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Abstract: In Western societies, Alzheimer’s disease (AD) is the most common form of dementia and the sixth 

leading cause of death. In recent years, the concept of precision medicine, an approach for disease prevention and 

treatment that is personalized to an individual’s specific pattern of genetic variability, environment and lifestyle 

factors, has emerged. While for some diseases, in particular select cancers and a few monogenetic disorders such 

as cystic fibrosis, significant advances in precision medicine have been made over the past years, for most other 

diseases precision medicine is only in its beginning. To advance the application of precision medicine to a wider 

spectrum of disorders, governments around the world are starting to launch Precision Medicine Initiatives, major 

efforts to generate the extensive scientific knowledge needed to integrate the model of precision medicine into every 

day clinical practice. In this article we summarize the state of precision medicine in AD, review major obstacles in 

its development, and discuss its benefits in this highly prevalent, clinically and pathologically complex disease. 
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The concept of precision medicine

The concept  of  precis ion medicine,  a l so termed 
“personalized medicine” or “individualized medicine”, is 
a rapidly advancing field in medical clinical and research 
settings. In contrast to the “one-size-fits-all-approach”, it 
aims to optimize effectiveness of disease prevention and 
treatment and minimize side effects for persons less likely 
to respond to a particular therapeutic, by considering 
an individual’s specific makeup of genetic, biomarker, 
phenotypic and psychosocial  characterist ics.  The 
measurement of molecular, environmental, and behavioral 
factors contributing to a specific disease improves the 
understanding of disease onset and progression as well 
as response to treatment. In addition, it allows a more 
accurate diagnosis and more effective disease prevention 
and treatment strategies specifically personalized to the 
individual. 

In theory, the concept of precision medicine in clinical 
practice has been applied since initial efforts to classify 
disease and administer a specific treatment on the basis of 

this diagnosis. Longstanding classic examples include the 
diagnosis and treatment of phenylketonuria in newborns, 
the use of blood typing to guide blood transfusions, 
or selection of a specific antibiotic based on known 
drug sensitivities of the causative bacteria. More recent 
examples include the testing for specific mutations in the 
BRCA1 and BRCA2 genes in breast cancer patients, or the 
treatment of cystic fibrosis tailored to target the specific 
cause underlying the condition in a specific individual. A 
dramatic recent change in the concept is, however, the 
vision of applying precision medicine broadly across a vast 
number of disorders, which now became feasible due to the 
implementations of large-scale biologic databases (such as 
databases of human genetic variation), a variety of high-
throughput methods for characterizing patient biomarkers 
of disease (i.e., proteomics, metabolomics, genomics, 
transcriptomics), coupled with significant advances 
in the computational tools needed for analyzing the 
massive amounts of data generated by these technologies. 
Acknowledging the high impact of improved knowledge 
on the complex mechanisms underlying a patient’s health, 
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disease or condition for predicting which treatments will 
be most effective, precision medicine became the focus 
of major governmental initiatives to transform medical 
practice.

Epidemiology of Alzheimer’s disease (AD)

AD is the most common form of dementia in ageing 
societies. As populations age, it is expected that this number 
will quadruple by the year 2050 placing a considerable 
burden on public health systems (1,2). As the currently 
available drugs only slightly affect disease severity and 
progression, AD remains at present effectively untreatable. 
Interventions preventing, halting, or decelerating the 
progression would reduce the individual suffering of affects 
and would significantly relieve public health burden. It has 
been estimated that delaying the onset of AD by 5 years 
would reduce the prevalence by ~50% (1).

Clinical and pathological heterogeneity of 
Alzheimer’s disease (AD)

The limited development of drugs is mainly caused by 
an incomplete characterization of the basic pathologic 
mechanisms underlying the disease due to significant 
clinical, pathological and biological complexity. Going 
from a latency phase (where pathophysiologic processes 
are active but no signs or symptoms are present), through 
a prodromal phase (when some limited expression of 
AD is clinically apparent (“mild cognitive impairment”) 
to full clinical expression, AD is clinically characterized 
by progressive deterioration in cognition, function and 
behavior terminating inevitably in complete incapacity 
and death. Key pathological manifestations in brain 
include intracellular deposits of hyper-phosphorylated 
tau protein in the form of neurofibrillary tangles and 
extracellular β-amyloid (Aβ) protein in diffuse and neuritic 
plaques, generated through sequential cleavage of the 
amyloid precursor protein (APP) through β- (BACE1) and 
ϒ-secretase. In addition, neuronal loss, synapse loss and 
activated microglia are frequent and broadly distributed (3).  
Adding to this complexity is frequent clinical and 
pathological overlap with other pathologies in particular 
Lewy Body disease (LBD) and cerebrovascular disease (4-6).

