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Background: Under the background that diffusion kurtosis imaging (DKI) has become a research hotspot 
of central nervous system diseases, there are no studies with large sample size evaluating the value of DKI 
in diagnosing Parkinson’s disease (PD). Moreover, the diagnostic efficacy of DKI in PD is not consistent. 
Therefore, the main purpose of this study is to use the method of meta-analysis, to summarize and evaluate 
the diagnostic efficacy of DKI in the identification of PD, and to explore the value of its clinical application.
Methods: We use PICOS principles for project design. The included patients were PD patients, and the 
control group were healthy volunteers. We hope to use DKI to make a differential diagnosis between the 
two, and this study is a diagnostic test. We performed a literature search of English (PubMed, Embase, 
Cochrane Library, etc.) and Chinese (China knowledge Network, Wanfang Data Knowledge Service 
platform, China Science and Technology Journal Database, China Biomedical Literature Service system) 
databases for related literatures on the efficacy of DKI in the differential diagnosis of PD published before 
March 29, 2022. We used Revman 5.3 software to assess the quality of the literature, Meta-Disc 1.4 software 
for summarizing sensitivity (Sen), specificity (Spe), diagnostic odds ratios, and heterogeneity tests, and for 
subgrouping, and Stata 16.0 software for publication bias analysis.
Results: Fourteen articles were included through the literature search. The 14 studies included 535 patients  
with PD and 486 patients without PD. Most of the included literature had good clinical applicability and 
relatively low risk. By merging statistics, the results obtained were as follows: Sen =0.78 [95% confidence 
interval (CI): 0.74–0.81], Spe =0.83 (95% CI: 0.79–0.86), and the area under the summary receiver operating 
characteristic (SROC) curve was 0.8870. 
Discussion: The results of the meta-analysis showed that magnetic resonance DKI has comparable 
diagnostic accuracy in the diagnosis of PD. However, this study also has limitations, and the use of different 
diagnostic gold standards in the included studies may have some impact on the case selection in the study.
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Introduction

Parkinson’s disease (PD) also known as tremor paralysis, 
is a progressive neurodegenerative disease (1) that mainly 
occurs in elderly patients, and its incidence is second only 
to Alzheimer’s disease (2). According to the standards of the 
British Brain Bank Parkinson’s Disease Research Center, 
the diagnostic accuracy rate of PD is 82.7%. Furthermore, 
based on neuropathological results, the clinical diagnosis 
accuracy rate of PD is only 26% for patients who are 
untreated or have no obvious drug response. Therefore, 
at present, relying on the existing clinical symptoms, early 
diagnosis of PD is very difficult, and there is an urgent need 
to identify more sensitive biomarkers (3-5).

In recent years, imaging technology has played a greater 
role in the diagnosis of PD. A study has found that, on 
transcranial ultrasound assessment, hyperechoic substantia 
nigra can be detected in more than 90% of PD patients in 
the experimental population at an early stage (6). However, 
its sensitivity (Sen) for diagnosing PD by substantia nigra 
echo is only 0.40, and its specificity (Spe) is 0.61, so it is 
considered that the diagnostic accuracy of transcranial 
ultrasonography for PD is low, which is not enough to 
meet the routine clinical application (7). A study has used 
positron emission tomography (PET) technology to use 
the characteristics of 18F-FDG in the brain to reflect the 
changes in energy metabolism in different brain regions, 
so as to distinguish PD patients from other atypical PD 
syndromes patient (8). However, due to the characteristics 
of high ionizing radiation and high inspection cost, 
this technology has not been used as a routine imaging 
examination for PD patients, so it cannot be widely used 
in clinical practice. Magnetic resonance imaging (MRI) 
technology has the advantages of being non-invasive, multi-
directional, multi-parameter, and highly reproducible, and 
has been widely used in clinical applications and subject 
research of the nervous system. Diffusion-weighted 
imaging (DWI) is another widely used clinical imaging 
technique, which is mostly used in the diagnosis of acute 
ischemic stroke, traumatic brain injury, and inflammatory 
lesions. However, there are many complex biological tissue 
structural barriers in the central nervous system. Due to 
the existence of these barriers, the diffusion and directional 
movement of water molecules are restricted. 

Diffusion tensor imaging (DTI) can explain anisotropic 
diffusion; it can evaluate the degree of diffusion of water 
molecules in three-dimensional space, and describe the 
directionality of water molecules in the fiber tissue (9). 

