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Background: Networks are now widely accepted inference tools in translational oncology. Besides providing 

agnostic model frameworks for complex data-driven clinical problems of diagnostic, therapeutic and prognostic 

impacts, networks mainly support insights, testable hypotheses and decision processes on the basis of their 

topological configurations and connectivity patterns. 

Methods: The purpose of this study is to emphasize the role of both gene and network signatures in two specific 

cancers. Retinoblastoma (RB) and osteosarcoma are associated to some extent. It is known that patients who carry 

germline mutations in the RB1 gene, and who survive RB, are typically at an increased risk of early-onset second 

cancers, including osteosarcomas. Gene signatures are widely used, but also criticized for their partial lack of 

reproducibility. Network signatures include gene association dynamics by identifying modules or communities in 

which subsets of genes functionally belong. 

Results: Two cancer cell lines (one per cancer type) were subjected to a similar epigenetic treatment regimen, 

using a demethylation agent (DAC, and including similar dose and time course administration). A minimal set of 

shared differentially expressed (DEG) genes was identified in cancer-specific cell lines from microarray analyses. 

However, the identified immune signatures were observed to translate into much diversified network signatures. 

Conclusions: Our evidence is relevant to therapeutic developments, indicating that preference should be 

assigned to the assessment of bio-entities in a connected environment rather than considering single entities alone. 
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Introduction

The retinoblastoma (RB) susceptibility gene RB1 is known 
to play a causal role in human cancer (1-3). In particular, the 
gene inactivation in chromosome band 13q14 has revealed 
RB formation, an identification which was derived from 
specific mutations. The RB1 gene and its protein explain 
key mechanisms of oncogenesis, development, and gene 
regulation, and help our understanding of genetic diagnosis 
of susceptibility for other RB1-dysfunction driven cancers, 
such as the human osteosarcoma (HOS) (4). In the past, a 
few hereditary HOS risk factors have been identified, but 

these rare events account for relatively few patients. It is 
also well-known, however, that survivors of the inherited 
form of RB are at an increased risk to develop second 
primary HOS compared to the general population or to 
survivors of non-inherited RB (5).

Cancer is considered to be a genetic disease, but other 
types of alterations are exerting influences. For instance, 
epigenetic modifications may regulate gene expression 
and, thus, cancer development. Epigenetic dysregulation 
may precede other transforming events, ranging from focal 
mutations to genome-wide instability (6,7). Especially recent 
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results have emphasized the role of ‘methylomes’ (i.e., 
genome-scale methylation maps obtained through high-
throughput methods) in establishing cancer hallmarks (8). 
Among the several types of known epigenetic modifications, 
DNA methylation is of particular clinical interest due to its 
association with cancer initiation and progression, and its 
role as predictive biomarker for response to chemotherapy (9). 

Linking epigenetic changes with drug resistance may form a 
basis for the design of future treatments strategies combining 
epigenetic and chemotherapeutic regimens.

We provide comparative evidence derived from the 
analyses of RB and HOS cells treated with a demethylating 
agent (DAC). In particular, the objective if the study is 
to analyze the marker role of genes that were detected as 
differentially expressed (DEG) in both cell types, and assess 
the network signatures induced by these common genes 
by targeting both co-expression associative dynamics and 
interactions between their products. In earlier work (10,11), 
we focused on the osteosarcoma-derived HosDXR150 cell 
line and found that its proliferation was effectively reduced 
by treatment with the DAC 5-Aza-dC (decitabine) alone, 
among other types of inhibitors. We also obtained a DEG 
profile from time course microarray experiments on the 

RB-derived WERI-RB1 cell line treated with 5-Aza-dC 
only. The DEG lists and their annotations are provided in 
Tables 1,2, considering both cancer profiles measured 48 h 
after DAC treatment. A Venn diagram is shown in Figure 1 
for comparative evaluations restricted to common DEGs, 
either up- or down-regulated. 

Methods 

We briefly summarize the data generation aspects relevant 
to the novel developments, and refer the readers for further 
details on HOS and RB treatments to our previous work 
(10,11). Here, we embrace networks for inference purposes, 
and following known techniques (12-14). 

