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Introduction 

Nonalcoholic fatty liver (NAFL) represents simple hepatic 
steatosis and is defined as triglyceride infiltration in more 
than 5% of hepatocytes (1). Hepatic steatosis has emerged 
as a predominant determinant for the progression of fibrosis 

in chronic hepatitis C patients (2). Patients with NAFL 
over 14.3 years progress 1 stage of fibrosis (3). Particularly, 
hepatic triglyceride accumulation contributes to systemic 
disorders, including insulin resistance in the liver, muscle, 
and adipose tissue (4). Although lifestyle countermeasures 
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such as weight loss, diet, and physical performance have 
been recommended as the first-line strategy for NAFL 
treatment (5), the noncompliance of patients urges the 
development of new therapies for NAFL.

Traditional Chinese medicine (TCM), which mainly 
comprises natural medicines and related extracts, has shown 
therapeutic advantage for NAFL. For instance, TCM 
improved hepatic steatosis and injury in both patients 
and animal models, as demonstrated by the reduction of 
alanine aminotransferase, aspartate aminotransferase (6), 
and serum triglycerides (7). Berberine (BBR), a kind of 
isoquinoline alkaloid (8) extracted from medicinal plants 
in the Berberidaceae family such as Rhizoma Coptidis 
and Phellodendron amurense Ruprin (9), has received 
increasing attention for attenuating NAFL. In patients 
with NAFL, BBR plus lifestyle intervention resulted in a 
significant reduction in the fat content of the liver and body 
weight, with better improvement in serum lipid profiles (10).  
In a rat model of NAFL, BBR treatment for 16 weeks 
decreased hepatic fat content by 14% (11). Current 
viewpoints regarding the mechanism of action of BBR-
mediated protection against NAFL involve the inhibition 
of apoptosis, autophagy of hepatocytes, AMP-activated 
protein kinase (AMPK) activation, insulin receptor, low-
density lipoprotein upregulation, downregulation of low-
density lipoprotein receptor, and reduction of DNA 
hypermethylation and histone deacetylation (12,13). 

The epigenetic regulation of NAFL has received 
particular attention (14). DNA methylation, histone 
acetylation, and long noncoding RNAs represent the most 
common epigenetic modifications. Among them, histone 
methylation could potentially contribute to the protection of 
BBR against NAFL. Knockout of histone methyltransferase 
SET domain-containing protein 2 (SETD2) increased 
the storage of hepatic triglycerides in mice under high-
fat conditions (15). In the setting of diabetes, BBR 
administration ameliorated hepatic steatosis and induced 
an increase in the mRNA expression of SETD2 (16).  
These findings suggest the potential contribution of 
SETD2-dependent epigenetic modifications in hepatic 
steatosis and BBR-mediated hepatoprotection. 

In the current study, we aimed to determine the role of 
SETD2 in the effects of BBR on hepatic lipid metabolism 
using a cell model of hepatic steatosis. Our results confirmed 
the downregulation of SETD2 in both mouse and cell 
models of NAFL, and indicated that the upregulation of 
SETD2 under BBR treatment was compensatory, in that its 
inactivation abolished the hepatoprotective effects of BBR. 

These findings not only for the first time illustrates a key 
role of histone methylation in the regulatory mechanism 
of BBR against hepatic steatosis, but also provides a new 
therapeutic target for NAFL. We present the following 
article in accordance with the ARRIVE reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-1753/rc).

Methods

Reagents and antibodies

BBR (CAS: 633-65-8) was purchased from Sangon Biotech. 
Rabbit anti-SETD2 antibody (80290s), rabbit anti-H3 
lysine 36 trimethylation antibody (8173S), and rabbit 
GAPDH (#AC006) were provided by Cell Signaling 
Technology (MA, USA). 

