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Introduction

Diabetes mellitus refers to a group of metabolic diseases 
involving chronic hyperglycemia, resulting from multiple 
causes, and its incidence has been increasing dramatically 
worldwide (1). Diabetic retinopathy (DR) is a common 
microvascular complication of diabetes that affects 1/3 of 
diabetic patients and is associated with an increased risk 
of life-threatening systemic vascular complications, such 

as stroke, coronary artery disease, and heart failure (2).  
DR involves specific neuroglial and microvascular 
abnormalities, such as microaneurysms, soft or hard 
exudates, intraretinal microhemorrhages, beaded veins, and 
intraretinal microvascular abnormalities (3,4), which have 
been shown to progressively disrupt retinal function (5). 
Traditional DR treatments include laser therapy, vitrectomy, 
and conventional medications to control hyperglycemia, 
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hypertension, and hyperlipidemia. These treatments 
inhibit retinal neovascularization, reduce retinal macular 
edema, and prevent the stretching of fibrous tissue during 
the proliferation of new vessels in the retina (6). However, 
laser therapy is often accompanied by vitreous hemorrhage, 
while 23G minimally invasive vitrectomy can lead to retinal 
rupture and postoperative cataract formation (7,8). As these 
treatments can have a number of adverse effects, such as 
intraoperative retinal fissures and postoperative retinal 
detachment (9), a more in-depth exploration of the disease 
is needed to develop safer treatment plans.

The pathogenesis of DR involves multiple biochemical 
signaling pathways, such as protein glycosylation and the 
increased activity of protein kinase C, which lead to the 
formation of advanced glycosylation end products (AGEs). 
These can promote intercellular interactions involving the 
vascular endothelial growth factor, leading to neointima 
formation in the anterior and posterior segments of the 
eye, increased vascular permeability, resulting in leakage, 
and the collapse of the internal blood-retinal barrier (10). 
DR progression appears to involve AGE accumulation, 
an increase in glucose flux into the polyol and hexosamine 
pathways, and the excessive activation of the plasma 
kininase-releasing kinase pathway (11).

DR also involves inflammation (12,13), which damages 
and permeabilizes the retinal vascular system and disrupts 
neointima formation, 2 of the leading causes of visual 
impairment in diabetes (14,15). The dysfunction of retinal 
glial cells, such as astrocytes, Müller glia, and microglia, 
may contribute to early retinal inflammatory processes in 
DR (16). Cellular levels change during disease progression. 
Thus, this study sought to explore how abnormalities at the 
level of subpopulations of retinal tissue cells play a role in 
the development of DR.

Single-cell RNA sequencing (scRNA-seq) technology 
can reveal unique changes in each cell and enable precise 
classification of different cell types, as well as help us 
understand the changes in tumor cells during metastasis to 
target organs (17). It provides new and precise insights into 
our understanding of genetic heterogeneity during tumor 
evolution and tumor cell metastasis. In this study, we used 
single-cell transcriptome data from DR and healthy tissues 
to construct a single-cell atlas of DR and explore changes in 
the levels of different cell subpopulations in the disease. A 
functional enrichment analysis was also conducted to identify 
the signaling pathways that may be involved in the disease. In 
contrast to others’ studies, we will also explore intercellular 
interactions to further analyze their role in the development 

of DR. Our findings may help clarify the disease mechanism 
and inform the development of effective treatment strategies. 
We present the following article in accordance with the 
MDAR reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-1546/rc).

Methods

Data source

Single-cell transcriptomic data were obtained from the 
Gene Expression Omnibus database (18). The GSE178121 
data set was based on the GPL24247 platform and included 
retinal tissue samples from healthy C57BL/6 mice (n=1) 
and C57BL/6 mice with streptozotocin-induced diabetes 
(n=1) (a total of 2 samples). In GSE178121, the mice 
kept high blood glucose concentration (>300 mg/dL) for  
25 weeks before sacrificed to prepare retinal cell suspension 
for scRNA-Seq, all cells were coming from mice, thus there 
no cell lines.