HosDXR150 cells were treated with 2.5 μM 5-Aza-
2’-deoxycytidine (5-Aza-dC) for an incubation period of 
24-96 h, in absence (control) or presence of drugs. Total 
RNA was isolated from treated and untreated cells after 
48 h using TRIZOL reagent (Invitrogen). Subsequent 
cDNA microarray expression analysis was performed by 
using MWG Hybridization Service (MWG Biotech AG). 
For each experimental point 10 μg of total RNA from the 
control (reference pool) and the sample (test pool) were 

Table 1 Relevant RB DEGs 

GO term P value Genes FDR

Regulation of cell death 4.31E−19 MNT, TUBB, BBC3, MADD, BOK, CDKN2A, TAX1BP1, TICAM1, PEA15, MALT1, 

DAP, HSPA1A, IRAK1, CDKN1A, IKBKG, TIAF1, MKL1, TRAF2, BAK1, TP53, 

BCL2L1, BAX, BIK, TRADD, RELA*, FAS, DAXX, TP73*, MAPK8IP1

5.84E−16

Programmed cell death 5.37E−13 TIAF1, BBC3, PIDD, BOK, MADD, CDKN2A, TICAM1, TAX1BP1, PEA15, TRAF2, 

BAK1, TP53, TNFRSF1A, DAP, BCL2L1, BAX, BIK, TRADD, FAS, TP73*, DAXX

7.28E−10

Positive regulation of 

cell death

2.67E−12 TUBB, BBC3, BOK, CDKN2A, TICAM1, TRAF2, BAK1, TP53, DAP, BCL2L1, BAX, 

BIK, TRADD, FAS, CDKN1A, TP73*, DAXX, IKBKG

3.61E−09

Positive regulation of 

cellular process

7.05E−11 JUNB, TUBB, BBC3, BOK, CDKN2A, TICAM1, MALT1, DAP, MAPK8IP2, IRAK1, 

CDKN1A, FOS, CCND3, IKBKG, TRIM28, MKL1, PIAS4, TRAF2, BAK1, TP53, 

TNFRSF1A, BCL2L1, BAX, TFE3*, BIK, TRADD, RELA*, FAS, TP73*, DAXX

9.55E−08

Negative regulation of 

programmed cell death

3.20E−10 TIAF1, MKL1, PEA15, TAX1BP1, MALT1, TP53, BCL2L1, HSPA1A, BAX, IRAK1, 

RELA*, FAS, CDKN1A, TP73*, MAPK8IP1

4.34E−07

Regulation of cellular 

process

7.41E−09 JUNB, TUBB, CDKN2A, MAPK12, TICAM1, MAPK8IP2, MAPK11, TOLLIP, 

CDKN1A, TIAF1, DIRAS1, CCNG2, PIDD, MKL1, PIAS4, TNFRSF1A, TP53, 

BCL2L1, BAX, RELA, TRADD, NKIRAS1, MNT, RASSF1, BBC3, MADD, BOK, 

TAX1BP1, TANK, PEA15, NPC2, MALT1, DAP, NKIRAS2, HSPA1A, IRAK1, GPS1, 

HSF1, CCND3, FOS, IKBKG, TRIM28, RASL10B, PES1, TRAF2, BAK1, TFE3*, 

BIK, FAS, TP73*, DAXX, MAPK8IP1

1.00E−05

Main GO biological processes enrichment terms for the RB DEGs 48 h after DAC treatment. *, markers of interest. RB, 

retinoblastoma; DEG, differentially expressed.
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labeled with Cy3 and Cy5 respectively. Each channel was 
scanned three times with increasing photomultiplier gain 
settings using Scanner 418/428 equipment (Affimetrix) 
at 10 µm resolution, thereby ensuring coverage of the 
full dynamic range. The ImaGene intensity values were 
processed using the MAVI software package (MWG 
Biotech AG). 