Animal model of NAFL

Six-week-old male C57BL/6 mice (Shanghai SLAC 
Laboratory Animal Company) were divided into groups 
using a random number table. Mice (n=3) were fed by 
a high-fat, high-sucrose (HFHS) diet containing 40% 
carbohydrate, 40% fat, and 20% protein for 5 weeks, while 
BBR (5 mg/kg/day, n=3, or 10 mg/kg/day, n=3) or vehicle 
[phosphate buffered saline (PBS), n=3] was administered 
through intraperitoneal (i.p.) injection once per day. All 
animals were housed at a steady room temperature under a 
12:12 hour light/dark cycle and were permitted free access 
to a certified chow diet and water. 

The process for animal experiments was approved and 
conducted in the experimental animal center of Longhua 
Hospital, Shanghai University of Traditional Chinese 
Medicine (No. LHERAW-19004). All surgeries were rigidly 
performed in accordance with globally recognized and 
institutional guidelines for the care and use of animals.

Histological analysis

Livers from the mice were fixed in 4% paraformaldehyde 
and embedded in paraff in wax.  Paraff in sect ions 
(5-µm th icknes s )  were  f i xed  on  g la s s  s l ides  for 
immunohistochemistry. For evaluating hepatic steatosis, 
the liver was microdissected with scissors, put in a screw-
cap tube, and frozen immediately in liquid nitrogen. The 
sections (8-µm thickness) cut in a cryostat at −20 ℃ were 
stained with Oil Red O following the manufacturer’s 

https://atm.amegroups.com/article/view/10.21037/atm-22-1753/rc
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instructions. 

Cell culture and treatment

Human HepG2 cells (American Type Cell Culture) were 
cultured in DMEM/L medium (Sigma, USA) containing 
10% fetal bovine serum (FBS) (Sigma, USA) and 1% 
penicillin/streptomycin (Gibco, USA) at 37 ℃ with 5% 
CO2. To establish the model of steatosis, serum-free 
DMEM was used to incubate the HepG2 cells for 12 hours, 
then the medium was exchanged to DMEM containing  
100 µM palmitate, without or with BBR (10 or 20 µM), 
for an additional 24 hours. The influence of BBR on cell 
viability was determined with the Cell Counting Kit-8 
(CCK8) assay.

Luciferase reporter assay

The reporter constructs consisted of the SETD2 promoter 
sequence. The segments of interest in the SETD2 
promoter region were amplified utilizing polymerase chain 
reaction (PCR) and cloned in sense orientation into the 
Xho I and Hind III sites of the pGL4.17 vector (Promega). 
To detect the BBR induction of different constructs, 
HepG2 cells were incubated with 20 µM BBR or vehicle in 
DMEM medium without FBS 6 hours after transfection. 
Cells were then harvested 24 hours later, and the luciferase 
activity was detected as relative luminescence units (RLUs) 
using the Luciferase Assay System (Promega, Madison, 
WI, USA).

Flow cytometry

The Annexin V-FITC/PI Apoptosis Detection Kit 
(BioLegend, CA, USA) was used to stain cells according 
to the manufacturer’s instructions, and a CytExpert flow 
cytometer (Beckman Coulter, USA) was used to count the 
percentage of apoptotic cells.

Cell transfection

H e p G 2  c e l l s  w e r e  s e e d e d  i n  6 - w e l l  p l a t e s  a n d 
transfected either with scrambled siRNA or SETD2 
siRNA (25 ng) for 36 hours using 6 L of Lipofectamine 
3000 Reagent (Invitrogen, USA). The sequence of 
siRNAs against SETD2 was as follows: si-SETD2, 
5'-CCGACCCCTGAGCAAAGATT-3'.

Oil Red O staining

H u m a n  H e p G 2  c e l l s  w e r e  f i x e d  w i t h  1 0 % 
paraformaldehyde for 30 minutes, and then stained with 
Oil Red O dye solution (Sigma-Aldrich, USA) for another 
30 minutes. After washing with 60% isopropanol for  
10 minutes, a microplate reader was used to quantify 
the steatosis of HepG2 cells by measuring absorbance at  
510 nm wavelength. 

