups 
to generate hypotheses generation for future research. (III) 
Reinforcement learning based on algorithms that attempt 
certain tasks and learn from their subsequent successes and 
mistakes (4). DL is a subset of ML, using artificial neural 
networks (ANN) organized in several layers. ANN use 
multiple layers of calculations to imitate the concept of how 
the human brain interprets and draws conclusions from 
information. DL is characterized by multiple hidden node 
layers that learn representations of data by abstracting it 
in many ways. Where DL is differentiated from a simple 
neural network (NN) is that the number of layers of nodes 
is increased and the overall size of the network is larger, 
allowing for complex interrelationships to be represented 
more accurately (4). 

Medicine is essentially a continually in progress domain 
and most medical data are inherently imprecise. For these 
reasons Boolean or conventional logic, which uses sharp 
distinctions, i.e., 0 for false and 1 for true, is not always 
suitable for analyzing medical data. In 1965 Lofti Zadeh, an 
engineer from the University of California, popularized the 
‘fuzzy’ logic which uses continuous set membership from 
0 to 1. Fuzzy logic (FL) is a data handling methodology 
that permits ambiguity and hence is particularly suited 
to medical applications (2). The great potential of the 
use of AI in healthcare is widely recognized. Among the 
purposes of its exploitation in this context we find precision 
medicine, optimization of available resources and reduction 
of inequalities (5). AI is achieving excellent results in every 
field of medicine, including medical diagnosis, medical 
treatment, drug production, clinical management and 
medical education (6). For example, the usefulness of AI 
in reducing costs and sparing time has been demonstrated 
applying ML algorithms in patients with osteoporosis and 
Paget’s disease, managing to identify the best therapeutic 
combination possible, reducing drug-drug interactions (7). 
In this regard the field of anesthesia is no exception. Indeed, 
the wealth of data made available by continuous monitoring 

makes anesthesia a particularly favorable field for the 
application of new AI technologies.

The aim of this narrative review is to analyze whether 
or not AI and its subsets are implemented in current 
clinical anesthetic practice, and to describe the current 
state of the research in the field. We present the following 
article in accordance with the Narrative Review reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-21-7031/rc).

Methods

We performed a narrative review of the literature on Scopus, 
PubMed and Cochrane databases. The research string 
comprised various combinations of “artificial intelligence”, 
“machine learning”, “anesthesia”, “anesthesiology”. Two 
authors searched the database independently. A third 
reviewer mediated any disagreements in the results of the 
two screeners. To be included, papers had to be focused 
on the application of AI-based algorithms in the practice 
of anesthesia, including preoperative, intraoperative, 
postoperative, and operating room (OR) management. All 
English-language papers from 2015 to December 2021, 
were eligible. Peer-reviewed, published literature, including 
narrative review papers, were eligible for inclusion. Studies 
involving animals, editorials, letters to the editor, and 
abstracts were excluded. Reference lists of included papers 
were hand-searched and included if the inclusion criteria 
were met. Search strategy is summarized in Table 1.

Discussion

On the basis on the included articles, we identified the 
following categories of studies: (I) AI in pre-operative 
anesthesia; (II) AI in intra-operative anesthesia; (III) AI in post-
operative anesthesia; (IV) AI in OR management (Table 2).

AI in pre-operative anesthesia

Preoperative risk stratification is a fundamental moment for 
every anesthetist. In this context, the use of AI is achieving 
excellent results in this context. Among the most widely 
used scores is the American Society of Anesthesiologists 
Physical Status (ASA PS). This classification is subjective, 
requires manual clinician review to score, and has limited 
granularity. Zhang et al. (8) published an article with the aim 
of developing a system that automatically generates an ASA 
PS with finer granularity. Supervised ML methods were 

https://atm.amegroups.com/article/view/10.21037/atm-21-7031/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-7031/rc
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Table 1 The search strategy summary

Items Specification

Date of search 18/12/2021

Databases and other sources searched Scopus, PubMed and Cochrane databases

Search terms used “Artificial intelligence”; “machine learning”; “anesthesia”; “anesthesiology”

Timeframe From 2015 to December 2021

Inclusion and exclusion criteria Inclusion criteria: 
 Focus on the application of AI-based algorithms in the practice of anesthesia, including 

preoperative, intraoperative, postoperative, and OR management
 English-language papers
 Peer-reviewed, published literature, including narrative review papers

Exclusion criteria:
 Main topic not related to the application of AI in anesthesia
 Studies involving animals
 Editorials, letters to the editor, and abstracts
 Non-English-language articles

Selection process Two authors searched the database independently. A third reviewer mediated any 
disagreements between the two researchers

OR, operating room. 

used to create a model which predicts a patient’s ASA PS 
on a continuous scale using the patient’s home medications 
and comorbidities. Three different types of predictive 
models were employed: regression models, ordinal models, 
and classification models. To assess model performance on 
continuous ASA PS, model rankings were compared to two 
anesthesiologists on a subset of ASA PS 3 case pairs. The 
results suggest that the random forest split classification 
model can predict ASA PS with agreement similar to that 
of anesthesiologists reported in literature and produce 
a continuous score in which an accurate agreement in 
judging granularity is fair to moderate. Authors concluded 
that the use of the continuous score may be able to aid 
anesthesiologists in identifying high risk patients who could 
benefit from additional preoperative assessment.