Genetic complexity

The clinical and pathological complexity is reflected by the 

extensive genetic variation underlying AD. Over the past  
6 years, large-scale genome-wide association studies (GWAS) 
and a first round of whole exome sequencing (WES) and 
whole genome sequencing (WGS) studies have led to 
significant progress in identifying the underling genetic 
variants, with mapping of 27 susceptibility loci (Table 1) 
(7-20). These loci pinpoint specific biological pathways, 
in particular APP metabolism, endocytosis/intracellular 
trafficking, inflammation and immune response and lipid 
metabolism. In line with the notion of a genetically complex 
disease, individually each of these variants has a small effect 
on disease risk (OR 1.1–1.3). Heritabilities of 58% to 
79% for AD indicate that, despite this progress provided 
by genomic studies, a substantial fraction of the disease 
remains attributable to unknown genetic factors (21). It is 
expected that this missing genetic component is in particular 
composed of rare variants with moderate to large effect 
sizes that are not readily identifiable by SNP-based methods 
(22,23). To address this issue, ongoing work is increasingly 
focusing on targeted resequencing of known risk loci and 
WGS and WES to reveal additional rare causative variants. 
Deep genomic endophenotyping determining genes and 
gene networks contributing to AD is expected to reveal 
the underlying pathogenic mechanisms and proteins and 
pathways for drug development.

Application of precision medicine to Alzheimer’s 
disease (AD)

Although the hypotheses concerning disease mechanisms 
underlying AD have yielded drugs that have been tested 
in large clinical trials, the results of the trials completed to 
date have been disappointing and the current treatment 
strategies for AD have only minimal effect. While these 
failures have driven researchers to initiate clinical trials 
earlier in the course of the disease out of expectation that 
earlier intervention might be more effective, another major 
reason for the failure to identify an effective treatment is 
likely the consideration of AD as a homogeneous disease. 
The risk and molecular profiles of persons with AD show 
vast variation, and grouping patients with different risk or 
molecular profiles into a single entity can be expected to 
hide small subgroups potentially responsive to a certain 
treatment regime.

The aim of precision medicine, which is applicable 
to any disease including AD, is specifically targeting the 
issue of underlying molecular and clinical heterogeneity 
by identifying a person’s specific pattern of risk factors, 
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by identifying the specific underlying pathophysiologic 
processes, and finally by aiming to administer a preventive 
or therapeutic intervention that is specifically personalized 
to the identified molecular pattern of risk and disease 
processes. 

Determination of risk profile 

As described above, for risk assessment of AD, particularly 
much effort is currently put into disentangling the genetic 
risk. However as AD has in addition a considerable non-
genetic component, it will also be essential to identify 
underlying environmental factors and gain insight into 
the existing gene-environment interactions. Established 
examples of known environmental factors increasing risk 
for AD are cerebrovascular disease, traumatic brain injury 
(TBI) or intellectual activity. Cerebrovascular changes 
such as hemorrhagic infarcts, small and large ischemic 
cortical infarcts, vasculopathies, and white matter changes, 
increase the risk of dementia. A meta-analysis incorporating 
data from 22 hospital-based and eight population-based 
cohorts found that 7.4% of patients with first-ever stroke 
developed poststroke dementia (24). Possible mechanisms 
through which stroke could lead to cognitive impairment 
and AD include direct damage of brain regions that are 
important in memory function (such as the thalamus), an 
increase in Aβ deposition, an induction of inflammatory 
responses impairing cognitive function, and overexpression 
of cyclin-dependent kinase 5 (CDK5; a serine–threonine 
kinase critical to synapse formation and synaptic plasticity) 
caused by hypoperfusion. 

Retrospective studies (25-27) suggested that individuals 
with a history of TBI had a higher risk of dementia than 
individuals with no history of such injury. Two meta-
analyses (28,29) demonstrated that among patients with 
TBI, the risk of dementia was higher in men than in women. 
While prospective studies of the relationship between TBI 
and AD have proved inconsistent (30-32), postmortem 
and experimental studies support a link between these 
conditions (33). Evidence also exists that after human 
brain injury, the extent of Aβ pathology and tau pathology 
increases in brain tissue, cerebrospinal fluid (CSF) Aβ levels 
are elevated and APP is overproduced (34). 

Following initial reports that elderly people with higher 
levels of education had a lower incidence of dementia 
than individuals with no education, cognitive activity 
was suggested to decrease the risk of cognitive decline by 
increasing cognitive reserve. Several prospective studies 
subsequently found that both young and old (35,36) people 
who engage in cognitively stimulating activities, such as 
learning, reading or playing games, were less likely to 
develop dementia than individuals who did not engage 
in these activities. RCTs have shown a beneficial effect of 
intellectual interventions on cognitive function in elderly, 
dementia-free individuals although the benefits of cognitive 
training seem to be domain specific (37). It is important 
to recognize that “risk” is an estimate of the likelihood 
to develop a disease in the future, not a measurement 
of ongoing pathophysiologic processes. In line with this 
notion, a person with a genetic variant increasing risk such 
as the APOEe4 allele or the TREM2 R47H variant is 
regarded at being at increased risk compared to a person 

Table 1 Major molecular pathways involved in LOAD etiology that were identified by genomic studies

