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Background: Thinning of the choroid has been linked with various ocular diseases, including high myopia 
(HM), which can lead to visual impairment. Although various artificial intelligence (AI) algorithms have been 
developed to quantify choroidal thickness (ChT), few patients with HM were included in their development. 
The choroid in patients with HM tends to be thinner than that of normal patients, making it harder to 
segment. Therefore, in this study, we aimed to develop and implement a novel deep learning algorithm based 
on a group-wise context selection network (GCS-Net) to automatically segment the choroid and quantify its 
thickness on swept-source optical coherence tomography (SS-OCT) images of HM patients.
Methods: A total of 720 SS-OCT images were obtained from 40 HM eyes and 20 non-HM eyes and were 
used to develop a GCS-Net to segment the choroid. The intersection-over-union (IoU), Dice similarity 
coefficient (DSC), sensitivity, and specificity were used to assess the performance in relation to manually 
segmented ground truth. The independent test dataset included 3,192 images from 266 HM eyes. The ChT 
in the test dataset was measured manually and automatically at 9 different regions within the choroid. The 
average difference in the ChT between the 2 methods was calculated. The intraclass correlation coefficient 
(ICC) was calculated to evaluate the agreement between the 2 measurements.
Results: Our method reached an IoU, DSC, sensitivity, and specificity of 87.89%, 93.40%, 92.42%, 
and 99.82% in HM, respectively. The average difference in the ChT between the 2 measurements was  
5.54±4.57 μm. The ICC was above 0.90 (P<0.001) for all regions of the choroid, indicating a very high level 
of agreement.
Conclusions: The GCS-Net proposed in our study provides a reliable and fast tool to quantify ChT in HM 
patients and could potentially be used as a tool for monitoring ChT in ocular diseases related to the choroid. 
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Introduction

The prevalence of high myopia (HM) continues to increase 
(1-3). It is estimated that there will be 938 million people 
living with HM by 2050, accounting for 9.8% of the world’s 
population (1). Pathological myopia, which is a major cause 
of visual impairment and blindness worldwide, often occurs 
in eyes with HM (4-6).

The choroid is a vascular structure located between the 
retina and sclera, which supplies nutrients to the outer 
retina and serves critical physiological functions such as 
regulation of intraocular pressure and light absorption 
(7,8). Several studies on non-HM patients have shown that 
age can lead to thinning of the choroid (9-12); however, 
choroidal thinning is also related to many diseases, 
including myopia and age-related macular degeneration 
(AMD) (13-16). 

The choroidal thickness (ChT) decreases with increasing 
levels of myopia (8,17). The ChT in HM patients can be 
about half to a quarter thinner when compared with that of 
patients with normal vision and correlates closely with the 
refractive error, axial length (AL), and posterior staphyloma 
height (8,18-20). The accurate quantification of the ChT 
is essential in the study of ocular diseases associated with 
the choroid. However, the manual measurement of ChT is 
time-consuming, limiting its use as a potential indicator for 
monitoring disease progression in HM patients. 

The use of artificial intelligence (AI), especially deep 
learning algorithms, in ophthalmology has increased 
considerably in the past few years for the diagnosis, 
classification, prediction, and prognosis of ocular diseases 
(21-23). Optical coherence tomography (OCT) is often 
used to acquire high-resolution ocular images as part of 
a clinical examination and has an important role in the 
development of AI algorithms. As evidenced by previous 
studies, the use of AI models based on OCT images 
results in highly accurate detection of various pathological 
conditions, including retinal lesions, AMD, macular edema, 
retinoschisis, retinal detachment, and macular hole (24-26). 

Although previous studies have applied traditional 
algorithms to segment the choroid, they have had 
limitations such as being applicable only to segment the 
normal choroid or requiring high-quality images (27-29). 
Regarding the thin choroid in HM, deformation of the 
retina caused by elongation of the AL, posterior staphyloma, 
or the possible existence of pathological atrophy regions 
makes the detection of the retinal and choroidal structure 
inaccurate and difficult. 

Therefore, in this study, we aimed to develop a novel 
deep learning algorithm based on a group-wise context 
selection network (GCS-Net) to automatically segment 
the choroid region and quantify the ChT on swept-source 
optical coherence tomography (SS-OCT) images of HM 
patients. The accuracy of the algorithm was validated 
against a manually segmented choroid as ground truth. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-21-6736/rc).