The new technologies not only have the capability to 
improve existing scores, but they seem able to provide new 
highly personalized risk scores. One of the first is called 
“MySurgeryRisk” (9). It had its origin from the data of 
51,457 surgical patients undergoing major inpatient surgery. 
The score is able to predict the risk for 8 postoperative 
complications [acute kidney injury (AKI), sepsis, venous 
thromboembolism, intensive care unit (ICU) admission >48 h,  
mechanical ventilation >48 h, wound, neurologic, and 
cardiovascular complications], with area under the curve (AUC) 
values ranging between 0.82 and 0.94, and the risk for death at 

1, 3, 6, 12, and 24 months, with AUC values between 0.77 and 
0.83. Furthermore, the “MySurgeryRisk” algorithm has been 
shown to have superior performance when compared to that 
of 20 physicians (10). Another excellent example is provided 
by the group of Xue et al. (11). The authors developed ML 
models capable of identifying the risk for 5 postoperative 
complications (AKI, delirium, deep vein thrombosis, 
pulmonary embolism and pneumonia) capable of exploiting 
only intraoperative data, only preoperative or combined data. 

Another essential aspect of the preoperative evaluation is 
the airways assessment. Various scores have been proposed 
in literature over time. However, in adults with apparently 
no anatomical airway abnormalities, who represent most 
of the patients we deal with, these tests are not so effective. 
From a specific review published in 2018, it emerged that all 
investigated index tests, although having a good specificity, 
had a relatively low sensitivity (12). The use of AI could be 
useful also in this area. Tavolara et al. (13), starting from 
frontal facial images, developed a DL model capable of 
identifying difficult to intubate patients, with performances 
superior to two conventional tests, Mallampati test and 
thyromental distance. In addition, the model can work at 
high sensitivity and low specificity (0.9079 and 0.4474) or low 
sensitivity and high specificity (0.3684 and 0.9605), exceeding 
the limits of low sensitivity of current tests. Kim et al. (14)  
proposed a predictive model of difficult laryngoscopy, 
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Table 2 Comparative table of the most representative studies on the use of AI in anesthesia included in our narrative review

Timing Type Main topic AI technique Journal/book Authors Year Main results

Pre-operative OP Airways evaluation ML BMC Anesthesiol Kim et al. 2021 Random forest algorithm was best AUROC =0.72–0.86, AUC-PR =0.27–0.37

OP Airways evaluation DL Comput Biol Med Tavolara et al. 2021 Using convolutional NN and attention-based multiple instance learning models authors obtain AUC of 0.7105

OP Risk stratification ML Ann Surg Bihorac et al. 2019 “MySurgeryRisk”: postoperative complications AUC 0.82–0.94, risk for death AUC 0.77–0.83

OP Risk stratification ML Surgery Brennan et al. 2019 “MySurgeryRisk”: AUROC 0.73–0.85

OP Risk stratification ML JAMA Netw Open Xue et al. 2021 AUROCs for pneumonia (0.903–0.907), AKI (0.846–0.851), DVT (0.878–0.884), pulmonary embolism (0.824–0.839) and delirium (0.759–0.765)

OP Risk stratification ML J Med Syst Zhang et al. 2018 Random forest algorithm perform better than other’s and achieves AUC of 0.884 for distinguishing ASA PS 1–2 against 3–4

Intra-
operative

GA Closed-loop anesthesia ML Anesth Analg West et al. 2018 The overall control performance indicator, global score, was a median (interquartile range) 18.3 (14.2–27.7) in phase I and 14.6 (11.6–20.7) in phase II (median 
difference, −3.25; 95% confidence interval: −6.35 to −0.52)

GA Managing intraoperative pain ML Comput Biol Med Gonzalez-Cava et al. 2020 Efficiency of the SVM classifier using ANI as a guidance variable: accuracy: 86.21% (83.62–87.93%), precision: 86.11% (83.78–88.57%), recall: 91.18%  
(88.24–91.18%), specificity: 79.17% (75–83.33%), AUC: 0.89 (0.87–0.90) and kappa index: 0.71 (0.66–0.75)

GA Monitoring the DoA DL and NN IEEE J Biomed Heal Informatics Afshar et al. 2021 The proposed methods achieves root mean square error of 5.59±1.04, mean absolute error of 4.3±0.87 and AUC of 81.11±5.27

GA Monitoring the DoA NN Sensors (Basel) Gu et al. 2019 The accuracy of detecting each state was 86.4% (awake), 73.6% (light anesthesia), 84.4% (GA), and 14% (deep anesthesia). The correlation coefficient between 
BIS and the index of this method was 0.892 (P<0.001)

GA Monitoring the DoA ML Stud Health Technol Inform Syed et al. 2021 XGBoost achieved AUROC of 0.762

OR and 
ICU

Predicting adverse events ML NPJ Digit Med Chen et al. 2021 PHASE performance expressed as average precision: hypoxemia (0.241), hypocapnia (0.300), hypotension (0.424), hypertension (0.161), phenylephrine (0.227), 
and epinephrine (0.129)

