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Introduction

Cancer clinical trials are to investigate the efficacy and 
toxicity of experimental cancer therapies. If an appropriate 
dose level of an experimental drug is determined from a 
phase I trial, the drug’s anticancer activity is assessed by 
phase II clinical trials. Through phase II clinical trials, 
inefficacious experimental therapies are screened out before 
proceeding to further investigation by large scale phase III 
trials.

In order to expedite this process, phase II trials popularly 
use a single-arm design to treat patients by experimental 
therapies only. By a single-arm trial, the efficacy of an 
experimental therapy is compared with that of a standard 
therapy with historical data. The most popular primary 
endpoint of phase II cancer clinical trials is tumor response 
which is measured by the change in tumor size before and 
during treatment. For a solid tumor, if the size, defined as 

sum of the largest diameter of the target tumor decreases 
by at least 30% compared to that at the baseline, we call it a 
partial response by RECIST 1.1 (1).

If the target tumor disappears during treatment, then we 
call it a complete response. Overall response is defined as 
partial or complete response.

The single-arm design is feasible only when reliable 
historical data are available for a selected control therapy. 
Historical data often come from a prior phase II trial that 
evaluated the efficacy of the current control therapy as an 
experimental therapy.

Phase II trials generally require shorter study periods 
than phase III trials. Consequently, phase II trials have small 
sample sizes, so that exact statistical methods are preferable 
to the asymptotic methods for their design and analysis. 
Various exact methods have been published for phase II 
trials with binary outcomes such as tumor response. For 
ethical reasons, two-stage designs with a futility stopping 
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option are commonly used for phase II cancer clinical trials.
Let p0 denote the response rate of a historical control, 

and p1 denote a response rate of interest for an experimental 
therapy. A single-arm two-stage trial, that is specified by 
sample sizes n1 and n2 for stages 1 and 2, respectively, futility 
stopping value a1, and stage 2 critical value a, is conducted 
as follows.
 Stage 1: Treat n1 patients and count the number of 

responders X1.
 If X1 ≤ a1, then reject the experimental therapy and 

stop the trial.
 Otherwise, proceed to the second stage.

 Stage 2: Treat an additional n2 patients and count the 
number of responders X2.
 If X1 + X2 ≤ a, then reject the experimental therapy.
 Otherwise, accept the experimental therapy for 

further investigation.
We usually do not stop the trial early for superiority 

since there is no ethical issue to continue treating patients 
with an efficacious therapy and we want to collect as much 
data as possible to use when designing a subsequent phase 
III trial.

For the true response rate p, X1 and X2 are independent 
binary random variables with a common success probability 
p and number of trials n1 and n2, respectively. Using this fact, 
we can calculate the type I error rate (or false positivity) and 
the power (or true positivity) for a given two stage design, 
(n1, n2, a1, a). Given (α, 1− β), any two-stage design with 
a type I error rate smaller than or equal to α and a power 
larger than or equal to 1− β is called a candidate design. 
Among the candidate designs, the one with the smallest 
maximal sample size n = n1 + n2 is called the minimax design 
and the smallest expected sample size when p = p0 is called 
the optimal design by Simon (2). When the minimax and 
optimality criteria result in very different two-stage designs, 
Jung et al. (3,4) propose admissible designs minimizing 
linear combinations of maximal sample size and expected 
sample size for p = p0.

When a two-stage phase II trial is completed, the sample 
proportion calculated using the cumulative data up to the 
stopping stage is usually reported as an estimate of the 
true response rate of the experimental therapy. For a two-
stage design with a futility stopping only, this estimator is 
negatively biased because the numbers of responders larger 
than the futility limit are not observed if the stopping stage 
is 1. This is the first issue we want to discuss in this article.

Oftentimes, the patient population of a single-arm phase 

II trial consists of multiple subpopulations with different 
level of expected response rates. In this case, the standard 
design and analysis method based on an unstratified testing 
can seriously amplitude the type I error rate or deplete 
the statistical power depending on the number of patients 
accrued from different subpopulations. This is the second 
issue to be discussed in this review paper. We discuss 
alternative design and analysis methods that are proposed to 
overcome these bias issues.