Methods

Participants

We conducted a training, validation, and external testing 
study on an AI model using SS-OCT images. The data 
source of this study was a section of the Shanghai Eye Study 
for Older People, which was a population-based, cross-
sectional study including individuals aged 50 years and older 
in Shanghai, China, between 2016 and 2018. Patients were 
excluded from the study if they had a history of eye surgery 
(except cataract surgery), corneal opacity, severe cataract, 
glaucoma, systemic diseases with ocular involvement, and 
fundus lesions unrelated to myopia (e.g., AMD, diabetic 
retinopathy, and optic neuropathy). 

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the Ethics Committee of the Shanghai 
General Hospital, Shanghai Jiao Tong University School 
of Medicine (No. 2015KY153), and informed consent was 
provided by all individual participants. 

Ophthalmic examinations

All patients enrolled in this study underwent comprehensive 
clinical interviews and ophthalmic examinations, including 
assessments of the refractive error using an autorefractor 
instrument (model KR-8900; Topcon, Tokyo, Japan), 
measurement of intraocular pressure (Full Auto Tonometer 
TX-F; Topcon), slit-lamp biomicroscopy, color fundus 
examination, and AL measurement using IOL Master 
(Carl Zeiss Meditec, Jena, Germany). Subjective refraction 
was performed by an experienced optometrist for all 
participants. The spherical equivalent (SE) was obtained 
as follows: SE = sphere power + (cylinder power/2). Eyes 
with an ocular AL greater or equal to 26 mm were defined 
as HM (13). The Topcon Atlantis DRI-1 SS-OCT scanner 

https://atm.amegroups.com/article/view/10.21037/atm-21-6736/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-6736/rc
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was used to acquire 12-line radial B-scans centered on the 
fovea. The SS-OCT parameters were as follows: wavelength 
of the light source =1,050 nm, scan rate =100,000 A-scans 
per second, depth resolution =8 μm, and lateral resolution 
=10 μm. The image size of each B-scan was 1,024 (width of 
B-scans) × 992 (depth of B-scans) pixels, which corresponds 
to a total area of 9×2.6 mm2. 

The ChT, defined as the vertical distance between 
Bruch’s membrane and the choroidal-scleral interface, was 
measured using a specialized grid focused on the macula as 
described in the Early Treatment of Diabetic Retinopathy 
Study (ETDRS). The diameters for the foveal circle, 
parafoveal circle, and perifoveal circle of the ETDRS grid 
were set at 1, 3, and 6 mm, respectively. The parafoveal 
and perifoveal regions were further divided into temporal, 
superior, nasal, and inferior quadrants. The average ChT 
was measured at 9 different regions, including the inner and 
outer parts of each of the 4 quadrants and the center of the 
choroid. 

Datasets

The development dataset included a total of 720 SS-
OCT B-scans obtained from 60 eyes, comprising 40 HM 
eyes and 20 non-HM eyes. Each B-scan was considered 
an independent image and exported as a jpeg to use in 
algorithm development. All images were labeled by 1 well-
trained grader (ML) and supervised by a retina specialist 
(YF), who checked the manual segmentation at least once. 
Subsequently, these images were subdivided into a training 
dataset (80% of the images) for model development and 
a validation dataset (20% of the images) for validating the 
model. To facilitate calculation of the AI model, we adjusted 
the OCT image size to 512×256 pixels. We then applied 
online augmentation of left-right flip, which simulated 
the symmetry of right and left eyes, to increase the size of 
the training set and improve the generalization ability and 
robustness of the model. The AI system was verified using 
an independent real test clinical dataset consisting of 3,192 
images obtained from 266 HM eyes according to the same 
criteria listed above. None of the latter images had been 
used previously in the training and validation datasets.