OR Predicting adverse events ML J Surg Res Datta et al. 2020 ML models incorporating both preoperative and intraoperative data had better performance: postoperative complications and in-hospital mortality (accuracy: 88% 
vs. 77%; AUROC: 0.93 vs. 0.87; AUC-PR: 0.21 vs. 0.15). Overall reclassification improvement was 2.4–10.0% for complications and 11.2% for in-hospital mortality

GA Predicting anesthetic infusion events ML Sci Rep Miyaguchi et al. 2021 Long short-term memory model when predicting the future increase in flow rate of remifentanil after 1 min, was able to predict with scores of 0.659 for sensitivity, 
0.732 for specificity, and 0.753 for ROC-AUC

GA Predicting hypoxemia ML Nat Biomed Eng Lundberg et al. 2018 Initial risk prediction: anesthesiologists AUC 0.60, with “Prescience” assistance AUC 0.76, “Prescience” alone AUC 0.83. Intraoperative real-time risk prediction: 
anesthesiologists AUC 0.66, with “Prescience” assistance AUC 0.78, “Prescience” alone AUC 0.81

RA Predicting hypotension NN BMC Anesthesiol Gratz et al. 2020 NN approach AUC 0.89, discrete feature quantification approach AUC 0.87

GA Predicting hypotension ML PLoS One Kang et al. 2020 Random-forest model showed the best performance AUROC 0.736–0.948; Naïve Bayes 0.65–0.898, logistic regression 0.630–0.881, artificial-neural-network 
0.640–0.880

PACU Predicting hypotension ML Br J Anaesth Palla et al. 2022 Hypotension prediction AUROC 0.81–0.83, average precision 0.38–0.42. Anesthesiologist performance improvement AUROC from 0.67 to 0.74

GA Predicting hypotension ML Br J Anaesth Schenk et al. 2021 HPI guided care did not reduce the median duration of postoperative hypotension adjusted median difference, vs. standard of care: 0.118. HPI-guidance reduced 
the percentage of time with MAP <65 mmHg by 4.9%

GA Predicting hypotension ML JAMA Wijnberge et al. 2020 The median difference time-weighted average of hypotension between the intervention group and the control group was 0.38 mmHg. The median difference time 
of hypotension was 16.7 min. In the intervention group, 0 serious adverse events resulting in death occurred vs. 2 (7%) in the control group

GA Predicting post-operative delirium ML CNS Neurosci Ther Hu et al. 2022 Logistic regression model outperforms other classifier models AUC 0.804 and achieve the lowest Brier Score as well. Age (odds ratio: 1.054), extubation time 
(odds ratio: 1.027), ICU admission (odds ratio: 2.238), mini-mental state examination score (odds ratio: 0.929), Charlson comorbidity index (odds ratio: 1.197), and 
postoperative neutrophil-to-lymphocyte ratio (odds ratio: 1.029) were independent risk factors for postoperative delirium

RA US anatomical structure detection AR Ultrasound Med Biol Ameri et al. 2019 Procedure success rate with the AR system 100%, US-only guidance 57%

RA US anatomical structure detection NN Int J Comput Assist Radiol Surg Hetherington et al. 2017 The convolutional NN successfully discriminates US images achieving 88% 20-fold cross-validation accuracy

RA US anatomical structure detection NN IEEE Trans Med Imaging Pesteie et al. 2018 3-D test data set: average lateral error (1 mm), average vertical error (0.4 mm). 2-D test data set: average lateral error (1.7 mm), average vertical error (0.8 mm)

Post-
operative

PM Managing postoperative pain ML Advances in Intelligent Systems and 
Computing

Gonzalez-Cava et al. 2017 In 81% of cases, ANI correctly predicted increase or decrease of drug

PM Managing postoperative pain in depressed patient ML PLoS One Parthipan et al. 2019 Prediction of increase or decrease pain scores: discharge AUROC 0.87, 3-week follow-up AUROC 0.81, 8-week follow-up AUROC 0.69

PACU Predicting adverse events ML Comput Biol Med Olsen et al. 2018 Algorithm detection ESODs: accuracy 92.2%, sensitivity 90.6%, specificity 93.0%, AUROC 96.9%, reduction in diagnostic time 26.4 min

PM Predicting pre-operative APS consultations ML Pain Med Tighe et al. 2012 ML classifiers correctly predicted preoperative requests for APS consultations in 92.3% of all surgical cases. Bayesian methods yielded the highest AUROC 
0.84–0.89 and lowest training times 0.0018 s

PM Predicting rebound pain after peripheral nerve block ML Br J Anaesth Barry et al. 2021 Incidence of rebound pain was 49.6%. Factors independently associated with rebound pain: younger age (odds ratio: 0.98), female gender (odds ratio: 1.52), 
surgery involving bone (odds ratio: 1.82), and absence of perioperative i.v. dexamethasone (odds ratio: 1.78). Rates of patient satisfaction (83.2%) and return to 
daily activities (96.5%)

MW Predicting respiratory events FL J Clin Monit Comput Ronen et al. 2017 IPI sensitivity 0.83–1.00 and specificity 0.96–0.74