Biased estimation of response rate

In a single-stage phase II trial, the sample proportion of 
response rate is an unbiased estimator. However, in a multi-
stage phase II trial, this is not the case.

In this section, we focus on the popular two-stage 
designs with a futility interim test. For a two-stage design, 
the values of (a1/n1, a/n) are determined based on some 
prespecified design parameters as described below. Let p0 
denote the maximum unacceptable probability of response 
which is usually chosen by the RR of a historical control, 
and p1 the minimum acceptable probability of response with 
p0 < p1. For the true RR p of the experimental therapy, we 
want to test H0: p ≤ p0 against H1: p > p0. In this statistical 
testing, rejecting H0 means accepting the experimental 
therapy. Given (p0, p1), we can calculate the type I error rate 
α and power 1− β of a two-stage design (a1/n1, a/n) based on 
the fact that the number of responders from the two stages, 
X1 and X2, are independent binomial random variables.

Let M denote the stopping stage, and S = SM denote the 
total number of responders accumulated up to the stopping 
stage, so that we have S = X1 if M = 1 and S = X1 + X2 if M = 2.  
For (M, S) = (m, s), most publications of two-stage phase II 
trials report the sample proportion
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as an estimator of the true response rate p of the study 
therapy. The sample proportion is the maximum likelihood 
estimator (MLE) of p. Jung and Kim (5) show that, for two-
stage phase II trials, the MLE has bias

( ) ( ) ( ) ( ) ( )
1

1 11

1

12
1 1

0 11 1 2

ˆ ˆbias 1
a

n xx

x

nnp p E p p x n p p p
xn n n

−

=

 
= − = − − +  

∑  [2]

From Eq. [2], the bias depends on (n1, n, a1), but not on a. 
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From Simon (2) and Jung et al. (4), a1 is usually close to n1p0, 
so that x1 − n1p will be negative for 0 ≤ x1 ≤ a1 and p > p0. 
Hence, for a two-stage phase II trial with a futility stopping 
only, the bias of MLE is negative.

We investigate two sets of numerical studies to evaluate 
the bias of MLE. In the first set of numerical studies (a), 
we consider Simon’s optimal and minimax designs [a1/n1,  
a2/(n1 + n2)] with (α, β) = (0.05, 0.1) for the following 
binomial probabilities.

(I) p0 =0.1 and p1 =0.3: optimal = (2/18, 6/35), minimax 
= (2/22, 6/33);

(II) p0 =0.2 and p1 =0.4: optimal = (4/19, 15/54), 
minimax = (5/24, 13/45);

(III) p0 =0.3 and p1 =0.5: optimal = (8/24, 24/63), 
minimax = (7/24, 21/53).

These numerical studies were conducted to evaluate the 
bias of the MLE for different values of the true binomial 
probability.

In the second set of numerical studies (b), we considered 
Simon’s optimal and minimax designs to test p0 =0.2 vs. p1 
=0.4 with the following type I and II error probabilities.

(I) α =0.1 and β =0.1: optimal = (3/17, 10/37), minimax 
= (3/19, 10/36);

(II) α =0.05 and β =0.2: optimal = (3/13, 12/43), 
minimax = (4/18, 10/33);

(III) α =0.05 and β =0.1: optimal = (4/19, 15/54), 
minimax = (5/24, 13/45).

These numerical studies were to evaluate the bias of 
the MLE for different values of the type I and II error 
probabilities.

Figure 1A,1B displays bias of the MLE for designs a.I, a.II 
and a.III and for designs b.I, b.II and b.III, respectively, for 
a range of true p values including p0 and p1. Note that the 
maximum bias occurs for p between p0 and p1, but closer to 
p0. Compared to minimax designs, optimal designs tend to 
conduct the interim analysis earlier to minimize the expected 
sample size, so that n2/n1(n1 + n2) in Eq. [2], and hence the 
absolute value of bias, is larger for optimal designs. The bias 
seems to increase as p0 and p1 get close to 0.5.