Triglycerides measurement

Triglycerides were extracted with chloroform/methanol 
(2:1 v/v) and dried in the chemical hood. Then, 1% Triton 
X-100-ethol was added to dissolve the triglycerides, and 
then the Triglyceride Reagent Kit (Nanjing Jiancheng 
Bioengineering Institute) was used to measure triglyceride 
concentration.

Quantitative real-time PCR

The TRIzol method was utilized to isolate total RNA from 
cells according to the manufacturer’s specifications (Sigma, 
USA). Next, the Reverse Transcription Reagent Kit with 
genomic DNAeraser (Takala, Tokyo, Japan) transformed the 
total RNA into complementary DNA (cDNA). Quantitative 
real-time PCR was performed with an Applied Biosystems 
7500 system (Applied Biosystems, USA) utilizing SYBR 
Green Premix Ex Taq (Takara, Tokyo, Japan).

Western blotting

Proteins were extracted from the cell pellet by RIPA buffer 
comprised of protease and phosphatase inhibitors. The 
concentration of the extracted proteins was measured using 
the BCA Protein Quantitative Analysis Kit (Thermo, MA, 
USA, China). A total of 20 µg lysates were loaded onto 
sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
(SDS-PAGE) gels and transferred to nitrocellulose (NC) 
membranes (Sigma, USA). The membranes were blocked 
with 5% skim milk for 2 hours, and subsequently incubated 
with primary antibodies overnight. After incubation with 
horseradish peroxidase (HRP)-conjugated secondary 
antibodies for 3 hours, protein bands were detected with 
Immobilon Western Chemiluminescent HRP Substrate 
(Beyotime Biotechnology,  China).  Densitometric 
quantification was carried out using ImageJ software version 
1.46r (ImageJ, USA).
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Statistical analysis

Total data were expressed as mean ± standard error of 
the mean (SEM). Unpaired two-tailed t-test or one-way 
analysis of variance (ANOVA) was performed to analyze the 
significance between 2 groups or among numerous groups. 
P<0.05 was considered to be statistically significant.

Results

BBR treatment alleviates hepatic steatosis 

To demonstrate the protective effect of BBR on hepatic 
steatosis, mice were fed with a HFHS diet (n=3) for  
5 weeks, and in the meantime, low (5 mg/kg/day, n=3) 
and high doses (10 mg/kg/day, n=3) of BBR or vehicle 
(PBS, n=3) were administered through i.p. injection once 
a day (Figure 1A-1F). In mice given a HFHS diet, the 
content of lipid droplets was obviously lower in livers 
with low- and high-dose BBR treatment, as shown by the 
photomicrographs of Oil Red O staining (Figure 1A) and 
the measurement of triglycerides (Figure 1B). When high-
dose BBR was used, circulating triglycerides significantly 
decreased (Figure 1C). These findings suggest a dose-
dependent effect of BBR on hepatic steatosis and systemic 
lipid metabolism.

To further confirm whether BBR directly counteracts 
steatosis of hepatocytes by metabolic challenge, the human 
HepG2 hepatocyte cell line was exposed to palmitate (100 µM)  
with or without BBR. Firstly, we assessed the potential 
impact of BBR on hepatocyte viability. At the range of 1 
to 20 µM, BBR did not significantly affect the viability of 
HepG2 cells, but BBR at 30 µM demonstrated a toxic effect 
(Figure 2A). This scenario was supported by the apoptosis 
assay (Figure 2B). Thus, we used 10 or 20 µM BBR to 
analyze its function against hepatic lipogenesis. Treatment 
of steatotic HepG2 cells with BBR at 10 or 20 µM obviously 
reduced the accumulation of lipid droplets induced by 
palmitate, as demonstrated by quantitative analysis of Oil 
Red O staining (Figure 3A) and intracellular triglyceride 
content (Figure 3B). Collectively, these results demonstrate 
that BBR confers resistance to hepatocyte steatosis.