DEGs were selected by fixing 1.5-fold change (up-
regulated if ≥1.5 and down-regulated if ≤−1.5) in log2 
expression ratios, statistically significant at a cutoff P value 
of 0.01 (Wilcoxon test). Benjamini-Hochberg correction 
for multiple testing was applied. For GO term analysis, 
biological process annotations were obtained from the 

package GO database (v.2.9.0), whereas for pathway 
enrichment analysis the ClueGO software package (2.0.6) 
was used (http://apps.cytoscape.org/apps/cluego) (15). 
The statistical test used for enrichment was the right-sided 
hypergeometric test, and only terms with P values <0.05 
and at least three genes per term were selected, followed by 
a multiple testing correction using the Benjamini-Hochberg 
method. The pathway sources were KEGG, REACTOME 
and WikiPathways. 

The RB-derived cell line Weri-RB1, obtained from 
ATCC (Rockinville, MD), was treated with 5-Aza-dC 
(versus untreated control) in a time course experiment 
measuring gene expression profiles at 3 specific time points 
after treatment initiation, i.e., after 48, 72 and 96 h. Total 
RNA samples were isolated using TRIZOL (Invitrogen). 
After cDNA conversion, microarray expression analysis 
was carried out using PIQORTM Cell Death Human Sense 
Microarrays (Miltenyi Biotech) containing 200-mer oligo-
probes covering 494 human genes. Mean signal and local 
background intensities were obtained for each spot on the 
microarray images using the ImaGeneTM software package 
(BioDiscovery). 

Assessment of gene expression profiles at the three 
time points was achieved by using a Cy5/Cy3 customized 
platform containing about 500 genes related to apoptosis, 
cell death and inflammation. Local background was 
subtracted from the signal to obtain the signal intensity, 
after which the Cy5/Cy3 ratio was calculated. Subsequently, 
the mean of the ratios of 4 spots for the same gene was 
computed. The ratios were normalized using the Median 

Table 2 Retinoblastoma (RB) pathway annotation terms (sources: KEGG, REACTOME and WikiPathways)

Term N. genes P value FDR Associated genes

Apoptosis modulation and 

Signaling

17 7.72E−25 1.08E−23 BAK1, BAX, BBC3, BCL2L1, BIK, BOK, CDKN2A, DAXX, FAS, FOS, 

IRAK1, MADD, MAP3K14, PIDD, TNFRSF1A, TOLLIP, TRADD

Apoptosis 14 5.93E−19 4.15E−18 BAK1, BAX, BBC3, BCL2L1, BOK, CDKN2A, FAS, IKBKG, RELA, 

TNFRSF1A, TP53, TP73, TRADD, TRAF2

NF-kB signaling 12 4.93E−15 2.30E−14 BCL2L1, IKBKG, IRAK1, MALT1, MAP3K14, PIAS4, PIDD, RELA, 

TICAM1, TNFRSF1A, TRADD, TRAF2

p53 signaling 10 3.75E−13 1.05E−12 BAX, BBC3, CCND3, CCNG2, CDKN1A, CDKN2A, FAS, PIDD, 

TP53, TP73

TNF signaling 11 1.76E−12 4.10E−12 FAS, FOS, IKBKG, JUNB, MAP3K14, MAPK11, MAPK12, RELA, 

TNFRSF1A, TRADD, TRAF2

TNF-α signaling 9 1.84E−10 3.21E−10 BAX, BCL2L1, IKBKG, MADD, MAP3K14, TANK, TNFRSF1A, 

TRADD, TRAF2

RIG-I-like receptor signaling 8 8.36E−10 1.30E−09 IKBKG, MAPK11, MAPK12, OTUD5, RELA, TANK, TRADD, TRAF2

HOS up, RB down
TP73

HOS down, RB down
RELA
TFE3

HOS up
HOS down

RB 48 h down

RB 48 h up

Figure 1 Venn diagram of the DEG space from the DAC-treated 
RB- and HOS-derived cells. Measurements 48 h after DAC 
treatment. DEG, differentially expressed; DAC, demethylation 
agent; RB, retinoblastoma; HOS, human osteosarcoma.
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and the Lowess methods. Quality filtering was applied for 
the calculation of the Cy5/Cy3 ratio to only spots/genes 
with at least in one channel a signal intensity 2-fold higher 
than the mean background, for then selecting up- and 
down-regulated genes. 