Construction of the single-cell atlas of DR and cell-type 
annotation

Cell clustering was performed using the Seurat package 
in R with default parameters (19). The clustering results 
were uniformly downscaled and visualized using a principal 
component analysis and t-distributed stochastic neighbor 
embedding (20), and then projected in a 2-dimensional 
image defined as the single-cell atlas. The FindAllMarkers 
function of the Seurat package was also used to identify the 
marker genes that were highly expressed in each cell cluster. 
Cell-type annotation was performed based on known retinal 
cell markers (18) and cell markers of the Human Proteome 
Project (21).

Single-cell component analysis

A single-cell component analysis was performed based 
on the markers of different cell clusters to investigate 
differences in the numbers of retinal cell subpopulations 
between the DR and healthy samples and to identify cells 
dysregulated in DR.

Analysis of protein-protein interaction network and 
receiver operating characteristic (ROC) curve

Moreover, the differentially expressed genes with adjusted 
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P<0.05 was conducted to constructed the protein-protein 
interaction (PPI) network based on STRING database (22). 
Then, the interaction between cells was plot with iTalk 
package (23).

To observe the diagnostic potential of differentially 
expressed genes (adjusted P<0.05, average log2 fold change 
>1), area under the receiver operating characteristic (ROC) 
curve was applied to the analysis using pROC package (24). 
While the closer the area under the curve (AUC) is to zero, 
the higher the diagnostic potential.

Cell subcluster analysis

The subcluster analysis of the identified cells was performed 
with the Seurat package, and the FindAllMarkers function 
was used to identify marker genes expressed in each cell 
subcluster. Cell subclusters were then classified based on 
which marker genes were expressed the most abundantly.

Functional enrichment analysis

A Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis was conducted using the 
clusterProfiler package (25) to identify the potential 
functions of molecular pathways occurring in each cell 
subpopulation. Pathways were considered significantly 
involved in marker genes when they had an adjusted P 
value <0.05. The adjusted P value was obtained using the 
Benjamin-Hochberg method (26), which can correct the 
P value and control the false/true positive ratio within a 
certain range.

Data and statistical analyses

All statistical analyses were performed using R (https://
www.r-project.org/). We analyzed the expression levels of 
genes using unpaired t-tests. P<0.05 was consistent with 
statistical significance. And the analyses were performed 
using the online Platform Bioinforcloud platform (http://
www.bioinforcloud.org.cn) and Biomarker Technologies 
Corporation (Beijing, China).

Results

Single-cell atlas of DR

A single-cell atlas comprising 55 cell clusters (Figure 1A) 
was constructed using a total of 21,588 cells, of which 

13,336 came from the DR mice and 8,252 came from the 
healthy controls (Figure 1B). The obtained clusters were 
classified into the following 10 cell types: retinal pigment 
epithelial cells, pericytes, endothelial cells, astrocytes, 
microglia, anaplastic cells, cone photoreceptors, rod 
photoreceptors, bipolar cells, and Müller cells (Figure 1C).  
The following marker genes were the most strongly 
expressed in the various cell clusters: cone photoreceptors 
(Cone), Guca1; Müller cells, Rlbp1; bipolar cells (BCs), 
Trpm1; rod photoreceptors (Rod), Nrl; pericytes (Per), 
Sparcl1; endothelial cells (ECs), Pecam1; anaplastic cells 
(ACs), Pax6; retinal pigment epithelial cells (RPEs), 
Rpe65; microglia (Mic), Aldoc; astrocytes (Ast), and Gfap 
(Figure 1D). We explored the differences in the numbers 
of various cell types between the DR and healthy control 
samples (Figure 1E). The results indicated that Müller glial 
cells were significantly decreased in the DR samples. The 
analysis revealed a wide range of intercellular interactions, 
suggesting that DR development is closely related to 
intercellular interactions (Figure 1F). In the present study, 
Cirbp was found to have potential (AUC =0.795) as a 
diagnostic marker for DR (Figure 1G).

Müller glial cell function in DR

The Müller cells were divided into 78 subpopulations 
(Figure 2A), and a single-cell atlas was constructed according 
to the sample source (Figure 2B). The subpopulations 
Müller_Mt2 and Müller_Mir124-2hg were significantly 
larger in the DR tissues than the control tissues, while 
the other 5 subpopulations were significantly smaller  
(Figure 2C). The expression of the marker genes in each 
Müller cell subpopulation was determined by a cell 
subcluster analysis (Figure 2D). The KEGG pathway 
enrichment analysis showed that the subpopulation genes 
were involved in several inflammation-related pathways, 
such as synaptic vesicle cycling, interleukin 17 (IL-17) 
signaling, Toll-like receptor signaling, and the lysosomal 
pathways (Figure 2E).