Oftentimes, the MLE from a former two-stage phase 
II trial is used as p0 value for a new phase II trial on an 
experimental therapy. In this case, if p0 is underestimated by 
using the MLE from a former phase II trial, the new trial 
will have an increased false positivity.

If one wants to avoid a bias one may use the uniformly 
minimum-variance unbiased estimator (UMVUE) that is 
given as

      [3]
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where a ∧ b = min(a, b) and a ∨ b = max(a, b). Note that the 
UMVUE is identical to the MLE if M = 1. While UMVUE 
is unbiased estimator of p, its efficiency is comparable to 
that of MLE (5).

By Jung and Kim (5), the probability mass function 
of the random vector (M, S) for a two-stage design with  
(a1/n1, a/n) is given by

   [4]

Example 1: suppose that a standard therapy has a 
response rate of p0 =20% and an experimental therapy will 
be of interest if its response rate is p1 =40% or higher. In 
this setting, we consider a two-stage design with (a1/n1, a/n)  
= (3/13, 12/43). This design is optimal according to  
Simon (2) for p0 =20% and p1 =40% with α=0.05 and power 
1− β =0.8. Table 1 lists the UMVUE and the MLE for 
observations from this two-stage design. When m =1, two 
estimates are exactly the same as noted earlier. When m =2, 
the MLE is much smaller than UMVUE for small s values. 
We also calculated the probability mass function f (m, s|p) 
of (M, S) for the true response rates p =0.1:0.5:0.1. For the 
outcomes of (M, S) for which the MLE is very different 
from UMVUE, the probability mass functions are not very 
large for any true response rates considered here, so that the 
bias of MLE cannot be very big. In this example, the bias of 
MLE is −0.0054, −0.0264, −0.0351, −0.0238, and −0.0094 
when the true response rate is p=0.1, 0.2, 0.3, 0.4, and 0.5, 
respectively.

Single-arm trials for heterogeneous patient 
population

Usually, phase II clinical trials are designed assuming that 
the patient population is homogeneous so that all patients 
have an equal response rate p as in the previous section. 
More often than not, however, a study population has 
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Figure 1 Bias of MLE for true response rate p. (A) Bias of the MLE for two-stage optimal and minimax designs with α =0.05 and β =0.1: I (p0 
=0.1 and p1 =0.3), II (p0 =0.2 and p1 =0.4), III (p0 =0.3 and p1 =0.5); (B) bias of the MLE for two-stage optimal and minimax designs for p0 = 0.2 
and p1 = 0.4: I (α =0.1 and β =0.1), II (α =0.05 and β =0.2), III (α =0.05 and β =0.1). MLE, maximum likelihood estimator.
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Table 1 UMVUE, MLE, and probability mass function for true response rate p for each observation of (m, s) in a two-stage design with (a1/n1, a/n) 
= (3/13, 12/43)