GeneMania (http://www.genemania.org/) (16,17) was 
used to generate the networks, showing co-expression 
dynamics among the connected genes through the available 
Co-expression, Co-localization, Genetic interactions, 
Pathway, Physical interactions, Predicted and Shared 
protein domains (default settings). The results were 
imported into Cytoscape for display. GeneMania allowed 
an assessment of the interactions occurring at co-expression 
level for the DEG sets in all the measured time course 
profiles. The network configurations were built from the 
log2 expression ratio values. 

Functional enrichment was obtained with David (http://
david.abcc.ncifcrf.gov/) and PantherDB (http://www.
pantherdb.org/) tools for GO enrichment and pathway 
mapping, respectively. Pathway analysis was performed 
using ClueGo in Cytoscape 3.1, and by selecting as 
annotation sources Wikipathways, KEGG and Reactome. 
The statistical analysis included right-sided hypergeometric 
test for enrichment by Benjamini-Hochberg P value 
correction. 

Results 

GO (biological processes) and pathway annotations 
referred to the evidences obtained from the RB-derived 
cell line Weri-RB1 are listed in Tables 1,2, respectively. The 
DEG sets enrich terms according to FDR-corrected P 
values. Pathway annotations for the HOS-derived cell line 
HosDXR150 are listed in Table 3 (up-regulated DEGs) and 
in Table 4 (down-regulated DEGs), respectively. We found 
only 3 DEG markers that were shared between the two 
cancer types; one of them (TP73) exhibiting a discordant 
regulation sign (Figure 1). From these genes as the network 
seed nodes, co-expression network links (dashed lines) and 
protein-protein interaction networks (straight lines) were 
built. In the figures, the blue rectangular nodes indicate 
DEGs, while the grey ovals represent interactors that were 
added to complete the connectivity patterns. 

A neighbor-1 expanded network (i.e., starting from a 
seed node, and including the direct links with surrounding 
nodes) is provided for TP73 in both cancer types, due 
to the particular relevance of this gene. Only closest 
neighbor exploration of the seed gene was considered, 
to avoid redundant networks. The genes of interest are 
shown in Figure 1. Firstly, transcription factor binding to 
IGHM enhancer 3 (TFE3), which plays a role in immunity 
(activation of CD40L in T-cells) and is also known as a 

Table 3 HOS pathway annotation terms (sources: KEGG, REACTOME and Wikipathways)

Term FDR Associated up-regulated genes

Adipogenesis 0.000428803 FOXO1, IGF1, IL6, IL6ST, INS, RBL2, WNT1 

positive regulation of embryonic development 0.000535755 LHX1, NR2C2, WNT1 

Aldosterone-regulated sodium reabsorption 0.000680062 IGF1, INS, MAPK1, SFN 

cellular iron ion homeostasis 0.000834421 ATP6V1B1, CP, MFI2, MYC, PRMT1

Apoptosis 0.000835037 BNIP3L, IGF1, MYC, RELA, TNFRSF1B, TP73 

Selenium Pathway 0.001799368 IL6, INS, RELA, XDH 

release of cytochrome c from mitochondria 0.00181839 IL6, MYC, SFN, TP73 

dorsal spinal cord development 0.001964131 LHX1, PBX3, WNT1 

Folate Metabolism 0.002018507 IL6, INS, RELA, SLC19A1 

regulation of gluconeogenesis 0.002121088 FOXO1, IL6, INS 

regulation of fat cell differentiation 0.003519736 FOXO1, IL6, INS, WNT1 

Amyloids 0.003981304 HIST1H4I, INS, LYZ, MFGE8 

megakaryocyte differentiation 0.003995663 HIST1H4I, PRMT1, PSG1 

T cell activation in immune resp. 0.007889313 IL6, MYB, TNFSF18 

endocrine pancreas development 0.008895339 FOXO1, IL6, INS 

regulation of acute inflammatory resp. 0.01421018 IL6, IL6ST, INS 

HOS, human osteosarcoma.
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fusion gene associated with chromosomal translocations. 
Secondly, V-Rel avian reticuloendotheliosis viral oncogene 
homolog (RELA), deeply involved in NFkB1 signaling, and 
related to the PI3k-Akt cascade, inflammation, immunity, 
differentiations, cellular growth and tumorigenic processes. 
Finally, TP73 is a transcription factor participating in 
apoptotic response to DNA damage and essential for 
expressing cytokines in T-cells. It appears that the only 
commonly and DEG markers bring an immune system 
signature.