However, DTI assumes that water molecules move in a 
Gaussian distribution pattern in an ideal environment, but 
this is overly ideal. Owing to the existence of biological tissue 
structural barriers, the diffusion method of water molecules 
is altered, and exhibits non-Gaussian diffusion (10).  
In contrast, DKI can more accurately quantify the degree 
of non-Gaussian diffusion of water molecules, reflecting the 
true water molecular motion and complex microstructure of 
the organization. DKI is an emerging sequence developed 
in recent years; it is a pulse sequence that fits the imaging 
advantages of each sequence and extends its development 
based on the characteristics of DWI and DTI. The biggest 
advantage of DKI over DTI is that it not only provides 
diffusion tensor measurement parameters [fractional 
anisotropy (FA), mean diffusivity (MD), etc.], but also 
provides diffusion kurtosis measurement parameters: mean 
kurtosis (MK), axial kurtosis (AK), and radial kurtosis 
(RK) (11), which are more sensitive to monitoring the 
pathological changes of gray matter nuclei and white matter 
cross fibers (12,13). At present, DKI has been widely used 
in research regarding both central nervous system diseases 
(such as acute ischemic stroke, glioma, meningioma, 
and brain injury, etc.), and neurodegenerative diseases 
(such as PD and Alzheimer’s disease). Applied research 
is also becoming increasingly extensive and in-depth. 
Therefore, DKI may be used as a biomarker to monitor the 
pathological changes of PD.

To our knowledge, under the background that DKI 
has become a research hotspot of central nervous system 
diseases, there are no studies with large sample size 
evaluating the value of DKI in diagnosing PD. Moreover, 
the diagnostic efficacy of DKI in PD is not consistent, and 
its clinical application is also controversial. Most studies 
(5,14-23) believe that DKI has the highest accuracy in the 
diagnosis of PD; Sun et al. (24), Yao et al. (25), and Zhang  
et al. (26) believe that DKI has a certain value in the 
diagnosis of PD, but the accuracy is not high. Among them, 
Sun et al. (24) included 32 PD patients and 20 healthy 
controls. The results showed that the PD group had an 
AUC =0.69, a Sen of 62.5%, and a Spe of 80.0%. It shows 
that the MK value of substantia nigra can be used for the 
diagnosis of PD, but the diagnostic efficiency is low. Zhang 
et al. (26) included 45 PD patients and 39 healthy controls. 
Their results showed that the substantia nigra MK value 
increased in the PD group, with an AUC =0.654, a Sen of 
42.22%, and a Spe of 92.31%. The substantia nigra MK 
value has low Sen and low diagnostic efficiency for PD 
diagnosis, and its clinical application needs to be further 
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studied.  Since the sample size of most studies is small, it is 
impossible to draw relatively accurate conclusions about the 
performance of DKI. Therefore, the main purpose of this 
study is to use the method of meta-analysis, by increasing 
the sample size and integrating the data of multiple 
studies, to summarize and evaluate the diagnostic efficacy 
of DKI in the identification of PD, and to explore the 
value of its clinical application. We present the following 
article in accordance with the PRISMA-DTA reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-1461/rc).

Methods

Literature sources and retrieval strategies 

In this study, we performed a literature search of English 
(PubMed, Embase, Cochrane Library, etc.) and Chinese 
(China knowledge Network, Wanfang Data Knowledge 
Service platform, China Science and Technology Journal 
Database, China Biomedical Literature Service system) 
databases for related literatures on the efficacy of DKI in 
the differential diagnosis of PD published before March 
29, 2022. A relatively comprehensive literature search 
was carried out using subject terms, free words, and 
compiled search formulas to reduce the rate of document 
misdetection and missed detection. When designing the 
search formula, we collected all documents related to the 
subject in the searched databases as comprehensively as 
possible. In order to expand the scope of the literature 
search, we also screened the references of high-quality 
literature, screened the articles related to this research, and 
obtained as many studies related to all topics as possible.

Literature inclusion criteria

(I)	 Studies evaluating the diagnostic efficacy of DKI in 
PD;

(II)	 Patients with PD diagnosed by clinical diagnostic 
criteria;

(III)	 Retrospective or prospective studies;
(IV)	 This research is diagnostic research, and it is necessary 

to directly or indirectly extract the four tables of data 
used in the diagnostic test, namely true positive (TP), 
false positive (FP), false negative (FN), true negative 
(TN), etc.;

(V)	 Studies with sample sizes >30 cases;
(VI)	 Studies involving only human research subjects.