BBR treatment transcriptionally activates SETD2 in 
steatotic hepatocytes

We further investigated whether BBR influences SETD2 
activity and the potential underlying mechanism. In both 
HFHS-fed mouse livers (Figure 1D-1F) and HepG2 

cells, the protein and mRNA levels of SETD2 and the 
downstream target trimethylation of lysine 36 on histone 3 
(H3K36me3) were significantly downregulated compared 
to those in the corresponding controls (Figure 4A,4B). 
BBR treatment increased the expression of SETD2 
and H3K36me3 at the transcriptional level under basal 
conditions (Figure 4A,4C). In HepG2 cells exposed to 
high palmitate, BBR administration also elevated the 
protein and mRNA expression of SETD2 and H3K36me3  
(Figure 4D,4E). These results demonstrate the impact of the 
transcriptional regulation of BBR on SETD2 expression 
and activity.

SETD2 mediates the hepatoprotection of BBR against 
steatosis

Finally, we examined whether SETD2 mediates the 
hepatoprotection of BBR. We found that knockdown of 
SETD2 significantly increased the storage of lipid droplets 
in HepG2 cells exposed to palmitate, as detected by Oil 
Red O staining and triglyceride content (Figure 5A,5B). 
Moreover, in the presence of SETD2 knockdown, BBR 
treatment could not effectively reduce the generation of 
lipid droplets induced by palmitate challenge in HepG2 
cells (Figure 5A,5B). Thus, SETD2 acts as a critical 
mediator for BBR to combat hepatic steatosis.

Discussion

The epigenetic mechanism of BBR in improving hepatic 
steatosis remains unknown. Our results revealed that BBR 
activated SETD2 and attenuated the generation of lipid 
droplets in hepatocytes. Importantly, SETD2 inactivation 
abolished the hepatoprotective effects of BBR, highlighting 
SETD2 as a crucial mediator. The modulation of BBR on 
SETD2 activity was demonstrated at the transcriptional 
level, underscoring the pleiotropic actions of BBR.

The anti-steatosis effect of BBR in hepatocytes has 
been documented in humans, mice, rats, hamsters, and 
fish (10,17-20), and in in vitro studies with normal human 
liver cells, primary mouse hepatocytes, and grass carp 
hepatocytes (21-23). In this study, we confirmed the 
hepatoprotective effects of BBR in a human liver cell line, 
namely HepG2 cells. 

STED2 can inhibit the storage of hepatic triglyceride 
in NAFL. A previous study has suggested the potential 
importance of STED2 in the development of NAFL in a 
different model of metabolic disorders (16), despite the lack 
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Figure 1 BBR attenuates the accumulation of triglycerides and increases the expression of SETD2 and H3K36me3 in HFHS diet-induced 
steatotic livers of mice. Male mice at 6 weeks old were fed by a HFHS diet for 12 weeks and then treated with high-dose BBR (10 mg/kg/day),  
low-dose BBR (5 mg/kg/day), or vehicle (PBS) by i.p. injection once daily for 5 weeks. (A) Representative photomicrographs of Oil Red 
O staining of the liver sections of mice (magnification, ×200). The levels of liver (B) and plasma (C) triglycerides were assessed in mice. 
Western blot analysis (D) and PCR analysis (E) of SETD2, H3K36me3, and GAPDH in mice. (F) Immunohistochemical staining of SETD2 
in the livers of mice (magnification, ×200). The data are presented as mean ± SEM, n=3 each group. *, P<0.05; **, P<0.01. BBR, berberine; 
GAPDH, glyceraldehyde 3-phosphate dehydrogenase; HFHS, high-fat, high-sucrose; H3K36me3, trimethylation of lysine 36 on histone 3; 
NS, not significant; PBS, phosphate buffered saline; SEM, standard error of the mean; SETD2, SET domain-containing protein 2.
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Figure 3 BBR alleviates high-lipid nutrition-induced lipid droplet accumulation of HepG2 cells. HepG2 cells were treated with or without 
BBR (10 or 20 µM) for 24 hours in serum-free media containing 100 µM palmitate. (A) Representative photomicrographs and quantitative 
analysis of Oil Red O staining (magnification, ×200). (B) Quantitative analysis of TG in HepG2 cells. The data are presented as mean ± 
SEM, n=3 each group. **, P<0.01. BBR, berberine; SEM, standard error of the mean; TG, triglyceride.