OR 
management

OR Predicting operating times ML Surg Endosc Huang et al. 2017 Mean turnover time was 36 min, time from patient identification to procedure start was 11 min, time to bring a patient into the room after surgeon identification was 
22 min on average

OR Predicting operating times ML Can J Surg Rozario et al. 2020 Reduction in nursing overtime of 21%, a theoretical cost savings of $469,000 over 3 years

OP, outpatient; ML, machine learning; AUROC, area under the receiver operating characteristics; AUC-PR, area under the precision-recall curve; DL, deep learning; NN, neural network; AUC, area under the curve; AKI, acute kidney injury; DVT, deep vein thrombosis; ASA PS, American Society of 
Anesthesiologists Physical Status; GA, general anesthesia; SVM, support vector machine; ANI, Analgesia Nociception Index; DoA, depth of anesthesia; BIS, bispectral index; OR, operating room; ICU, intensive care unit; RA, regional anesthesia; PACU, post anesthesia care unit; HPI, Hypotension 
Prediction Index; MAP, mean arterial pressure; US, ultrasound; AR, augmented reality; ESODs, early signs of deterioration; PM, pain management; APS, acute pain service; MW, medical ward; FL, fuzzy logic; IPI, Integrated Pulmonary Index. 
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defined as Grade 3 and 4 by the Cormack-Lehane 
classification. In this monocentric study, Balanced Random 
Forest (BRF) algorithm showed the best performance with 
area under the receiver operating characteristics (AUROC) 
of 0.79 (0.72–0.86). Furthermore, in this case too, models 
with high sensitivity (90% for BRF) and models with high 
specificity and accuracy, respectively 91% and 83%, if we 
consider light gradient boosting machines (LGBM), have 
been identified. Finally, Hayasaka et al. (15) developed a 
convolutional neural network (CNN) algorithm capable of 
evaluating the difficulty of intubation with an excellent AUC 
of 0.864 just by evaluating patients’ facial pictures, making it 
a promising tool for predicting these casualties in advice. 

AI in intra-operative anesthesia

In literature, the phase of perioperative path that has 
aroused the most interest in the use of AI, together with the 
pre-operative one, is certainly the intra-operative. Several 
tasks have been carried out with good results by AI, with 
particular reference to: anatomical structures identification 
during regional anesthesia, sedation management, depth 
of anesthesia (DoA) monitoring, automating drugs 
administration, intraoperative pain management, prediction 
of adverse event, such as hypotension and hypoxemia, and 
postoperative complications risk prediction. 

Regarding anatomical structures identification, image 
guided procedures become a standard of diagnose and 
treatment in many medical aspects. Of all imaging 
modalities, ultrasound (US) is ubiquitously used due to 
its real-time, low-cost, and radiation-free capabilities. 
Anesthesiologists largely use US to perform safely and 
efficiently regional anesthesia. However, nerve tracking and 
accurate needle localization remains an ongoing challenging 
task due to the noise, artifacts, and anatomic structure 
variability (16,17). One study investigated the application 
of augmented reality (AR) to detect anatomical landmarks 
during simulated epidural anesthesia; the US transducer and 
the needle were viewed in a 3D-augmented environment, 
and the epidural space was identified using a single-element 
transducer at the needle tip. All attempts were successful 
in a phantom compared with only 50% of attempts using 
US alone (18). Pesteie et al. (19) used convolutional NN to 
automate identification of the anterior base of the vertebral 
lamina, whereas Hetherington et al. (20) used convolutional 
NN to automatically identify the sacrum and the L1-L5 
vertebrae and vertebral spaces from US images in real time 
with up to 95% accuracy. One of the greatest difficulties 

for anesthesiologists lies in performing subarachnoid or 
epidural anesthesia in obese patients, particularly in obese 
pregnant women, where pregnancy-induced changes in the 
spine further reduce the chances of success. In this context 
In Chan et al. (21) developed a ML algorithm in order to 
determine the needle insertion point using automated spinal 
landmark US imaging of the lumbar spine; their results 
were quite impressive with a first-attempt success rate of 
around eighty percent. 

The management of patients undergoing gastroenterological 
procedures often require sedations to improve patient 
comfort and facilitate endoscopic performance. In 2021 
Syed et al. (22) created a ML model (XGBoost) that predicts 
the grade of sedation required to successfully conduct a 
colonoscopy with an AUC of 0.762 after being tested on 
tested on 10,025 colonoscopies.