Endothelial cell function in DR

The endothelial cells were divided into 4 subpopulations 
(Figure 3A) and a single-cell atlas was constructed based 
on the sample source (Figure 3B). The levels of ECs_
Mfsd2a were significantly lower in the DR group than in 
the healthy control group, while the other subpopulations 
were significantly increased (Figure 3C). The expression 
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Figure 1 Single-cell mapping of DR. (A) Single-cell mapping of 21,588 cells from DR and healthy control samples. Each color indicates 
a different cell cluster (n=55). (B) Single-cell atlas based on the sample source. (C) Classification of cell clusters into cell types. Each color 
represents a different cell type. (D) Expression of the marker genes in each cell cluster. (E) Levels of various cellular components in DR and 
healthy control samples. (F) The interaction between cells. (G) The ROC of marker gene. ACs, anaplastic cells; Ast, astrocytes; BCs, bipolar 
cells; Cone, cone photoreceptors; DR, diabetic retinopathy; ECs, endothelial cells; Mic, microglia; Müller, Müller cells; Per, pericytes; Rod, 
rod photoreceptors; RPEs, retinal pigment epithelial cells; tSNE, t-distributed stochastic neighbor embedding; ROC, receiver operating 
characteristic; AUC, area under the curve. 
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Figure 2 Müller glial cell function in DR. (A) Single-cell mapping of Müller cell subpopulations. Each color indicates a different 
subpopulation. (B) Single-cell atlas of Müller cells based on the sample source. (C) Differences in the abundance of the Müller cell 
subpopulations between the DR and healthy control samples. (D) Expression of the marker genes in each subpopulation. (E) Signaling 
pathways enriched in Müller cell subpopulations. DR, diabetic retinopathy; KEGG, Kyoto Encyclopedia of Genes and Genomes; tSNE, 
t-distributed stochastic neighbor embedding.
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Figure 3 Endothelial cell function in DR. (A) Single-cell mapping of endothelial cell subpopulations. Each color indicates a different 
subpopulation. (B) Single-cell atlas of endothelial cells based on the sample source. (C) Differences in the abundance of the endothelial 
cell subpopulations between the DR and healthy control samples. (D) Expression of the marker genes in each subpopulation. (E) Signaling 
pathways enriched in endothelial cell subpopulations. DR, diabetic retinopathy; KEGG, Kyoto Encyclopedia of Genes and Genomes; tSNE, 
t-distributed stochastic neighbor embedding.
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of the marker genes in each endothelial cell subpopulation 
was determined by a cell subcluster analysis (Figure 3D). 
The enrichment analysis showed that the subpopulation 
genes were involved in the cell adhesion-related signaling 
pathways, such as extracellular matrix-receptor interactions 
and gap junctions, and the chemokine signaling pathway 
(chemokine is known to play an important role in 
inflammation) (27) (Figure 3E).

Microglial function in DR

The microglia were divided into 3 microglia subpopulations 
(Figure 4A) and were used to construct a single-cell 
atlas depending on the sample source (Figure 4B). The 
abundance of Mic_Fcer1g and Mic_Slco2b1 was lower in 
the DR group than the healthy control group, while that 
of the Mic_Bex2 was significantly higher in the DR group 
than the healthy control group (Figure 4C). The expression 
of the marker genes in each microglia subpopulation 
was determined by a cell subcluster analysis (Figure 4D). 
Consistent with previous findings (28), the subpopulation 
genes were found to be involved in several inflammation-
related pathways, such as synaptic vesicle cycling, IL17 
signaling, and Toll-like receptor signaling (Figure 4E).

Bipolar cell function in DR

The bipolar cells were divided into 6 subpopulations  
(Figure 5A) and a single-cell atlas was constructed based 
on the sample source (Figure 5B). Our results showed that 
only 2 of the 6 subpopulations were larger in the DR tissues 
than the control tissues (Figure 5C). The expression of 
the marker genes in each bipolar cell subpopulation was 
determined by a cell subcluster analysis (Figure 5D). The 
enrichment analysis showed that the subpopulation genes 
were involved in inflammation-related pathways, including 
chemokine signaling, advanced glycosylation end product 
(AGE)-receptor for advanced glycation end product (RAGE) 
signaling in diabetic complications, and calcium signaling 
(Figure 5E).