Figure 2 The toxic effect of BBR on HepG2 cells. Cell viability (A) and apoptosis (B) of HepG2 cells treated with varying concentrations of 
BBR (0, 1, 5, 10, 15, 20, and 30 µM) for 24 hours in serum-free media containing 100 µM palmitate. The data are presented as mean ± SEM, 
n=3 each group. *, P<0.05 versus control. BBR, berberine; NS, not significant; SEM, standard error of the mean.
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Figure 4 BBR increases the expression of SETD2 and H3K36me3 in HepG2 cells exposed to high-lipid nutrition. Western blot analysis (A,D) 
and PCR analysis (B,E) of SETD2 and H3K36me3 in HepG2 cells treated with or without BBR (10 or 20 µM) for 24 hours in serum-free 
media containing 100 µM palmitate. (C) Luciferase activity of SETD2 in HepG2 cells treated with BBR (20 µM). The data are presented as 
mean ± SEM, n=3 each group. **, P<0.01. BBR, berberine; SEM, standard error of the mean; SETD2, SET domain-containing protein 2.
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Figure 5 SETD2 mediates the effect of BBR on reducing high-lipid nutrition-induced the accumulation of lipid droplets in HepG2 
cells. HepG2 cells were treated with 20 µM BBR and/or transfected with siRNA against SETD2 in serum-free media containing 100 µM 
palmitate. (A) Representative photomicrographs and quantitative analysis of Oil Red O staining (magnification, ×200). (B) Quantitative 
analysis of TG in HepG2 cells. The data are presented as mean ± SEM, n=3 each group. **, P<0.01. BBR, berberine; SEM, standard error of 
the mean; SETD2, SET domain-containing protein 2; TG, triglyceride. 

of direct causality. In the current study, our data showed the 
downregulation of SETD2 in both mouse livers and HepG2 
cells after metabolic challenge. Importantly, we identified 
that knockdown of SETD2 promotes the accumulation 
of lipid droplets in HepG2 cells. It is consistent with a 
recent report that a higher content of hepatic triglycerides 
and liver cancer were observed in liver-specific SETD2 
knockout mice (15). The potential mechanism of above 
phenomenon are the decreased expression of cholesterol 
efflux genes and c-Jun/activator protein 1 activation (15).

Our evidence also suggests a potential mechanism 
underlying the regulation of BBR on SETD2 activity. First, 
the transcriptional upregulation of SETD2 by BBR was 
identified in intact hepatocytes. Second, promoter activity 
analysis confirmed this finding. Interestingly, the SETD2 
downstream target H3K36me3 was also transcriptionally 
regulated by BBR, underscoring the dual control of BBR on 
SETD2 and its target. 

In this study, we focused on the role of SETD2 in 

BBR-mediated hepatoprotection. In regards to the 
regulatory molecular network of SETD2 in the steatosis 
of hepatocytes, it seems plausible that lipogenesis-related 
genes are potential targets of the SETD2 signaling 
pathway, as previously reported (15). Moreover, to confirm 
the role of SETD2 in the anti-NAFL mechanism of BBR, 
using hepatocyte-specific SETD2 knockout mice is still 
required. 

It is worthy to investigate in the future that whether 
histone demethylases, Jumonji domain containing (JMJD)-
1C and plant homeodomain finger protein 2 (PHF2), 
participate in the anti-NAFL mechanism of BBR. 
Knockout of JMJD1C in mice lowered lipid accumulation 
in liver, whereas its overexpression contributed to hepatic 
lipogenesis (24). Increased expression of PHF2 also caused 
steatosis of liver in mice (25).

In conclusion, our findings suggest a critical role of 
SETD2 in the anti-NAFL effect of BBR. Pharmacological 
activation of SETD2 could be a novel anti-NAFL therapy.
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