Literature exclusion criteria

(I)	 Studies with no diagnostic criteria for the study cases;
(II)	 Summaries, case reports, editorials, and non-

retrospective or prospective studies;
(III)	 Studies with incomplete data and those where it was 

impossible to extract the documents of the four-table 
data;

(IV)	 For repeated studies by the same author, we excluded 
the low-quality literature and those with small sample 
sizes;

(V)	 Basic experiments, such as animal experiments and 
genetic research experiments, etc.;

(VI)	 Relevant documents without informed consent or 
ethics committee approval.

Data extraction

First, we performed a preliminary search on multiple 
databases using subject terms, free words, and related search 
formulas. Next, we screened the references of the retrieved 
articles in order to avoid omissions, and used NoteExpress 
software (Beijing Aegean Software Company, Beijing China) 
to screen out duplicate documents. In order to reduce 
selection bias, two researchers independently extracted the 
data of each article. Disagreements were resolved through 
negotiation or objective analysis a third senior researcher. 
The data extracted from the included articles were as 
follows: literature information (first author, year, region, 
language), patient information (sample size, gender, age, 
diagnostic criteria), inspection information (machine model, 
inspection location, b-value), study design (prospective or 
retrospective), and diagnosis data in four tables (TP, FP, 
FN, TN), etc.

Risk of bias

Quality assessment of the included literature was also 
independently carried out by two researchers under the 
premise of mastering the quality assessment rules. We used 
the Quality Assessment of Diagnostic Accuracy Studies-2 
(QUADAS-2) quality evaluation tool in the Revman 5.3 
software (The Cochrane Collaboration, UK) to evaluate the 
quality of the original literature (27). The QUADAS-2 tool 
mainly includes four evaluation items: (I) patient selection; 
(II) index test; (III) reference standard; (IV) flow and  
timing (27). Each article answered “yes”, “no” or “uncertain” 
according to the relevant item, and the corresponding risk 

https://atm.amegroups.com/article/view/10.21037/atm-22-1461/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-1461/rc
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of bias level could be judged as “low”, “high”, “uncertain”. 
If the quality of the literature was inconsistent, the two 
researchers resolved the inconsistency through negotiation 
or objective analysis by a third senior researcher.

Statistical analysis

Heterogeneity test
Heterogeneity testing is a key aspect of meta-analysis 
research, as it can help in identifying the relevant reasons 
affecting the accuracy assessment as well as evaluating 
whether the combined statistical model is appropriate. In 
the diagnostic test research, the threshold effect is one of 
the important factors causing heterogeneity. Threshold 
refers to the standard or cut-off point used to define 
positive (or negative) test results in different studies. 
Different thresholds in each study lead to Sen and Spe or 
positive (+LR) and negative (−LR) likelihood ratios, the 
difference between which is known as the threshold effect. 
When there is a threshold effect, Sen and Spe are negatively 
correlated (or Sen and 1−Spe are positively correlated), 
forming a typical “shoulder-arm” graph in the summary 
receiver operating characteristic (SROC) curve plan (28). 
The threshold effect can be evaluated by three Meta-Disc 
[the Unit of Clinical Biostatistics team of the Ramóny Cajal 
Hospital in Madrid (Spain)] methods (28): (I) observe the 
relationship between the paired accuracy estimates in the 
forest map. If there is a threshold effect, the forest plot will 
show that as Sen increases, Spe will decrease, and vice versa. 
There is also a negative correlation between the +LR and −
LR; (II) the image formed by the estimated accuracy of each 
study in the SROC plan shows a typical “shoulder-arm-like” 
distribution, indicating the existence of a threshold effect; 
and (III) through the Meta-Disc quantitative test threshold 
effect: use software to calculate the Spearman correlation 
coefficient between the Sen logarithm and 1−Spe logarithm; 
a significant positive correlation indicates that the study has 
a threshold effect.

In the evaluation of diagnostic test systems, in addition 
to the heterogeneous changes caused by the threshold 
effect, some factors may also lead to changes in the accuracy 
assessment between different studies, which are called non-
threshold effects. These include the condition of the study 
subjects, the parameters of the experimental sequence, the 
experience level of the experimental operators, the selection 
of reference standards, and the implementation process. 
For heterogeneity caused by non-threshold effects, two 
Meta-Disc software methods can be used to evaluate (28): 

(I) visual inspection of accuracy assessment through forest 
maps; and (II) statistical methods for testing, including 
the Q test (Cochran-Q), Chi-square test (Chi-square), 
and other methods. Among them, the Q test (Cochran-Q) 
indicates statistically whether there is heterogeneity in the 
research. When the test result is P>0.10, it is considered 
that there is no heterogeneity between the studies; however, 
when the test result P≤0.10, it is believed that the results 
of multiple studies are heterogeneous. I2 is an index that is 
used to measure the degree of heterogeneity; the larger the 
value, the more obvious the heterogeneity of the research. 
Typically, 50% is the limit; when I2>50%, it is considered 
that there is a high heterogeneity between the research 
results (29).