Discussion

In this study, we used DR-related single-cell transcriptome 
data to construct a single-cell atlas of the DR and healthy 
control samples. We also performed a cell subpopulation 
analysis to explore changes in the abundance of different 
cell subpopulations in DR and identify pathways involved 

in disease progression. Our results showed that DR was 
associated with significantly reduced numbers of bipolar 
cells, Müller glia, retinal pigment epithelial cells, and cone 
photoreceptors, but was also associated with significantly 
greater numbers of pericytes, rod photoreceptors, anaplastic 
cells, and microglia. The enrichment analysis suggests that 
the retinal cell subpopulations altered in DR are involved in 
pathways related to oxidative stress and inflammation.

Müller glial cells are the predominant cell type in the 
mammalian retina and play an important role in maintaining 
homeostasis and retinal integrity (29,30), as they can 
alter their morphology to respond to retinal damage and  
disease (31). However, retinal damage can reduce their 
abundance, thereby limiting the healing response and 
promoting the development of DR (32). Müller cells have 
also been found to produce high levels of pro-inflammatory 
molecules under hyperglycemic conditions (33). Our 
study showed that Müller cell subpopulation genes are 
involved in lysosomal pathways, and lysosomal membrane 
permeabilization, and the leakage of lysosomal contents 
are known to lead to cell death, which may explain their 
decreased abundance in DR. The genes are also involved 
in several inflammation-related pathways. These findings 
imply that restoring the response of Müller cells in DR 
lesions and lowering blood glucose levels may inhibit the 
secretion of pro-inflammatory factors and mitigate DR.

Endothelial cells are one of the main components 
of the retinal microvasculature, which is essential for 
retinal function (34). They play an important role in both 
inflammation and angiogenesis in DR (15) and are critical 
in attracting immune cells to sites of inflammation (35). 
Inflammatory cells produce angiogenic cytokines and 
growth factors, which in turn activate the microvascular 
endothelium, which expresses pro-inflammatory molecules 
(36-38). In our study, we showed that endothelial cell 
subpopulations are involved in similar inflammation-related 
pathways.

Microglia are a key component of the retina and are 
known to enhance neurodegeneration in ocular disease 
by producing pro-inflammatory neurotoxic cytokines and 
phagocytosing neurons (28). The activation of microglia 
may help initiate neuroinflammation in DR (14). Activated 
microglia produce pro-inflammatory mediators that promote 
neuronal cell death but that may also act as neuroprotective 
agents (39-41). In the present study, the abundance of 
microglia were increased, which might drive DR progression, 
and we found that microglia subpopulations in DR participate 
in inflammation-related pathways.
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Figure 4 Microglial function in DR. (A) Single-cell mapping of microglia subpopulations. Each color indicates a different subpopulation. 
(B) Single-cell atlas of microglia based on the sample source. (C) Differences in the abundance of the microglial subpopulations between the 
DR and healthy control samples. (D) Expression of the marker genes in each subpopulation. (E) Signaling pathways enriched in microglial 
subpopulations. DR, diabetic retinopathy; KEGG, Kyoto Encyclopedia of Genes and Genomes; tSNE, t-distributed stochastic neighbor 
embedding.
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Figure 5 Bipolar cell function in DR. (A) Single-cell mapping of bipolar cell subpopulations. Each color indicates a different subpopulation. 
(B) Single-cell atlas of bipolar cells based on the sample source. (C) Differences in the abundance of the bipolar cell subpopulations between 
the DR and healthy control samples. (D) Expression of the marker genes in each subpopulation. (E) Signaling pathways enriched in bipolar 
cell subpopulations. DR, diabetic retinopathy; KEGG, Kyoto Encyclopedia of Genes and Genomes; tSNE, t-distributed stochastic neighbor 
embedding.
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In the retina, bipolar cells receive input from rod and cone 
photoreceptors, ganglion cells receive input from bipolar 
cells, and amacrine cells regulate these interactions (42).  
Bipolar cells are a fundamental component of vision, as they 
serve as a link between the 2 synaptic layers of the retina 
(43,44). An earlier study using the GSE178121 data set 
showed that the bipolar cell population is not significantly 
affected in DR (18); however, we found that the abundance 
of bipolar cells was significantly lower in DR tissues 
than healthy tissues. We also found that the BCs_Gngt1 
subpopulation participates in the calcium signaling pathway. 
It may be that the abnormal levels of bipolar cells in DR 
are the result of dysfunctional calcium homeostasis, as 
decreased calcium signaling inhibits neurotransmission (45), 
particularly in patients with diabetes (46-48).