m s UMVUE MLE
f(m, s|p) for p

0.1 0.2 0.3 0.4 0.5

1 0 0.000 0.000 0.254 0.055 0.010 0.001 0.000

1 1 0.077 0.077 0.367 0.179 0.054 0.011 0.002

1 2 0.154 0.154 0.245 0.268 0.139 0.045 0.010

1 3 0.231 0.231 0.100 0.246 0.218 0.111 0.035

2 4 0.308 0.093 0.001 0.000 0.000 0.000 0.000

2 5 0.312 0.116 0.004 0.002 0.000 0.000 0.000

2 6 0.317 0.140 0.007 0.006 0.001 0.000 0.000

7 0.322 0.163 0.008 0.015 0.002 0.000 0.000

2 8 0.328 0.186 0.006 0.027 0.006 0.000 0.000

2 9 0.335 0.209 0.004 0.038 0.015 0.001 0.000

2 10 0.343 0.233 0.002 0.043 0.030 0.003 0.000

2 11 0.351 0.256 0.001 0.041 0.049 0.008 0.000

2 12 0.360 0.279 0.000 0.033 0.068 0.018 0.001

2 13 0.371 0.302 0.000 0.023 0.081 0.033 0.003

2 14 0.382 0.326 0.000 0.014 0.084 0.054 0.006

2 15 0.395 0.349 0.000 0.007 0.076 0.076 0.013

2 16 0.409 0.372 0.000 0.003 0.062 0.096 0.025

2 17 0.424 0.395 0.000 0.001 0.044 0.107 0.042

2 18 0.440 0.419 0.000 0.001 0.029 0.108 0.063

2 19 0.458 0.442 0.000 0.000 0.017 0.098 0.085

2 20 0.477 0.465 0.000 0.000 0.009 0.080 0.105

2 21 0.496 0.488 0.000 0.000 0.004 0.059 0.116

2 22 0.517 0.512 0.000 0.000 0.002 0.040 0.118

2 23 0.538 0.535 0.000 0.000 0.001 0.025 0.108

2 24 0.560 0.558 0.000 0.000 0.000 0.014 0.091

2 25 0.582 0.581 0.000 0.000 0.000 0.007 0.069

2 26 0.605 0.605 0.000 0.000 0.000 0.003 0.048

2 27 0.628 0.628 0.000 0.000 0.000 0.001 0.030

2 28 0.651 0.651 0.000 0.000 0.000 0.001 0.017

2 29 0.674 0.674 0.000 0.000 0.000 0.000 0.009

2 30 0.698 0.698 0.000 0.000 0.000 0.000 0.004

2 31 0.721 0.721 0.000 0.000 0.000 0.000 0.002

2 32 0.744 0.744 0.000 0.000 0.000 0.000 0.001

Table 1 (continued)
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multiple subpopulations in terms of the level of prognosis, 
so that the expected response rate is different among the 
subpopulations.

Example 2: in a phase II trial to evaluate the tumor 
response of CD30 antibody, SGN-30, combined with 
GVD (Gemcitabine, Vinorelbine, Pegylated Liposomal 
Doxorubicin) chemotherapy in patients with relapsed or 
refractory classical Hodgkin lymphoma (HL), the study 
population includes both patients who never had a bone 
marrow transplant and those who had one. In a previous 
study, GVD only led to responses in 65% among those 
who never had a transplant and 75% in the transplant 
group. About γ1 =50% of patients in the previous study 
never had a transplant. Combining the data from the two 
subpopulations, the response rate for the whole patient 
population is estimated as 70% (=0.5×0.65+0.5×0.75).

Using this outcome as historical control data, the new 
study is designed as a single-arm trial for testing

0 : 70% against : 70%aH p H p≤ >  [5]

where p denotes the true RR of the combination therapy in 
the patient population combining the two subpopulations, 
one for those with prior transplants and the other for those 
without one.

A standard design to account for the heterogeneity of the 
patient population is a single-arm trial based on a specified 

prevalence for each subpopulation for testing hypotheses 
Eq. [5]. For the example study, we consider an increase 
in response rate by 15% or larger clinically significant for 
each subpopulation. So, we will not be interested in the 
combination therapy if the true response rate, p, is lower 
than p0 =70% and will be strongly interested if the true 
response rate is higher than pa =85%. Then, the Simon’s (2) 
two-stage optimal design for testing

0 0: 70% against : 85%a aH p H p= =  [6]

with type I error rate no larger than α∗ =0.1 and power no 
smaller than 1− β∗ =0.9 is ( )1 1/ , /a n a n  = (14/20, 45/59), 

where 1a  and a  denote the fixed (unstratified) rejection 
values for stages 1 and 2, respectively.