Combined statistics
If there was heterogeneity caused by the threshold effect 
between the included studies, the SROC curve would be 
constructed or the receiver operating characteristic (ROC) 
curve could be used, and the area under the ROC curve 
(AUC) could be combined. If there was no threshold 
effect between studies and I2<50%, statistics could be 
directly combined. The Sen, Spe, LR, diagnostic odds ratio 
(DOR), and AUC were then calculated (30). It is generally 
considered that an AUC value above 80% is meaningful, 
that is, the closer the value is to 100%, the higher the 
diagnostic accuracy. 

Publication bias
Publication bias refers to the publication process of research 
papers, as journals or review institutions are subjectively 
more likely to accept positive research results, making 
statistically significant studies easier to publish. Publication 
bias is easy to make the results of meta-analysis exaggerate 
the diagnostic performance of the test to be evaluated, 
resulting in biased evaluation of diagnostic accuracy. At 
present, the most commonly used method to identify 
publication bias in meta-analysis is funnel plot, which is 
highly subjective. Due to the large degree of dispersion of 
studies with small sample size, the distribution in the funnel 
diagram is more scattered, and most of them are arranged 
symmetrically at the bottom; while the studies with large 
sample size are more concentrated in the middle of the 
funnel diagram, and are mainly distributed at the top of the 
funnel diagram, showing as an inverted funnel shape, the 
application is relatively simple and practical, but because it 
cannot be quantitatively analyzed, it is greatly affected by 
subjectivity. In this article, we use Stata 16.0’s (StataCorp 
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LLC., USA) metabias command to construct a Deeks 
funnel chart to detect publication bias.

Results

Literature search results

Through a comprehensive search of the Chinese and 
English databases, 130 documents were initially retrieved, 
including 77 Chinese articles and 53 English documents. By 
using NoteExpress software to remove duplicate documents 
as well as reading the titles and abstracts, 98 articles (such as 
irrelevant documents) were excluded. We then read the full 
texts of the remaining 32 articles and strictly screened them 
according to the established standards. Finally, this meta-
analysis included a total of 14 relevant studies to evaluate 
the diagnostic efficacy of DKI in the differential diagnosis 
of PD, including eight Chinese articles and six English 
articles. The literature search flow chart is shown in Figure 1.

Data extraction of included literature

After screening, 14 articles were included for meta-analysis, 

with a total of 535 patients and 486 healthy volunteers. The 
general information of the included studies is shown in 
Table 1, and the four-grid table data of each parameter value 
of the included literature is shown in Table 2.

Included research quality evaluation

We evaluated the included literature using the QUADAS-2 
diagnostic accuracy study quality evaluation tool in Revman 
5.3 software. After the quality assessment of the included 
literature according to the QUADAS-2 standard, the quality 
assessment chart was produced. The quality assessment 
chart is shown in Figures 2,3.

In summary, most of the included literature had good 
clinical applicability and relatively low risk.

Heterogeneity test

First, Meta-Disc was used to assess the threshold effect of 
the relevant data of the included studies. Using the SROC 
plan, we found that the precise estimator of each study did 
not have a “shoulder-arm-like” distribution; thus, the Sen 
logarithm and 1−Spe Spearman correlation coefficient of 

Figure 1 Literature retrieval flow chart. 
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Table 1 Basic information of the included studies

Study, year Region Type of study Equipment type B value Guideline

Liu Y, 2020 Mainland China P Philips 3.0 T 0, 1,000, 2,000 I

Li Y, 2019 Mainland China P SIEMENS 3.0 T 0, 1,000, 2,000 II

Bingbing G, 2020 Mainland China P GE HDXT 3.0 T 0, 1,000, 2,000 I

Sun QY, 2019 Mainland China P Philips 3.0 T 0, 500, 1,000, 1,500, 2,000 II

Sejnoha Minsterova A, 2020 Czech Republic P Siemens 3.0 T 500, 1,000, 2,000, 4000 II