GCS-Net

A GCS-Net can effectively select multiscale context 
information to achieve accurate segmentation of choroid 
regions with different thicknesses (30). Extraction of 

multiscale features corresponding to different perception 
fields also gives the model strong ability in distinguishing 
choroid and other retinal structures. The novelty in 
designing GCS-Net lies in 2 modules, i.e., the group-wise 
channel dilation (GCD) module, the group-wise spatial 
dilation (GSD) module, and a boundary optimization sub-
network (BON). Both GCD and GSD adopt the self-
attention mechanism, where feature maps are recalibrated 
with adaptive weights. In this way, features with higher 
discriminating ability are emphasized. The GCD module 
can select multiscale information under the guidance of 
channel information, while the GSD module can use 
spatial information to guide the fusion of multiscale context 
information. The BON uses deep supervision to solve the 
problem of choroidal boundary blur.

In the GCD and GSD modules, the input feature maps 
are divided into groups and each group goes through dilated 
convolutions with different rates, thus obtaining multiscale 
features. The GCD module downsamples the feature 
matrix to obtain the channel weights and multiplies each 
convoluted group with the corresponding weight. Finally, 
the weighted multiscale features are added to the input 
features as the output. The difference between the GSD 
module and the GCD module is that the weights obtained 
by the GSD module are spatial weights.

The GCS-Net is a U-shaped network with 4-layer 
encoder and decoder. The GCD module is embedded 
between the encoder and decoder, where the output of 
each layer of the encoder is connected to the decoder 
through the GCD module. The GSD module is added 
after each deconvolution layer of the decoder. Except for 
the bottom layer, the sum of the outputs of the GCD and 
the GSD module forms the input of the next deconvolution 
layer. The boundary optimization network adopts a deep 
supervision strategy. That is, the output of each GSD 
module is up-sampled and convoluted, and based on the 
result, an edge loss is calculated compared with the ground 
truth edge map. The 4 edge losses obtained from each layer 
are added to the region loss to obtain the total loss of the 
GCS-Net. The overview of GCS-Net and the illustration 
of GCD and/or GSD module are shown in Figure 1. 

Evaluation metrics

In the validation dataset, the performance of the AI model 
in segmenting the choroid was quantitatively assessed using 
4 evaluation metrics: the intersection-over-union (IoU), the 
Dice similarity coefficient (DSC), sensitivity, and specificity. 
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The formulas used to calculate IoU and DSC are as follows:
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The TP, FP, and FN represent the number of true 
positive, false positive, and false negative predictions. For 
image segmentation, TP represents the number of pixels 
predicted as foreground by automatic segmentation and 
labeled as foreground in the ground truth, FP represents 

the number of pixels predicted as foreground but labeled 
as background in the ground truth, and FN represents the 
number of pixels predicted as background but labeled as 
foreground in the ground truth (Figure 2). The IoU and 
DSC are used to measure the ratio of overlap, which reflects 
the similarity of the 2 samples. Sensitivity reflects the 
proportion of correctly segmented foreground parts in the 
ground truth. Specificity reflects the proportion of correctly 
segmented background parts in the ground truth. We used 
Python (v3.7; Python Software Foundation, Wilmington, 
DE, USA) and the Pytorch (v1.7) deep learning framework 
of Pycharm (2019, JetBrains, Prague, Czech Republic) 
software to perform model experiments and to calculate 

Figure 1 The proposed deep learning-based algorithm framework. (A) Overview of the GCS-Net. (B) The illustration of GCD and GSD 
module. GCS-Net, group-wise context selection network; GCD, group-wise channel dilation; GSD, group-wise spatial dilation.

Input

Grouped dilated 
Convolution

Boundary optimization network

Channel/spatial 
Weights

Output

Conv_pool: conv 3×3, conv 3×3, Max pool

Conv: conv 3×3, conv 1×1

Deconv: conv 3×3, upsample,conv 1×1

Add

Result

Input
X y

A

B

LDice + LBCE

L1 E
D

ic
e

L2 E
D

ic
e

L3 E
D

ic
e

L4 E
D

ic
e

Add

25
6×

51
2

25
6×

51
2

25
6×

51
2

12
8×

25
6

12
8×

25
6

64
×

12
8

1 1

64 64

64

128

256
512 512

256

128

64
×

12
8

32
×

64

32
×

64

16
×

32

16
×

32



Annals of Translational Medicine, Vol 10, No 11 June 2022 Page 5 of 11

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(11):620 | https://dx.doi.org/10.21037/atm-21-6736

these evaluation metrics.