Let Xkj denote the number of responders among mkj 
patients who were recruited from subpopulation j (= 1, 2) 
during stage k (= 1, 2). Note that mk1 + mk2 = nk. For the true 
response rate pj for subpopulation j, (Xkj, k =1, 2, j =1, 2) 
are independent binomial random variables with B(mkj, pj). 
Based on this, we can calculate the type I error rate and the 
statistical power conditioning on the observed frequency 
mkj. Figure 2A displays type I error rate and power (thin 
lines) with respect to the number of patients mk1 without a 
prior transplant recruited during stage k (= 1, 2). The x-axis 
is marked for m11 values in [0, 20], but m21 (∈ [0, 39]) values 
run between two consecutive m11 values. The power curve 

Table 1 (continued)

m s UMVUE MLE
f(m, s|p) for p

0.1 0.2 0.3 0.4 0.5

2 33 0.767 0.767 0.000 0.000 0.000 0.000 0.000

2 34 0.791 0.791 0.000 0.000 0.000 0.000 0.000

2 35 0.814 0.814 0.000 0.000 0.000 0.000 0.000

2 36 0.837 0.837 0.000 0.000 0.000 0.000 0.000

2 37 0.861 0.861 0.000 0.000 0.000 0.000 0.000

2 38 0.884 0.884 0.000 0.000 0.000 0.000 0.000

2 39 0.907 0.907 0.000 0.000 0.000 0.000 0.000

2 40 0.930 0.930 0.000 0.000 0.000 0.000 0.000

2 41 0.954 0.954 0.000 0.000 0.000 0.000 0.000

2 42 0.977 0.977 0.000 0.000 0.000 0.000 0.000

2 43 1.000 1.000 0.000 0.000 0.000 0.000 0.000

UMVUE, uniformly minimum-variance unbiased estimator; MLE, maximum likelihood estimator.
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of the stratified test has waves with a length of one unit of 
m11, and each wave consists of saw teeth with a length of 
one unit of m21. The waves have a bigger cycle that changes 
when the futility stopping value is changed depending 
on m11 values. We observe that the true type error rate 
fluctuates between 0.018 (when all patients had no prior 
transplant, i.e., m11 =20 and m21 =39) and 0.311 (when all 
patients had prior transplant, i.e., m11 = m21 =0). Similarly, 
the power changes between 0.645 and 0.988. If the observed 
frequency is close to the specified γ1 =50% (i.e., m11 ≈ n1γ1 
=10 and m21 ≈ n2γ1 =19.5), then the type I error rate and 
power are close to the specified 0.05 and 0.9, respectively.

Note that the rejection values 1a  and a  are fixed 
regardless of observed values of mk1 for k=1, 2. In order to 
account for the observed prevalence for each subpopulation, 
London and Chang (6) and Jung et al. (7) propose stratified 
analysis methods. Especially, Jung et al. (7) propose to 
change the rejection values a1 and a depending on the 
observed values of m11 and m21 as follows.

(I) Step 1: specify (p01, p02, pa1, pa2), γ1, and (α∗, 1− β∗).
(II) Step 2: for p0 = γ1p01 + γ2p02 and pa = γ1pa1 + γ2pa2, 

choose a standard (unstratified) two-stage design 
for testing

 0 0: . :a aH p p vs H p p= =  [7]

 that satisfies the (α∗, 1− β∗)-condition. We use  
(n1, n2) for the chosen standard design as the stage 1 
and 2 sample sizes of the stratified design.

(III) Step 3: after stage 1, calculate a1 = a1(m11) = [m11p01 
+ m12p02] based on the observed m11, where [x] 
denotes the rounddown of x. We reject the therapy 
if x1 = x11 + x12 is smaller than or equal to a1(m11). 
Otherwise, we proceed to stage 2.

(IV) Step 4: after stage 2, choose the maximum a = 
a(m11, m21) satisfying α(m11, m21) ≤ α∗ based on (m11, 
m21). Accept the therapy if x = x11 +x12 +x21 +x22 is 
larger than a(m11, m21).