Cai CC, 2019 Mainland China P GE Discovery 3.0 T 0, 1,000, 2,000 I

Sun YQ, 2017 Mainland China P Philips Achieva 3.0 T 0, 1,000, 2,000 I

Zhang ZW, 2020 Mainland China P GE Discovery 3.0 T 0, 1,000, 2,000 I

Zhang G, 2015 Mainland China P GE EXCITE 3.0 T 0, 1,000, 2,000 III

Kamagata K, 2013 Japan P Philips 3.0 T 0, 1,000, 2,000 III

Wang JJ, 2011 Taiwan P Siemens 3.0 T 0, 1,000, 4,000 IV

Kamagata K, 2017 Japan P Philips 3.0 T 1,000, 2,000 III

Yao JQ, 2020 Mainland China P Philips TX 3.0 T 0, 1,000, 2,000 I

Gao H, 2020 Mainland China P GE Discovery 3.0 T 0, 1,250, 2,500 III

P: prospective study. (I) The diagnostic criteria for Parkinson’s disease formulated by the Chinese Medical Association in 2016; (II) the 
diagnostic criteria for Parkinson’s disease formulated by the International Society for Movement Disorders in 2015; (III) the Parkinson’s 
disease clinical diagnostic criteria for the Brain Bank of the Parkinson’s Disease Association of the United Kingdom; (IV) National Research 
on Neurological Diseases and Stroke in the United States (NINDS) Parkinson’s disease diagnostic criteria. 

Table 2 Data of four grids of parameters’ values included in the study

Index Study Sensitivity Specificity AUC Sample TP FP FN TN

MK Liu Y, 2020 0.750 0.883 0.845 124 48 7 16 53

FA Li Y, 2019 0.762 0.775 0.799 41 16 4 5 16

MD Sun QY, 2019 0.700 0.850 0.823 40 14 3 6 17

MK Cai CC, 2019 0.667 0.837 0.782 117 41 9 20 47

MK Sun YQ, 2017 0.625 0.800 0.689 52 20 4 12 16

FA Zhang ZW, 2020 0.800 0.640 0.754 84 36 14 9 25

MK Zhang G, 2015 0.944 0.917 0.976 144 68 6 4 66

MK Kamagata K, 2013 0.867 0.941 0.912 32 15 1 2 14

MK Wang JJ, 2011 0.920 0.870 0.950 60 28 4 2 26

MK Kamagata K, 2017 0.710 0.820 0.770 58 21 5 9 23

MK Yao JQ, 2020 0.630 0.750 0.700 55 22 5 13 15

FA Sejnoha Minsterova A 0.920 0.710 0.810 71 21 14 2 34

MD Bingbing G 0.675 0.870 0.811 58 23 3 12 20

MK Gao H, 2020 0.860 0.830 0.914 85 43 6 7 29

AUC, area under the receiver operating characteristic curve; FA, fractional anisotropy; FN, false negative; FP, false positive; MD, mean 
diffusivity; MK, mean kurtosis; TN, true negative; TP, true positive.
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the logarithm was −0.262, P=0.365>0.05. The above results 
suggested that the included studies have no threshold effect, 
as shown in Figure 3.

To test the heterogeneity caused by non-threshold 
effects, the DOR was used as the effect size. The Q test 
showed that the χ2 value of DOR was 30.43, degree of 
freedom (df) value =13, P=0.0041, I2=57.3% (see Figure 4 
for details), suggesting that the included studies had high 
heterogeneity (P<0.05, I2>50%), so the random effects 
model was selected for the combined effect size.

Consolidated statistics and analysis

The random effects model results obtained by Meta-Disc 
1.4 software based on the data extracted from the literature 
and the heterogeneity test results showed the following: 
Sen =0.78 [95% confidence interval (CI): 0.74–0.81], Spe 
=0.83 (95% CI: 0.79–0.86), +LR =4.26 (95% CI: 3.22–5.65), 
−LR =0.28 (95% CI: 0.21–0.37), DOR =17.82 (95% CI: 
10.46–30.36), SROC AUC =0.8870, and Q* value =0.8176 
[standard error (SE)(Q*) =0.0210]. The AUC value showed 

Figure 2 Quality evaluation bar chart and summary.
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that DKI has a high diagnostic accuracy for patients with 
PD, and Sen and Spe were high, which further indicates a 
high diagnostic value. Sen, Spe, +LR, and −LR forest plots, 
as well as SROC curves are shown in Figure 4.

Analysis and treatment of heterogeneity sources

We used the meta-regression application of Meta-Disc 
1.4 software to explore the source of heterogeneity of the 
included literature, and the choice of compound variables 
were as follows: sample size (take 60 cases as the boundary; 
marked “1” if ≥60 and “0” if <60), reference standards 
(marked as “1, 2, 3, 4” according to four different standards), 
the delineation features of the area of interest (position, 
size, calculation, and measurement method of the region 
of interest (ROI), etc.; when all aspects are described in 
detail, marked as “1”, and marked as “0” when one of them 
is not specifically described or explained), the detection part 
(marked as “1” when the detection part is substantia nigra; 
otherwise, marked as “0”), and b-value (documents with ≤3 
b-values are recorded as “0”, and documents with >3 b-values 
are recorded as “1”). The regression model results are 
shown in Figure 5. From these results, it can be seen that 
the source of heterogeneity between the included studies 
may be related to the reference standard for PD diagnosis 
in the literature (P<0.05).