Comparison with clinical ophthalmologist and statistical 
analysis

After choroid automatic segmentation, the ChT was 
subsequently calculated by converting the pixel counts 
into μm, and the results of automatic segmentation 
were compared with manual segmentation calculated 
by the built-in Topcon software with its caliper in the 
ETDRS grid. The lateral magnification was adjusted 
using AL by Littmann’s formula (31). In the test dataset, 
the performance of the algorithm to measure the ChT 
was assessed by calculating the difference between the 
automated and manual measurements for all 9 measured 
regions. The intraclass correlation coefficient (ICC) was 
used to analyze the similarity between the 2 methods. The 
patients’ characteristics were shown as means ± standard 
deviation for continuous data and as counts or proportions 
for categorical data. Data distribution was examined using 
the Kolmogorov-Smirnov test. The Mann-Whitney U and 
chi-square tests were used to assess whether there were 

statistically significant differences between the training and 
validation datasets. A generalized estimation equation was 
used to account for internal correlation for binocular data. 
All statistical analyses were performed using the software 
SPSS 26.0 (IBM Corp., Armonk, NY, USA), and a 2-tailed 
P value below 0.05 was deemed statistically significant.

Results 

The generalized estimation equation models showed no 
significant differences in ocular parameters between the 
2 eyes; thus, there was no need to adjust for associations 
between them. A total of 326 eyes of 215 participants were 
included in this study after comprehensive ophthalmic 
examinations, comprising 60 eyes in the development 
dataset and 266 eyes in the test dataset. The development 
image dataset was subsequently divided into a training set 
(576 scans) and a validation set (144 scans). Table 1 shows 
the demographic and clinical characteristics of the training 
and validation sets, and no significant difference was found 
in these parameters (P>0.05). 

The performance of GCS-Net was evaluated in both 

A1 A2

B1 B2

C

Figure 2 The definition of TP, FP, and FN for image segmentation. (A1 and B1) Choroid boundaries delineated by ground truth (green 
outline) and the prediction of GCS-Net (red outline). (A2 and B2) Mask of ground truth and GCS-Net. The foreground is the white part 
of the mask output and the background is the black part. (C) Diagram of overlapping mask. TP (blue area) represents the number of pixels 
predicted as foreground by automatic segmentation and labeled as foreground in the ground truth, FP (pink area) represents the number 
of pixels predicted as foreground but labeled as background in the ground truth, and FN (yellow area) represents the number of pixels 
predicted as background but labeled as foreground in the ground truth. TP, true positive; FP, false positive; FN, false negative; GCS-Net, 
group-wise context selection network.
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HM and non-HM eyes (Table 2). In HM eyes, the IoU, 
DSC, sensitivity, and specificity were 87.89%, 93.40%, 
92.42%, and 99.82%, respectively, thus supporting the 
ability of GCS-Net in choroidal segmentation. The visual 
assessment also showed a good agreement between the 
automated segmented choroid and the manual ground truth 
(Figure 3). 

In the test dataset, the algorithm was used for automatic 
ChT calculation and compared with manual segmentation 
to further verify the accuracy of the calculation. In this HM 
test dataset, the average SE was −10.52±3.50 D and the 
average AL was 27.76±0.99 mm. The average center foveal 
ChT was 69.6±39.1 μm, and a decreasing trend was found 
horizontally from the temporal to nasal region (Figure 4).  
The average difference between the 2 methods was 
5.54±4.57 μm with a maximum error of 24.07 μm (Table 3). 
The ICC was above 0.90 (P<0.001) for all choroid regions. 
The lowest ICC (0.944, P<0.001) was found in the outer 
nasal region of the ETDRS grid. With the exception of 
this region, the ICCs in all other sectors were above 0.97 
(P<0.001).

Furthermore, the GCS-Net algorithm was shown to 
be time-saving. It took about 10 minutes to segment and 

calculate ChT for 3,192 B-scans in the test dataset, while 
the same task took approximately 72 hours to complete 
manually by 1 clinician alone.

Discussion 

To our knowledge, this was the first study to use HM eyes as 
test objects for evaluating automated choroid segmentation 
and thickness calculation. The GCS-Net shows great 
agreements with manual segmentation and provides a fast 
and reliable tool for calculating the thin choroid in HM 
eyes. 