Many other surgical procedures require general anesthesia 
providing patients with absence of consciousness, analgesia, 
and relaxation. Titrating hypnotic drugs prevent over- and 
under-sedation avoiding unwanted intraoperative awareness 
or excessive hemodynamic instability. An accurate DoA 
monitoring reduces mortality, morbidities, and postoperative 
recovery. Unfortunately, the hypnotic dose administered has 
not a linear relationship with DoA, including both volatile 
and intravenous anesthetics (23). The field of ML offers 
many different algorithms that could be used to build a 
reliable index to monitor the DoA (24). In this context Afshar 
et al. (25) proposed a combinatorial DL structure involving 
CNN, bidirectional long short-term memory (LSTM), 
and an attention layer. The proposed model uses the EEG 
signal to continuously predicts the bispectral index (BIS) 
(Medtronic, Minneapolis, MN, USA). It is trained over a 
large dataset, mostly from patients under general anesthesia 
with few cases receiving sedation/analgesia and spinal 
anesthesia. The resulting DoA values are discretized into 
four levels of anesthesia and the results demonstrated strong 
inter-subject classification accuracy of 88.7%. Similarly, in 
this study (26), authors proposed a method that combines 
multiple EEG-based features with ANN to assess the DoA. 
The correlation coefficient between BIS and the index 
of this method was 0.892 (P<0.001). The results showed 
that the proposed method could well distinguish between 
awake and other anesthesia states. Closed-loop control of 
anesthesia involves continual adjustment of drug infusion 
rates according to measured clinical effect. In real surgical 
situations environmental, however, many interferences can 
affect the reliability of the BIS signal, with potential total 
intravenous anesthesia (TIVA) complications because of 
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the discrepancy between predicted effect-site concentration 
and measured BIS index ongoing propofol and remifentanil 
infusion (27). Considering this aspect, it could be useful to 
have other tools capable of providing useful information 
during drug administration. In this context, West et al. (28)  
utilized NeuroSENSE monitor which provides an 
electroencephalographic measure of depth of hypnosis 
[wavelet-based anesthetic value for central nervous system 
(WAVCNS) monitoring] to evaluate the feasibility of a 
closed-loop system for robust control of propofol and 
remifentanil infusions using WAVCNS feedback. Results 
demonstrated that this controller design offers a robust 
method to optimize the control of 2 drugs using a single 
sensor, but further research is required to determine the 
optimal constraints for these safe conditions. Moreover, 
Miyaguchi et al. (29) recently compared the performance of 
six ML methods [logistic regression, support vector machine 
(SVM), random forest, light gradient boosting machine 
(LGBM), ANN, and LSTM] in predicting remifentanil 
increase events. The results demonstrated that when 
predicting the future increase in flow rate of remifentanil 
after 1 min, the model using LSTM was able to predict with 
scores of 0.659 for sensitivity, 0.732 for specificity, and 0.753 
for ROC-AUC; for the authors, these results demonstrated 
the future potential to predict the decisions made by 
anesthesiologists using ML.

Regarding intraoperative pain management, quantifying 
the nociception level of the patients and adjusting analgesic 
drug infusion during anesthesia is still challenging. To this 
end, ML algorithms could be used to build index helping 
anesthesiologist to manage intraoperative pain as made by 
Gonzalez-Cava et al. (30) in this paper. They evaluate the 
Analgesia Nociception Index (ANI) as a guidance variable 
for opioid infusion rate modulation. The ANI monitor 
makes a Heart Rate Variability (HRV) analysis to measure 
the effect of the Respiratory Sinus Arrhythmia (RSA). 
ANI value together with the hemodynamic information 
outperformed non-specific traditional signs such as heart 
rate and blood pressure in order to quantify the nociception 
level and may anticipate a dose change to prevent 
hemodynamic events before they happen (30).

AI is the basis of new clinical tools for predicting 
intraoperative adverse events. One of the most common is 
intraoperative hypotension, which is associated with increased 
morbidity and mortality. For these reasons predicting 
intraoperative blood pressure patterns has been a recent 
target of ML approaches in the intraoperative setting (31).  
In a South Korean study, authors found that ML models 

are able to predict hypotension occurring during the period 
between tracheal intubation and incision. In particular, the 
random forest model showed the best performance, with 
an AUC of 0.842 (32). In another study authors compared 
the capabilities of a single hidden layer NN of 12 nodes 
to those of a discrete-feature discrimination approach in 
predicting significant hypotension under spinal anesthesia 
during cesarean section (33). The results presented suggested 
that a NN approach may be superior to a discrete feature 
quantification approach. Moreover, a preliminary unblinded 
randomized clinical trial performed in a tertiary center in 
Amsterdam, called Hypotension Prediction (HYPE) trial, 
tested a ML-derived early warning system, the Hypotension 
Prediction Index (HPI), to predict hypotension shortly 
before it occurs (34). Patients were randomly assigned to 
receive either the early warning system or standard care, with 
a goal mean arterial pressure (MAP) of at least 65 mmHg in 
both groups. The median time of hypotension per patient 
was significantly shorter in the intervention group than 
in the control group reducing the depth and duration of 
intraoperative hypotension, without excess use of intravenous 
fluid, vasopressor, and/or inotropic therapies. However, in 
a sub-study of the HYPE study, HPI-guided care did not 
reduce the median duration of postoperative hypotension (35). 
For these reasons, we believe that further studies are required 
to understand the real usefulness in daily clinical practice 
and their impact in postoperative outcomes. Similarly, an 
ensemble-model-based ML tool, named “Prescience”, can be 
able to assist anesthesiologist in predicting intraoperative 
hypoxemia during anesthesia, and it was able to delineate 
the risk factors that contributed to the prediction (36).  
However, when provided with information generated by 
“Prescience”, anesthesiologists were able to significantly 
improve their ability to predict intraoperative hypoxemia. 
This represents an example where the complementary 
relationship between humans and machines can outperform 
either one alone. More recently Chen et al. (37) tested a 
transferable embedding method (i.e., a method to transform 
time series signals into input features for predictive ML 
models) named PHASE (PHysiologicAl Signal Embeddings) 
with a large amount of dataset from ORs and ICU. Results 
indicated that PHASE outperforms other state-of-the-art 
approaches in predicting six distinct outcomes: hypoxemia, 
hypocapnia, hypotension, hypertension, phenylephrine, and 
epinephrine (37). 