(V) Step 5: calculate the conditional power 1− β(m11, 
m21) for a two-stage design (n1, m11, n2, m21, a1, a).

Before closing patient accrual, we may check the power of 
the selected two-stage design based on the observed (m11, m21) 
and consider recalculating the stage 2 sample size n2 based 
on the observed prevalence for an appropriate power.

Figure 2A also displays the type I error rate and power 
(thick lines) of the stratified two-stage design with (n1, n) 
= (20, 59) for (p01, p02, pa1, pa2) = (0.65, 0.75, 0.8, 0.9). We 
observe that, regardless of observed (m11, m21) values, the 

stratified two-stage design controls the type I error rate and 
power very closely to the specified α =0.1 and 1− β =0.9, 
respectively.

In this example, the difference between two subpopulations 
is only 10%(= p02 − p01 = pa2 − pa1). If this difference is bigger, 
the impact of stratified analysis becomes more noticeable. 
For example, suppose that the historical control, GVD 
alone, has a response rate of p01 =60% for patients with 
no prior transplant and p02 =80% for patients with a prior 
transplant, and the experimental combination therapy will 
be of interest if its response rate is at least pa1 =75% and pa2 
=95% for the two subpopulations. Note that the difference 
in response rate is 20% between the two subpopulations 
in this case, while the amount of increase in response 
rate by the experimental therapy is 15% (= paj − p0j) for 
each subpopulation as in Example 2. Assuming the same 
prevalence γ1 =50%, the standard (unstratified) two-stage 
design will be identical with (a1/n1, a/n) = (14/20, 45/59) for 
(p0, pa, α, 1− β) = (0.7, 0.85, 0.1, 0.9) as in Example 2.

Figure 2B reports the type I error rate and power for 
both unstratified (thin lines) and stratified (thick lines) two-
stage tests. Note that, while the stratified test controls type 
I error rate and power closely to the specified levels (α, 
1− β) = (0.1, 0.9), those of unstratified test fluctuate more 
widely between 0.002 and 0.645 for the type I error rate and 
between 0.311 and 1.000 for power depending on (m11, m21) 
values. Regarding the shape of these curves, a tiny sawtooth 
occurs when a1 value changes and a big sawtooth occurs 
when a value changes. While a1 changes between 13 and 15 
and a change between 43 and 48 in Figure 2A, a1 changes 
between 12 and 16 and a change between 40 and 51 in 
Figure 2B.

Discussion

For phase II cancer clinical trials, most popular is single-
arm two-stage design with a futility early stopping. In this 
paper, we have investigated two sources of bias for standard 
design and analysis methods of such trials.

At first, we have shown that the MLE, the sample 
proportion, to estimate the true response rate is negatively 
biased for two-stage designs with a futility stopping only. 
When a new single-arm phase II trial is designed for a new 
experimental therapy in the future, the underestimated 
response rate from the current trial will be used as a 
historical control, p0, so that the future trial will have a 
higher chance to accept the new experimental therapy and 
will lead to a large randomized trial that has a higher chance 
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Figure 2 Conditional type I error and power of two-stage standard (unstratified) and stratified designs under (α∗, 1 − β∗, paj − p0j) = (0.1, 0.9, 
0.15). The unstratified design has (n1, n, a1, a) = (20, 59, 14, 45). The upper lines are conditional powers and the lower lines are conditional 
type I error.

of failure even when the improvement in response rate is 
clinically negligible. In this paper, we focused on the point 
estimation of the true response rate for two-stage single-
arm phase II trials. Porcher and Desseaux (8), Jung (9),  
and Grayling and Mander (10) discuss more inferential 
problems, such as P value and confidence interval, that can 
be subject to bias when the analysis of a single-arm phase 
II trial does not appropriately account for the two-stage 
design.