Manual image analysis is time-consuming and subjective. 
Moreover, automatic segmentation using an internal 
algorithm in SS-OCT is sometimes inaccurate, which 
may be due to errors caused by over-smoothing or artifact 
interference. Therefore, it is necessary to develop credible, 
objective automated methods to segment the choroid and 
measure its thickness. There are some studies that included 
the quantification of retinal features and ChT in AMD 
eyes (32-34), investigations on optic disc changes and their 
association with ChT in young myopic patients (35), and 
the use of algorithms to determine changes in ChT and 

Table 1 Demographic and ocular characteristics of training and validation datasets

Variables
Training dataset Validation dataset

P value
High myopia Non-high myopia High myopia Non-high myopia

No. of eyes 32 16 8 4

No. of images 384 192 96 48

Age, y 70.03±5.96 65.00±6.79 67.75±6.41 68.50±3.79 0.956

Gender, male/female 17/15 7/9 4/4 1/3 0.605

SE, diopter −11.00±3.93 −0.57±2.01 −10.94±3.43 −1.69±3.26 0.919

IOP, mmHg 13.66±2.87 14.33±2.33 14.19±2.72 13.63±3.35 0.892

AL, mm 28.13±0.86 23.38±0.48 27.50±1.25 23.12±1.57 0.405

SE, spherical equivalent; IOP, intraocular pressure; AL, axial length.

Table 2 The performance of GCS-Net in high myopia and non-high myopia eyes

Variables IoU (%) DSC (%) Sensitivity (%) Specificity (%)

Total 87.89±6.93 93.40±4.10 92.81±6.34 99.66±0.52

High myopia 87.89±7.10 93.40±4.22 92.42±6.56 99.82±0.11

Non-high myopia 87.88±6.57 93.42±3.84 93.59±5.79 99.33±0.80

GCS-Net, group-wise context selection network; IoU, intersection-over-union; DSC, Dice similarity coefficient.
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volume of choroidal vessels (34,36,37). However, previous 
studies of automated ChT calculations were designed based 
on mostly non-HM eyes (38-40). Automated identification 
and calculation of ChT in HM eyes still warrant further 
study, and our team has research experience in this  
field (30,41). 

Our proposed GCS-Net algorithm to automatically 
segment the choroid showed good agreement with 
manual segmentation. The thickness of the choroid was 
subsequently calculated and its results were compared with 
manual segmentation calculated by the built-in Topcon 
software. The average ChT in the test dataset composed 

of images with HM was 75.9±34.4 μm. As expected, the 
ChT was thinner than that reported in previous studies, as 
they had tended to focus on non-HM participants (38,39). 
By analyzing the difference of ICCs in the 9 regions, the 
ChT calculated in the outer nasal region was less consistent 
with the manual. The possible reason is that this region is 
close to the optic disc, which increases the segmentation 
difficulty. However, ICC was above 0.90 for all regions of 
the choroid, and we believe this slight inaccuracy in the 
outer nasal region is clinically acceptable. 

In this study, we measured the average ChT at 9 
different regions, and a decreasing trend of ChT was 

Figure 3 Example B-scans with choroid segmentation results overlaid. The green and red outline represents the ground truth and the 
prediction, respectively. (A1-A3) Images of a 73-year-old female (axial length, 27.72 mm). (B1-B3) Images of a 70-year-old male (axial length, 
28.28 mm). (C1-C3) Images of a 63-year-old female (axial length, 29.13 mm). A perforating scleral vessel toward the subfoveal choroid was 
observed. (A1, B1 and C1) Original B-scans. (A2, B2 and C2) Ground truth. (A3, B3 and C3) The proposed GCS-Net. GCS-Net, group-
wise context selection network.
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found from the temporal to the nasal region of the macula, 
which corresponded with some previous research (42,43). 
In contrast, in the vertical direction, the ChT was quite 
symmetrical (Figure 4). The superior and inferior regions 
were thicker, and the fovea was thinnest. Most manual ChT 
measuring methods in previous studies were at the subfoveal 
location and at certain distances of the temporal, superior, 
nasal, and inferior quadrants from the fovea (42,44-46). 
However, the selected points may not necessarily represent 

all choroidal pathologies, and variations in the selection of 
the point used by the observers may lead to interobserver 
variation. Our study has provided an effective method to 
manage these problems, and the data could be used to 
facilitate the differential diagnosis of ocular pathologies that 
may cause variations in thickness at specific zones within 
the choroid.