Continuing with the annotations, the TFE3 encoded 
protein promotes the expression of genes downstream of 
TGF-β signaling. It activates the expression of CD40L in 
T-cells, thereby playing a role in T-cell-dependent antibody 
responses in activated CD4-positive T-cells and thymus-
dependent humoral immunity. NFkB is a pleiotropic 
transcription factor ubiquitously involved in several 
biological processes, and encompassing NFkB1 and NFkB2 
bound to either RELA or RELB. The activity of NFkB is 
also affected by various mechanisms of post-translational 
modification and sub-cellular compartmentalization, as well 
as by interactions with other co-factors (18). 

The jointly RELA- and TFE3-induced network is denser 
in RB cells than in HOS ones (Figure 2). In particular, 
the RELA sub-networks are populated with DEGs. An 
interesting PIN link for TFE3 is TRIM28. The latter gene 
encodes a protein that is localized in the nucleus, where 
it mediates transcriptional control by interacting with the 
KRAB (Kruppel-associated box) repression domain present 
in many transcription factors. According to the Human 
Gene Databse annotation tool (http://www.genecards.org/) 
TRIM28 is associated with specific chromatin regions, and 

mediates epigenetic gene silencing by recruiting CHD3, a 
subunit of the nucleosome remodeling and deacetylation 
(NuRD) complex, and SETDB1 to the promoter regions 
of KRAB target genes. Also, it enhances transcriptional 
repression via increases in H3 Lys-9 methylation, and 
decreases in histone H3 Lys-9 and Lys-14 acetylation, and 
also coordinates the disposition of HP1 proteins. Finally, it 
acts as an inhibitor of E2F1 activity by stimulating E2F1-
HDAC1 (histone de-acetylase-1) complex formation and 
inhibiting E2F1 acetylation. Interestingly, it participates 
in E2F1-mediated apoptosis in the absence of RB1, 
and mediates the transcriptional repressing activity of 
FOXP3 and the suppressive function of regulatory T-cells  
(Treg) (19). In HOS cells, the two target genes induce 
a much smaller network (only one co-expressed gene 
appears). A role in immunity is appearing but remains to 
be deciphered, in view of the evidences from the two gene 
markers (RELA and TFE3).

TP73  encodes  a  member  of  the  p53  f ami ly  o f 
transcription factors involved in cellular responses to stress 
and development. It maps to a region on chromosome 1p36 
that is frequently deleted in tumors, and that is thought to 
contain multiple tumor suppressor genes. It participates in 
the apoptotic response to DNA damage, possibly as a tumor 
suppressor protein. Down-regulated TP73 in RB cells 
(Figure 3) induces a small sub-network, which is expanded 
when neighbor-1 (indirect) interactors are linked. Among 
the DEGs that interact with the target, DAXX appears 
relevant. This gene encodes a multifunctional protein that 
interacts with a wide range of proteins, including apoptosis-
related FAS. The indirect links with DEGS that are reached 
through the neighbor-1 links are, in general, functionally 

Table 4 HOS pathway annotation terms (sources: KEGG, REACTOME and Wikipathways) 

Term FDR Associated down-regulated genes 

EBV LMP1 signaling 0.001583304 IFNB1, MAPK1, RELA

TGF-β signaling 0.001687583 ENG, SMAD5, TFE3, WNT1 

Angiogenesis overview 0.002127782 DAG1, MAPK1, MMP2, TIMP4 

Bladder cancer 0.003596069 MAPK1, MMP2, MYC 

Negative regulation of epithelial cell migration 0.003891368 ACVRL1, CXCL13, MCC 

Regulation of chondrocyte differentiation 0.003970325 ACVRL1, RELA, SAFB 

Negative regulation of endothelial cell proliferation 0.0061317 ACVRL1, ENG, XDH 

IL-4 signaling 0.006646647 FES, MAPK1, RELA 

Acute & chronic myeloid leukemia 0.008387515 MAPK1, MYC, RELA

Regulation of cartilage development 0.008387515 ACVRL1, RELA, SAFB 

HOS, human osteosarcoma.
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Figure 3 Directly (A) and indirectly (B) TP73-induced networks in RB-derived cells. RB, retinoblastoma.

relevant. 
In HOS cells, TP73 has a discordant sign (up-regulation) 

and the induced sub-network is entirely co-expressed. 
Oncogenic WNT1 is one of the uncovered indirect 
associations, as also TIMP4 which encodes an inhibitor of 
matrix metalloproteinases (MMPs), a group of peptidases 
that is involved in degradation of the extracellular matrix 
(Figure 4). 