Inflammation plays a key role in the development of 
DR (12,13,49). In this study, we found that Müller_Slc2a1, 
Müller_Nupr1, and Mic_Slco2b1 subpopulation genes 
are involved in the Toll-like receptor signaling pathway, 
which promotes the secretion of angiogenic growth 
factors in arterial endothelial cells and leads to choroidal 
neovascularization (50,51). We also found that the ECs_
Cirbp subpopulation is involved in the chemokine and 
nucleotide-binding oligomerization domain (NOD)-
like signaling pathways. Chemokines are a large class 
of chemotactic cytokines that act on G protein-coupled 
receptors and regulate various biological processes, 
and they can help drive diseases involving pathological 
inflammation (52,53). Conversely, NOD-like receptor 
(NLR) proteins are pattern recognition receptors that 
mediate the innate immune response to cellular injury and 
stress (54). NLRs can also form inflammatory vesicles, 
which mediate the activation of caspase-1 and the secretion 
of the pro-inflammatory cytokines IL-1β and IL-18 (55,56). 
Endothelial cells contain abundant danger signals, such 
as reactive oxygen species, which activate the NLRP3 
inflammasome, exacerbating inflammatory signaling, and 
cellular damage (57). These results suggest that endothelial 
cell abnormalities in DR may be associated with the 
abnormal activation of these pathways.

The results of the enrichment analysis of the above 
subgroups revealed that the “AGE-RAGE signaling 
pathway in diabetic complications” is significantly enriched 
in the Müller_Slc2a1, Müller_Vegfa, BCs_Sebox, BCs_
Ndnf, and BCs_Cnmd subpopulations. AGEs in diabetes 
are formed by the non-enzymatic reaction between glucose 
and long-lived proteins, such as collagen (58), and the 
AGE-RAGE axis is strongly associated with the progression 

of diabetes-related macrovascular complications, arterial 
damage, diabetic nephropathy, and retinopathy (59). 
AGEs have been found to induce inflammation and 
immunosuppression by binding to RAGE, leading to 
the production of pro-inflammatory cytokines, reactive 
oxygen species, and reactive nitrogen intermediates that 
alter innate and adaptive immune responses (60). These 
molecules also promote the pathogenesis of diabetic 
vascular complications mediated by oxidative stress (61-63), 
and activate nicotinamide adenine dinucleotide phosphate 
oxidase and the nuclear factor kappa light chain enhancer 
of activated B cells by binding to the specific RAGE on the 
cell surface (64), thus triggering a vicious cycle of oxidative 
stress and inflammation (62,65,66). Based on these results, 
we hypothesize that the AGE-RAGE signaling pathway in 
diabetic complications may be associated with abnormalities 
in bipolar cells and Müller glia. Further, we found that 
Müller glia, endothelial cell, microglia, and bipolar cell 
subpopulation genes are significantly involved in the 
phosphatidylinositol-3-kinase and protein kinase B signaling 
pathway, which accelerates the endothelial-mesenchymal 
transition in DR (67).

This study was done based on bioinformatics analysis 
and single-cell sequencing of cells, and the lack of clinical 
experimental validation is one of the drawbacks of this 
study. Since human single cell data on DR are scarce, this 
study used data from mice, whose samples are also small, 
and in future plans will expand the samples and collect data 
from humans as much as possible.

In summary, we showed that Müller glia, endothelial 
cells, microglia, and bipolar cells in DR tissues are involved 
in oxidative stress- and inflammation-related pathways, 
which may contribute to the progression of the disease 
and ultimately lead to visual impairment and blindness. If 
our findings can be confirmed, they suggest that the early 
detection of changes in specific retinal cell subpopulations 
may lead to earlier and more effective treatments.
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