The 14 included studies were divided into two subgroups 
(A and B) according to the different reference standards. 
Group A included studies with reference standard of 1, 
while group B included studies with reference standard of 

not 1, and the DOR was combined again. Subgroup analysis 
showed that the heterogeneity of the DOR in group A was 
I2=0.0% and P=0.4296, and that of group B was I2=53.1% 
and P=0.0369. The heterogeneity of the DOR was 
significantly reduced after the subgroup analysis. On the 
other hand, these findings demonstrate that the compound 
variable of the subgroup analysis was related to the source 
of the heterogeneity; that is, the reference standard for the 
included cases in the literature (see Figure 6).

Publication bias

The publication bias results of DKI in the diagnosis of PD 
were as follows: the analysis results obtained through the 
Deeks funnel chart and quantitative analysis of the P value 
(Figure 7, Table 3) showed that P=0.25>0.05, and the scattered 
points on both sides of the figure are roughly symmetrical, 
indicating that there was no obvious publication bias.

Discussion

In traditional magnetic resonance (MR) inspection, DWI 
considers the diffusion of water molecules to be an ideal 
Gaussian dispersion model. The coefficient detected by 
DWI of the change in biological tissue signal is known 
as the apparent diffusion coefficient (ADC), and the 
calculation of the ADC value usually needs to fit more than 
two different b-values. ADC value measurement usually 
assumes that the imaging voxel has a uniform diffusion 
coefficient. However, in biological tissues, cell membranes, 

Figure 3 ROC plan and threshold effect test results. a, true positives; b, false positives; S, a measure of threshold; Coeff., coefficient; D, the 
log of DOR; DOR, diagnostic odds ratio; ROC, receiver operating characteristic; Std. Error, standard error; FPR, false positive rate; TPR, 
true positive rate; Var., variable. 
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organelles, cell compartments, and macromolecular 
structures may change the free diffusion of water molecules. 
Due to the existence of biological tissue structural barriers, 
the displacement of water molecules deviates from the 
Gaussian distribution and manifests as non-Gaussian 

diffusion (31). Therefore, traditional DWI cannot truly 
evaluate the diffusion of water molecules affected by the 
tissue structure barrier. 

With the improvement of MRI equipment,  the 
application of ultra-high b-values has revealed the existence 

Figure 4 Combined statistics. AUC, area under the curve; CI, confidence interval; LR, likelihood ratio; OR, odds ratio; SE, standard error; 
SROC, summary receiver operating characteristic.
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of non-Gaussian effects, so a pulse sequence capable 
of sensitively analyzing this complex diffusion mode is  
required (32). Jensen et al. (10,33) often used polynomial 
models to quantify the non-Gaussian diffusion rate of 
water molecules, and this new imaging sequence is known 
as DKI. It is a pulse sequence developed according to 
the characteristics of diffusion imaging, and applies a 
polynomial model to fit the imaging advantages of each 

sequence, and extends the developed pulse sequence. By 
quantifying the non-Gaussian diffusion rate of tissue water 
molecules, DKI reflects the degree of mixing caused by 
the diffusion of water molecules due to the tissue structure 
barrier. Therefore, it can more accurately reflect the free 
diffusion of water molecules in the tissue, explain the 
heterogeneity in the tissue, and evaluate the corresponding 
pathogenic area more comprehensively.

A previous  s tudy (34)  conducted rout ine DKI 
examinations on 60 normal people and found that the 
MK, FA, and MD values of different structures in the 
brain were significantly associated with changes in age, 
and the correlation of each parameter value corresponding 
to the same part is also different. Indicates that DKI has 
the potential to assess structural changes in the brain 
caused by age differences. Lätt et al. (35) conducted DKI 
examinations of normal people between 19–64 years of age 
and found that the MK value in the brain varies depending 
on the anatomical area, and negatively correlated with age 
changes. This demonstrates that DKI can better reflect the 
changes in the microstructure of the brain with age, and 
these characteristics make it applicable to the diagnosis 
of PD patients. Wang et al. (15) first applied DKI to the 
clinical diagnosis of PD patients. Through ROI quantitative 
and ROC curve analysis, they found that the MK values 
of the substantia nigra and basal ganglia of PD patients 
were significantly higher than those of healthy volunteers. 
Compared with traditional DTI parameters, the MK value 
of substantia nigra showed better diagnostic performance.