Conclusions

Three DEGs were identified as shared markers in two cell 
lines derived from associated cancers after treatment with 

the same DAC. They were analyzed alone and through 
their induced co-expression and protein-protein interaction 
network dynamics. Exploiting the concept of networks 
and their modularity offers several advantages regarding 
the prediction of regulatory programs occurring at a gene 
ensemble scale rather than single genes.

Apart from the different sub-network configurations 
that are necessarily gene-specific, what is relevant from 
our analysis is the emergence of differential signatures for 
markers of two associated cancers (RB and HOS) that were 
both detected as DEG after DAC treatment. The evidences 
here presented conform with our findings from previous 
studies, especially indicating that ensemble network markers 
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expression associations, straight links refer to protein-protein interactions obtained from the Genemania tool. RB, retinoblastoma; DAC, 
demethylation agent.
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Figure 4 Directly (A) and indirectly (B) TP73-induced networks in HOS cells. HOS, human osteosarcoma.

can provide more effective disease signatures than single 
genes in HOS cells. 

While establishing new cancer phenotypes through 
networks remains a valid possibility, testing is quite clearly 
needed on a case-by-case basis. In the present study, for 
instance, it was found that with three DEG markers in 
common between the associated cancers and considered 
as potentially relevant disease phenotypes, only for two of 
them (RELA and TFE3), and prevalently for one cancer 
(RB), we could find an informative network signature, 
according to standard annotations. Indeed, we were able to 
find marks of immunity-related functions and epigenetic 
effects. 

For the TP73 gene marker, the induced networks have 
shown different configurations, with the important marks 
of apoptosis remaining more evident in just one cancer 
type (RB). Both direct and indirect connectivity patterns 
were found to be different across the two cancers. Even 
after expanding the marker outreach to include more 
relationships across the networks compared to before, the 
effects did not appear to lead to homogeneous signatures. 
This observation was contingent in both cancers, i.e., only 
the closest gene and protein interactors were explored 
by taking advantage of the information provided by the 
computational tool. Further analyses could be employed 
with different outcomes.

The main conclusion from the examples here provided 
is that, despite evidence on disease phenotypes from three 
shared markers arising from similar experiments centered 
on epigenetic (DAC-driven) treatment of two associated 
cancers (RB and HOS), a more complete interpretation of 
cancer associations and/or specific versus differential role of 
the immune system remains hard to achieve once contextual 

analyses are carried out for such markers over their induced 
networks signatures. 

Apart from deciphering the epigenetic influences exerted 
on the DEG cancer patterns, one limitation of this study is 
that the expression profiles were obtained from microarray 
experiments, which are known to be of minor depth and 
accuracy compared to comprehensive high-throughput 
settings, such as RNA-Seq. Another limitation is that other 
types of regulation may underlie the DAC-driven phenotypes 
induced in the two examined cell lines, but for these possible 
causal influences data are not available at this time.

In order to overcome such limitations, a current direction 
of work is to move from cell lines to patient samples, 
especially with HOS, and run RNA-Seq experiments to 
generate data. Finally, the two tumors offer relatively 
limited coverage, compared to other cancers, thus need 
additional in-depth analyses, we are confidently looking 
into the direction of research named ‘integrative omics’ to 
provide further applications and novel insights in different 
primary cancers and treatment scenarios.

In conclusion, network medicine can elucidate cancer 
aspects by performing integrative multiscale inference on 
identified oncoepigenetic network signatures potentially 
linked to disease hallmarks. However, it emerges from 
the performed comparative analysis that DEG genes after 
epigenetic treatment build only isolated hotspots rather 
than cancer signatures, and therefore it would be wiser 
to explore differential cancer molecular profiles as those 
uncovered by network modules.
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