As a reviewer claims, the MLE, the sample proportion 
ignoring the multi-stage design, is intuitive and its bias is 

not be very large for the discussed example designs. Because  
of the bias, however, MLE has some undesirable properties. 
For example, the statistical testing results from confidence 
interval and P value calculated based on MLE-ordering 
may not match with that based on the critical values of a 
two-stage design. This mismatch comes from the fact that 
MLE does not account for the multi-stage design. On the 
other hand, the testing results from confidence interval and 
P value based on UMVUE-ordering always match with 
that based on the two-stage design (9). Jung et al. (11) show 
that the bias-corrected MLE (12) has the same ordering as 

A

B

α  
(m

11
, m

21
) o

r 
1−
β  

(m
11

, m
21

)

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

α  
(m

11
, m

21
) o

r 
1−
β  

(m
11

, m
21

)

0   5      10      15 20

0   5      10      15 20

m11 (m21)

m11 (m21)

When (p01, p02) = (0.6, 0.8)

When (p01, p02) = (0.65, 0.75)

Unstratified

Stratified

Unstratified

Stratified



Annals of Translational Medicine, Vol 10, No 18 September 2022 Page 9 of 10

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(18):1037 | https://dx.doi.org/10.21037/atm-21-6808

UMVUE, so that they will give us identical testing results. 
Nevertheless, the bias-corrected MLE is still a biased 
estimator.

We have not considered two-stage designs with a 
superiority stopping, but the MLE from these trials will 
be positively biased. Also, the MLE will be more biased in 
studies with one-sided stopping boundaries than in those 
with lower and upper boundaries. Chang et al. (13) provides 
an excellent study of bias of the MLE in studies with 
lower and upper boundaries proposed by Chang et al. (14).  
To avoid the bias, we had better use the UMVUE that was 
proposed by Jung and Kim (4).

We also have investigated design of single-arm phase 
II trials for patient populations consisting of multiple 
subpopulations with different expected response rates. 
In this case, the standard (unstratified) single-arm design 
based on the weighted average of response rates for the 
whole population can result in severely biased type I error 
rate or statistical power unless the distribution of patient 
characteristics is similar between the new phase II trial and 
a selected historical control, which is hard to guarantee. We 
can always avoid this type of bias by using a stratified testing 
procedure. Although we have considered the cases with two 
subpopulations only, extension to cases with more than two 
subpopulations is straightforward. We have focused on two-
stage designs, but the standard unstratified analysis method 
is biased in designs with any number of stages, including 
single-stage designs. A user-friendly graphical program to 
discover optimal two-stage designs for stratified testing is 
available to readers upon request.

Another robust solution to this kind of biases is to use 

a randomized phase II trial. Definitely, a randomized trial 
resolves most of the issues including these. It is very costly, 
however. Table 2 lists the maximal sample size n = n1 + n2 of 
single-arm two-stage phase II trials, taken from Table 1 of 
Simon (2), and randomized trials by Jung (15) for (α, 1− β, 
p1 − p0) = (0.1, 0.9, 0.2). We find that a two-arm randomized 
trial with a prospective control requires about 4 times, but 
not just twice, larger sample size than a single-arm trial. 
This relationship holds for any input parameter values of (p0, 
p1, α, 1− β). If there are no reliable historical control data, 
however, randomized phase II trial may be the only option. 
Grayling et al. (16) and the references therein extensively 
discuss favorable designs between sing-arm and randomized 
phase II trials under various scenarios.
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Table 2 Maximal sample size, n, of minimax and optimal designs for 
Simon’s (2) single-arm trials and Jung’s (15) two-arm randomized 
trials under (α, 1−β) = (0.1, 0.9)

p0 p1

Minimax Optimal

1-arm 2-arm 1-arm 2-arm

0.05 0.25 20 55 24 55

0.10 0.30 25 55 35 55

0.20 0.40 36 61 37 73

0.30 0.50 39 76 46 85

0.40 0.60 41 82 46 95

0.50 0.70 39 81 45 95

0.60 0.80 45 74 53 81

Total sample size for a 2-arm trial is 2×n.
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