The MK value is the most widely used and valuable 
parameter in DKI. Most studies have shown that the MK 
value of PD patients is higher than that of healthy controls 
(15,18,19,21,24,26). This may be related to the increased 
complexity of the tissue structure, the summary includes the 
following reasons: (I) due to the nerves of the basal ganglia, 

Figure 5 Regression model results. Coeff., coefficient; CI, 
confidence interval; S, threshold effect; Std. Err., standard error; 
RDOR, relative diagnostic odds ratios; Var., variable.

Figure 6 DOR forest map of groups A and B. CI, confidence interval; DOR, diagnostic odds ratio; OR, odds ratio.
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loss of cells leads to secondary gliosis in this area, which 
increases the complexity of the microstructure of local 
tissues and increases the MK value (15); (II) oxidative stress 
and chronic inflammation lead to limited water molecule 
diffusion, resulting in a higher MK value; and (III) it may 
also be due to the increase of iron content in the substantia 
nigra, which reduces the signal-to-noise ratio, resulting in 
an increase in the MK value. However, according to the 
research of Kamagata et al. and Gao et al., the MK value of 
the basal nucleus in the PD group was lower than that of the 
healthy control group, which may be related to the loss of 
cortical-subcortical dopaminergic neurons in PD patients, 
resulting in complex tissue structure (16,23). Therefore, the 
mechanism of change of the MK value of the basal nerve 
nucleus in PD patients requires further investigation. 

The MD value reflects the overall diffusion level 
and diffusion resistance of water molecules in the tissue 
structure. Eight of the 14 included articles reported that 
the MD value of PD patients was higher than that of the 

healthy controls. The reason may be that although oxidative 
stress and chronic inflammation can lead to increased local 
complexity. However, this change may still be lower than 
the degree of normal brain tissue relationship, so the MD 
value will also increase. 

The FA value mainly reflects the unevenness of the 
speed and direction of the diffusion of water molecules in 
tissue. Ten included articles showed that the FA value of 
the PD group decreased, which may be attributable to the 
loss of dopaminergic neurons and the destruction of tissue 
structure. The diffusion of molecules is more inclined to 
anisotropy, and may also be related to the selection of PD 
patients. If the selected PD patients are mostly in the early 
stage, the pathological changes are not significant, which 
will lead to a lower FA value. At the same time, iron content 
increases and deposits, and these factors can also cause the 
FA value to decrease.

Meta-analysis is a systematic evaluation method that 
integrates the results of similar research topics, expands the 
sample size, and comprehensive quantitative to improve 
the efficiency of the experimental findings (36). In recent 
years, the application field of DKI has become more 
and more extensive. A previous meta-analysis confirmed 
the application value of DKI in glioma grading, with a 
combined AUC value of 0.94, Sen of 0.85, Spe of 0.92, as 
well as a high diagnostic accuracy (37). To our knowledge, 
in the context of DKI becoming a hotspot in central 
nervous system diseases research, there are currently no 
large sample size studies that evaluate the value of DKI in 
the diagnosis of PD. In our study, we collected all published 
Chinese and English articles and satisfied strict inclusion 
standards and quality assessments, with the aim of increasing 
the sample size and integrating multiple similar research 
data to summarize and evaluate the currently available 
evidence regarding the comprehensive diagnostic efficacy of  
DKI in PD.

The choice of meta-analytical statistical methods is 
determined by the heterogeneity between studies. In 
this study, we used Meta-Disc 1.4 software to test the 
heterogeneity. By analyzing the ROC plan, we found that Figure 7 Deeks funnel diagram. ESS, effective sample size.
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Table 3 Deeks analysis results