The integration of preoperative and intraoperative data 
to improve risk prediction is becoming material for debate in 
literature. It is certainly logical to assume that the exploitation 
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of information from the intraoperative phase can lead to an 
improvement in knowledge of the perioperative period. This 
concept emerges from several studies, with the exception of 
a very recent article in which the addition of intraoperative 
data did not increase the performance of the model in 
predicting mortality after intra-abdominal surgery (38).  
On the contrary, in several other papers, the exploitation of 
intraoperative data provided relevant clinical information, 
as in the case of “MySurgeryRisk PostOp Extension” (39). In 
another recent article, Palla et al. (40) presented a model 
capable of predicting hypotension in post anesthesia care unit 
(PACU) using preoperative and intraoperative data of 88,446 
surgical patients, with an AUROC of 0.82. The integration 
between the two data timings was also exploited to create 
effective automated ML prediction models of postoperative 
delirium (41). Different, but equally effective, example are 
the models of Xue et al. (11), previously cited. Their ability 
to employ data from different phases of surgery makes these 
models particularly adaptable to several clinical situations, 
from elective surgery, where all the data are available, to 
emergency surgery, where the only data available are the 
intraoperative ones. It is evident how precision medicine, 
provided by the use of intelligent clinical tools, moves 
away from the classic concept of patient tailoring, but also 
it manages to include the concept of diversity of clinical 
conditions.

AI in post-operative anesthesia 

In the field of pain medicine, AI is turning out to be a 
valuable ally (42,43). Thanks to its complex analyzes, 
a better understanding of pain pathophysiology is 
becoming possible. Gonzalez-Cava et al. (44) used ML 
to analyze differences in functional magnetic resonance 
imaging data collected from human volunteers who 
were exposed to painful and nonpainful thermal stimuli. 
They demonstrated that ML analysis of whole brain 
scans succeeded in accurately identify pain than analysis 
of individual brain regions traditionally associated with 
nociception. Good results are also being achieved in 
the postoperative pain, probably in consideration of 
the complexity of the variables that are responsible for 
postoperative pain development, both in terms of numbers 
and relationships between them. Barry et al. (45), analyzing 
the factors associated with rebound pain after peripheral 
nerve block, showed how the ML technique, in particular 
the ‘logistic model tree attribute-selected classifier’, proved 
to have the best performance compared to other analyzes, 

in particular compared to multivariate logistic regression 
model, including new variables not previously considered. 
Parthipan et al. (46), instead, used ML techniques to better 
understand the relationships between postoperative pain 
and depression. They reached the conclusions that thanks 
to the exploitation these new analytical techniques, for 
the first breakthrough, the effect of the known ability of 
selective serotonin reuptake inhibitors (SSRIs) to inhibit 
prodrug opioid effectiveness on the worse pain control 
has been demonstrated. ML has not only proved useful 
in pain risk prediction, but also in supporting clinical 
decisions regarding acute pain service (APS). In the study 
by Tighe et al. (47), ML-classifiers predicted successfully a 
preoperative APS consultation in 92.5% of surgical cases. 

Another phase characterized by continuous monitoring 
and therefore capable of providing large amounts of 
important data is the PACU admission. It represents 
another delicate phase for the surgical patient, in 
which careful monitoring is maintained with the aim of 
identifying early complications. Olsen et al. (48) presented 
a predictive algorithm for detecting early signs of 
deterioration (ESODs) in the PACU; this system has had 
excellent results, being able to identify ESODs with an 
accuracy of 92.2%, associated with an important reduction 
in false alarms and missed ESODs. Unfortunately, 
however, data collected here have not yet been widely 
exploited and this represents one of the very few studies 
on the subject. Another important PACU evaluation to be 
performed is the assessment of post-surgical in-hospital 
mortality. In this context Lee et al. (49) have developed 
a generalized additive model with neural networks 
(GAM-NNs) capable of predicting mortality in patients 
undergoing general anesthesia with a high AUC, with 
numerous advantages over simple models like LR used 
in previous studies; for example is able to learn nonlinear 
patterns in the data, which is more clinically intuitive, and 
it can be interpreted easily with a notable AUC of 0.921. 

Acute renal failure after liver transplantation is a serious 
complication that frequently afflicts these patients in the 
postoperative period: with this in mind a retrospective single-
center study set itself the goal of creating a risk predictor tool 
based on ML; the results shown are promising, with about 
55% of cases predicted correctly, although the number of 
cases itself was not very high and further multicenter studies 
are, in our opinion, necessary before implementing such 
algorithms in clinical practice (50). Remaining in the field of 
renal failure, in a recent article the authors used a random 
forest model to evaluate the postoperative complications 
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of patients with end-stage renal failure, identifying some of 
the most relevant impacting factors such as anesthesia time, 
operation time, crystal and colloid use. The model reached 
an F1 score of 0.797 ensuring good reliability in predictions 
making it a feasible guide for doctors in therapeutic choices 
for these patients (51). 