The deep learning algorithm-based GCS-Net is much 
more efficient and robust than traditional methods, and our 

Figure 4 The distribution of choroidal thickness for high myopia eyes calculated by GCS-Net and manual adjustment in horizontal (A) and 
vertical (B) direction. GCS-Net, group-wise context selection network.

Table 3 Average, minimum, maximum, and mean error difference between the manual and GCS-Net automated choroidal thickness 
measurements for all nine ETDRS regions in the test dataset. The intraclass correlation coefficient between the two measurements is also 
presented

Regions (ETDRS)
GCS-Net thickness 

(μm)
Manual thickness 

(μm)
Minimum error  

(μm)
Maximum error 

(μm)
Error (μm) ICC (P value)

Center 69.6±39.1 71.6±35.5 0.02 28.86 5.27±5.13 0.981 (P<0.001)

Inner_temporal 78.6±40.5 79.4±38.1 0.02 35.58 4.79±4.81 0.985 (P<0.001)

Inner_superior 76.8±41.2 77.9±38.2 0.08 47.81 5.42±5.90 0.980 (P<0.001)

Inner_nasal 69.6±35.8 69.4±33.0 0.05 24.76 5.03±4.07 0.982 (P<0.001)

Inner_inferior 77.4±37.1 77.6±35.0 0.01 46.42 5.14±5.22 0.979 (P<0.001)

Outer_temporal 86.5±39.9 88.7±38.7 0.03 31.70 5.92±5.26 0.980 (P<0.001)

Outer_superior 84.3±38.3 86.3±36.4 0.02 26.53 5.19±5.20 0.981 (P<0.001)

Outer_nasal 59.4±26.6 60.7±23.7 0.02 39.14 6.59±5.32 0.944 (P<0.001)

Outer_inferior 82.1±37.6 81.8±36.2 0.02 23.75 4.44±3.71 0.988 (P<0.001)

Average 75.9±34.4 78.5±30.6 <0.01 24.07 5.54±4.57 0.976 (P<0.001)

GCS-Net, group-wise context selection network; ETDRS, Early Treatment of Diabetic Retinopathy Study; ICC, intraclass correlation 
coefficient.
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previous study compared it to other algorithms (30). Using 
traditional methods, preprocessing is often needed, such 
as denoising, enhancement, and retina layer segmentation 
(27-29), while the GCS-Net is an end-to-end method that 
produces results from the original B-scans. While many 
traditional methods such as graph-based ones require 
the choroid region to be continuous, the GCS-Net can 
accurately detect the discontinuity caused by the optic disc, 
pathological atrophy, or retinal folding artifacts. In addition, 
GCS-Net is a lightweight network with a relatively small 
number of parameters. This allows successful learning even 
with a medium-sized training dataset.

Our study had several limitations that have to be 
acknowledged. First, the algorithm was learnt and tested 
in the same environment (i.e., the same clinical dataset), 
thus limiting its application. Second, the algorithm was 
developed and tested mainly on SS-OCT images centered 
on the fovea, which highlights the need to validate the 
algorithm’s performance for the choroid located near the 
optic disc. Finally, the ChT maps were not evaluated in 
this study as the automatic topographic map reconstruction 
from 12-radial scans would lead to large errors. The 
assessment of the thickness of the choroid on volumetric 
scans was beyond the scope of this study. To achieve choroid 
segmentation on images acquired with other scanning 
protocols, the model has to be retrained with the specific 
images, or transfer learning techniques need to be applied. 
The current model segments each B-scan independently. 
Further extensions that use multiple adjacent B-scans or 
the whole volume as input should further explore context 
information to improve accuracy. 

In conclusion, the GCS-Net algorithm proposed in our 
study provides a reliable and fast method to automatically 
segment and calculate the ChT in HM eyes. Therefore, 
this tool could be used as a monitoring tool to assess the 
ChT in HM patients. Moreover, it could also provide 
a powerful tool for further research on ocular diseases 
related to thinning of the choroid that could lead to visual 
impairment. 
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