Var. Coef. Std. Err. t P>|t| 95% confidence interval

Bias −14.32646 11.82401 −1.21 0.249 −40.08876, 11.43585

Intercept 4.800384 1.399584 -3.43 0.005 1.750953, 7.849815

Coef., coefficient; P, P value; Std. Err., standard error; t, Student’s t-test; Var., variable.
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the distribution of each study did not exhibit a “shoulder-
arm-like”. The Spearman correlation coefficient was 
−0.262 (P=0.365>0.05), which also showed that there was 
no obvious threshold effect in this study. The χ2 value 
corresponding to the DOR Q statistic test was 30.43, the 
df value was 13, the P value was 0.0041, and the I2 statistic 
test result was 57.3%. Since the I2 value was greater than 
50%, this suggested that there was high heterogeneity, 
and the random effects model was used to merge the effect 
size. Regression analysis was carried out using Meta-Disc 
1.4 software, and the selection of composite variables 
included the sample size, reference standard, delineation 
features of the area of interest, detection location, b-value, 
etc. Only one compound variable was included in the 
regression model at a time to ensure the stability of the 
model estimation results. The results suggested that the 
reference standard for PD diagnosis may be a factor causing 
heterogeneity between the included studies (P<0.05), 
After subgroup analysis with reference standard for PD 
diagnosis in the literature as effect variable, it was found 
that the heterogeneity of DOR among the subgroups was 
decreased to different degrees. This also confirms that the 
heterogeneity may be related to the reference standard of 
PD diagnosis in each study. Differences in the reference 
standards between studies will have a certain impact on the 
selection of patients to be included. In the Sen analysis, we 
excluded the study of Zhang et al. (14) and then conducted 
a combined effect size analysis. We found that the I2 of 
the DOR was significantly reduced (I2=25.1%), and the 
heterogeneity was also markedly lower. By excluding the 
remaining literature one-by-one, we observed that the 
combined effect size did not change, indicating that the 
source of heterogeneity may have also been attributable to 
a single study. However, due to the large sample sizes of the 
included articles, the quality of the literature evaluation was 
relatively good. After the overall analysis, this article was 
considered to have certain research significance, and it was 
not excluded.

In evaluating the accuracy of diagnosis, the AUC value 
can intuitively reflect the value of diagnostic tests. The 
AUC ranges from 0 to 1; when the AUC is infinitely 
close to 1.00 [i.e., the comprehensive ROC curve (SROC) 
infinitely approaches the upper left corner of the image], 
it can be considered that the diagnostic accuracy is higher. 
Moreover, it is generally believed that an AUC value of 
between 50% and 100% is meaningful, with 50%, 70%, 
and 90% considered as cut-off points, indicating low, 
medium, and high diagnostic accuracy, respectively. Put 

simply, the closer the AUC value is to 100%, the higher the 
diagnostic accuracy. In this study, we found that AUC value 
of the combined 14 studies was 0.8870, which illustrates 
that DKI has a high diagnostic accuracy in PD and is an 
ideal biomarker for the clinical diagnosis of PD. Also, the 
combined Sen and Spe were 0.78 and 0.83, respectively, 
which indicates that DKI has a good diagnostic value for 
the diagnosis of PD. The DOR value is used to evaluate the 
accuracy of diagnosis, integrating Sen and Spe data into an 
independent parameter value. A DOR value of 1.0 signifies 
that the test being evaluated cannot clearly distinguish 
between diseased individuals. In this meta-analysis, the 
DOR measurement value of DKI was 17.82 (95% CI: 
10.46–30.36), indicating good accuracy. Generally, the DOR 
value is reasonably constant, regardless of the diagnostic 
threshold. However, due to the particularity of its value, 
DOR remains difficult to directly apply in clinical practice.

The LR is not affected by prevalence, and can 
simultaneously reflect the comprehensive indicators of Sen 
and Spe, which provides a good evaluation of the value of 
diagnostic experiments. The +LR of this meta-analysis was 
4.26, and the −LR was 0.28, which indicates that the positive 
test result of PD patients is at least four times that of patients 
who are misdiagnosed as PD, and thus, negative DKI scanning 
cannot be used alone. Moreover, further testing and/or 
continuous monitoring is required to exclude PD inspections 
and the possibility of disease. The results of each combined 
index showed that DKI has a good application prospect as a 
routine MRI examination to evaluate clinical PD.

However, this study had some limitations that should 
be noted. Firstly, the various diagnostic gold standards 
used in the included studies may have a certain impact on 
the selection of cases in the study. Secondly, for studies 
containing multiple parameter values, there may be a 
certain deviation in the selection of parameter values 
included in the study. Considering that this study mainly 
analyzed the overall diagnostic performance of DKI, we 
comprehensively considered our study and selected the 
relevant parameter values with higher AUC values to be 
included in the study. Among the documents that included 
the four-grid table data, there were nine articles for the MK 
value, nine articles for the FA value, and two articles for the 
MD value, which may be different from the results of the 
individual parameter evaluation.

Conclusions

The results of this meta-analysis demonstrate that DKI is 
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a more sensitive examination technique for the diagnosis 
of PD and has a higher diagnostic accuracy. Owing to its 
advantages of no radiation and no need to inject exogenous 
contrast agents, it is more suitable for patients with PD 
who have renal insufficiency and require long-term follow-
up. DKI and other related examinations complement each 
other and have a high application value for PD diagnosis as 
well as clinical treatment guidance.
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