Respiratory status is a cornerstone of patient management. 
Continuous respiratory monitoring using both capnography 
(etCO2—end tidal CO2; RR—respiration rate) and pulse 
oximetry (SpO2—arterial oxygen saturation; PR—pulse rate) 
can reduce the number of severe respiratory events. Using 
a mathematical algorithm based on FL inference model 
is possible to combine these ventilatory and respiratory 
parameters into a single value. The Integrated Pulmonary 
Index (IPI) demonstrates high levels of sensitivity in order to 
recognize significant and severe respiratory events. The high 
specificity of the IPI prevent caregivers’ desensitization to the 
alarm sounds and phenomenon called ‘alarm fatigue’ (52).

What certainly emerges is that for both the preoperative, 
intra and postoperative phases, AI is currently able to 
perform tasks, even very complex ones, with excellent 
results, providing the ability to build intelligent clinical 
decision-making tools. New technologies are allowing us to 
enter a new era of anesthesia, which we call Anesthesia 4.0.  
For many similarities that anesthesia shares with other 
professions, several concepts derived from other disciplines 
have always been exploited. As in industry, even the 
anesthesiologists are undergoing a real technological 
breakthrough. Industry 4.0 is not considered only an 
investment in new technology and tools to improve 
manufacturing efficiency, but is rather about subverting the 
way the entire business organization thinks and operates; 
it is primary a cultural revolution, not only a technological 
one. In our case too, a change in anesthesiology thinking 
must take place. Similarly, we can say we are facing a new 
phase, the Anesthesia 4.0, determinable as propensity of 
today’s anesthesiology to insert smart and autonomous 
systems fueled by solid big data system to improve quality, 
safety and efficiency (Figure 1). Just think of the reactive 
maneuvers that have always characterized risk management 
in anesthesia; in a near future, they will be outclassed 
by clinical decision support systems based on AI models 
designed to intervene before the adverse event occurs, rather 
than once it is already happened (53). For these reasons, we 
propose that AI should become an essential technical and 
non-technical skill for the future anesthesiologists, in order 
to keep up with this current technological and cultural 
revolution. 

OR management 

It is well known that surgery is one of the most expensive 
items for any hospital. Being able to make the most of 
available resources and spaces is a fundamental objective in 
the management of ORs. However, optimization does not 
only include improving the economic aspect, but above all 
implies the safety and quality of the work performed. For 
example, the cancellation of a surgery due to a mistake in 
surgical procedures scheduling not only results in a waste 
of economic resources, but also in a postponement of the 
surgery that could compromise the safety of that specific 
patient. Furthermore, optimizing the available resources 
means increasing the quality of the care provided, always 
getting the most out of the resources available at that 
specific historical moment. However, the management of 
an operating department is far from simple. It involves 
multidisciplinary management of healthcare professionals 
and instrumentation, coupled with a certain degree of 
unpredictability typical of medicine. It is for this reason 
that with the systems and logics that are currently used, the 
results obtained are not always optimal. The use of AI would 
seem to be able to provide valuable help. In a specific review 
it emerged that the use of ML appears useful for carrying 
out three important tasks: surgical cases cancellation 
identification, occupation of the PACU and estimation 
of surgical case duration (54). Rozario et al. (55) have 
shown how an high-level Python programming language 
combined with the open source OR-Tools software suite 
from Google AI, in era of COVID-19 where the resources 
available for surgery are even less, are able to accurately 
predict the operational booking times. The same authors 
also demonstrate the potential economic impact that could 
be obtained in case of use of these technologies, compared 
to the method conventionally and currently used. These 
potentialities of the AI application in OR management are 
able to be even more amplified when combined with other 
technologies. A major current limitation appears to be the 
manual introduction of data. This practice is not only prone 
to errors when entering information, but often involves 
a physiological delay in the timing introduction. On the 
other hand, automatic timing systems could provide precise 
and accurate information, as well as potentially available in 
real time. The combined use of new technologies, as ML, 
intelligent sensors and tracking systems, could therefore 
have a further significant impact on both patient quality 
and safety (56) (Figure 2). Huang et al. (57), already in 2017, 
presented their SmartOR, i.e., a sensor network capable of 

https://www.epicor.com/en-us/shopfloor/technology/
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identifying operating times independently. Our research 
group also dealt with the problem. We have an ongoing 
study called BLOC-OP (NCT05106621). This is a study 
that associates an indoor tracking system with ML analysis. 
The first has the purpose of making an automatic detection 
of the times; the architecture includes a Bluetooth low 
energy (BLE) tags indoor-localization via Raspberry Pi v4 
module with relative antennas that communicate each other 
through a reserved Local Area Network (LAN) (Figure 3). 
The ML algorithms analysis, on the other hand, has the 
purpose of making accurate predictions of the operating 
times, based on surgical and anesthetic information, which 
will be the basis for an intelligent scheduling model.

Limitations of AI and future directions

AI in medicine is not free from perplexities and limitations. 
Recently, Jotterand and Bosco have defined it as a sword of 
Damocles (58); if on the one hand it manages to overcome 
some current human limits, on the other hand it could 
manipulate human nature. 

Data ethics is the foundation of AI and its key areas 

include informed consent, privacy and data protection, 
ownership, objectivity and transparency. The legislature 
is adapting to the new requirements imposed by new 
technologies and scrupulously adhering to is essential. AI is 
a tool that must be deployed in the right situation to answer 
an appropriate question or solve an applicable problem; 
data to be used must therefore be strictly connected to this 
specific purpose (2). 

Data quality is another fundamental requirement for 
building accurate and trustworthy AI algorithms, but they 
are also susceptible to bias (gender, sexual orientation, 
race etc.) (2,59). AI’s task should primarily be to abolish 
these inequities and not exacerbate them. It is therefore 
essential to apply all possible methods to eliminate the 
bias and cancel the differences between governments. On 
this purpose, multidisciplinary collaborations around AI 
and ML technologies should be encouraged. In order to 
facilitate shared work, international laws and politics should 
also be adopted (60). Not only the quality of the data is 
important, but also their coding. Often, when big data 
systems are available, in order to be able to provide useful 
information from them, it is necessary to encode them. This 

Figure 1 Parallelism between the industrial revolution and the anesthesiological one. From numbers 1 to 4 all the stages in progression are 
identified. It should be noted that in the fourth revolution, both disciplines are characterized by the use of intelligent tools.
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Figure 2 The new technologies in OR management, in addition to being able to optimize resources from an economic point of view, are 
able to improve both the quality and the safety of the services provided. PACU, post anesthesia care unit; OR, operating room. 

Figure 3 Logical architecture diagram of the BLOC-OP study. BLE sensors worn by patient are detected using Raspberry Pi v4 modules, 
positioned in each OR and recovery room. All data flows into a single server that will be used to create an intelligent scheduling model of 
surgical procedures using AI techniques. BLE, Bluetooth low energy; AI, artificial intelligence. 
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is a crucial step which, in our opinion, must be carried out 
by a multidisciplinary team, composed of both healthcare 
professionals and data scientists. The COVID-19 pandemic 
has taught us this concept well (61). Having a lot of data 
does not mean neither having quality nor knowing how 
to use them correctly. The data scientist currently plays 
a crucial role. His skills are not only fundamental for the 
phase described above, but in every step of a project in 
which Big Data are used. Van Poucke was very successful 
in defining these phases: problem definition, hypothesis 
generation, data collection/extraction, model building, 
model implementation (62). As pointed out by the author, 
right from the initial problem definition stage, it is 
important to involve the data scientist in order to succeed in 
translating a clinical problem into a data problem.

In addition to the challenges mentioned, it is important 
that all these models are translated into useful tools for 
daily clinical practice. To make this happen, it is imperative 
that a number of conditions are met (63). The model must 
be coherently validated externally by means of serious 
prospective validation studies and associated with an easily 
usable tool. In addition to this, healthcare professionals 
must, already today, begin to be trained in this field (64). 
Without proper training, what could come is a rapid halt in 
the use of new technologies in medicine. 

Surely, what we have presented is a review concerning 
the application of AI only in anesthesia, but in our 

discipline all branches, Intensive Care, Pain Medicine 
and also the Emergency Medical Services, have been 
invested (Figure 4). New technologies, and in particular 
advanced simulation techniques, telemedicine and 
obviously AI are profoundly changing the discipline, in 
all its aspects, from the clinic, to research, to organization 
and medical education. Thanks to the interaction of 
technologies, it is possible to have a not summative effect, 
but a synergistic one. Think, for example, of what the 
application of intelligent real-time alarm systems associated 
with telemedicine techniques applied in postoperative 
monitoring might entail. It wasn’t long ago that the 
FDA approved the use of the first AI software system in 
medicine, a system capable of analyzing ocular fundus 
images to help doctors diagnose diabetic retinopathy (65),  
which to date FDA approved AI/ML medical devices 
have already risen to 343 (66), of these, a software called 
“Nervetrack” (Samsung Medison, Seoul, South Korea and 
Intel Corp., Santa Clara, CA, USA) recently garnered USA 
FDA clearance (67); this is an example of AI applied to US 
in order to recognize deep structures during peripheral 
nerve blocks in anesthesia currently available in clinical 
practice.

However, it is important always to remember that AI 
algorithms will never be able to surpass human performance. 
Although algorithms may one day exceed human capabilities 
in integrating complex, gigantic, structured datasets, much 
of the data that clinicians gather from patients comes from 
the clinician-patient relationship that is established when 
patients bestow trust on their doctor. A machine, however 
sophisticated it may be, can never replace the holistic vision 
of the patient, which only the healthcare professional is able 
to have. On the contrary, AI must be exploited as a tool 
with specific purposes, leaving the doctor the possibility 
to devote himself more to the human component that 
distinguishes the doctor-patient relationship. Therefore, 
qualitative research will be needed to better understand the 
ethical, cultural, and societal implications of integrating AI 
into clinical workflows (2).
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