Gene Molecular pathway

APOE, SORL1, CLU, CR1, PICALM, BIN1, ABCA7, CASS4, PLD3 Amyloid pathway

CLU, CR1, EPHA1, ABCA7, MS4A4A/MS4A6E, CD33, CD2AP, HLA-DRB5/DRB1, 

INPP5D, MEF2C, TREM2/TREML2

Immune system/inflammation

APOE, CLU, ABCA7, SORL1 Lipid transport and metabolism

CLU, PICALM, BIN1, EPHA1, MS4A4A/MS4A6E , CD33, CD2AP, PTK2B, SORL1, 

SLC24A4/RIN3, MEF2C

Synaptic cell functioning/endocytosis

BIN1, CASS4, FERMT2 Tau pathology

PTK2B Cell migration

MEF2C, PTK2B Hippocampal synaptic function 

CELF1, NME8, CASS4 Cytoskeletal function and axonal transport 

INPPD5 Microglial and myeloid cell function 

FBXL7 Phosphorylation-dependent ubiquitination
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without this variant, but may not develop the disease until 
decades later or may not develop it at all. 

Determination of underlying molecular mechanisms

The importance of detection of latent underlying 
pathophysiologic processes lies in the both in the 
expectation that earlier detection enables more effective 
prevention and intervention, and the potential to use 
biomarkers of these processes to group patients in 
clinical trials or for treatment. A common example of the 
assessment of underlying pathological processes in every-
day clinical practice is the measurement of plasma lipid 
profile, fasting glucose concentration, blood pressure and 
electrocardiography to determine presence and severity of 
cardiovascular disease. Treatment decisions largely depend 
on the outcomes of such tests.

Approaches for detection of latent pathophysiologic 
processes in AD have made significant advances over 
the past years and include in particular a variety of 
brain imaging technologies including structural brain 
imaging and brain amyloid and tau imaging, and the 
quantification of biomarkers in blood and CSF. In particular 
the neuroimaging technologies are highly promising 
as they rapidly gain ability to assess brain function at 
increasing levels of organization. On structural MRI, 
AD is characterized by atrophy in the medial temporal 
lobe in particular in the hippocampus, parahippocampus 
and the amygdala; in addition, white matter changes 
may be present. Compared to non-demented individuals 
several brain areas of persons with AD (38-40) and MCI 
(40-42) show a decrease in white matter integrity in 
diffusion tensor imaging (DTI) suggesting that these 
changes occur early in the disease process, in line with 
enhanced white matter degradation in preclinical and 
presymptomatic carriers of familial AD mutations 
compared to non-carriers (43). On arterial spin labeling 
(ASL)-MRI, cerebral blood flow is reduced in AD (44-46), 
on 18F-fluorodeoxyglucose (FDG)-PET cerebral glucose 
metabolism is decreased (47,48). Amyloid specific imaging 
tracers, which include the Pittsburgh compound B (PIB), 
Florbetaben (18F-BAY94-9172), Florbetapir (18F AV-45) 
and 18F-flutemetamol) binding selectively to cortical and 
striatal Aβ plaques, show a strong positive correlation with 
AD diagnosis (46,48,49) and fibrillary amyloid plaques at 
autopsy (49-51) although there is also substantial tracer 
retention in non-demented individuals (51) and it remains 
to be clarified whether this retention represents preclinical 

AD. The recent development of selective in-vivo tau PET 
imaging ligands such as [18F]THK523, [18F]THK5117, [18F]
THK5105 and [18F]THK5351, [18F]AV1451(T807) and 
[11C]PBB3 has provided valuable information on the role 
of tau in the early phases of neurodegenerative diseases 
and disease progression, and is expected to help select 
appropriate patients and provide proof of mechanism and 
efficacy in clinical trials. Established CSF biomarkers of 
LOAD are decreased Aβ1-42 and increased t-tau and p-tau 
levels (52). Quantification of molecules in other biofluids 
such as serum, plasma, or even urine has been investigated 
repeatedly but has not yielded reproducible biomarkers.

Interventions personalized to an individual’s molecular 
risk and disease pathology profile

As described above, at present, there are no effective 
preventive or therapeutic measures for AD. The therapies 
currently applied largely focus on cholinesterase inhibitors 
including donepezil (Aricept), galantamine (Razadyne) 
and rivastigmine (Exelon) and suppression of ionotropic 
glutamatergic signaling by memantine (Namenda), which 
are all only given after onset of symptoms. Common side 
effects of these drugs include diarrhea, nausea and sleep 
disturbances.

As described above, most of the clinical trials performed 
to date have neglected the underlying clinical and molecular 
heterogeneity of the disease. In an attempt to address this 
methodological shortcoming, a first round of ongoing trials 
including the Dominantly Inherited Alzheimer Network 
(DIAN) (53), the Alzheimer’s Prevention Initiative (54) 
and A4 trial (55) are now incorporating information of 
underlying pathological mechanisms, selecting patients 
considered most likely to respond to the anticipated action 
of the therapeutic tested. It is hoped that these trials prove 
to be more successful. 

Future directions

The ultimate aim of precision medicine is to enable 
clinicians to accurately and efficiently identify the most 
effective preventive or therapeutic intervention for a specific 
patient. For this, clinicians apply tools (i.e., clinical tests 
and information-technology) that are implemented in the 
routine clinical practice, are economically feasible, and help 
to disentangle the biological complexity underlying human 
disease. 

Used for decades in the management of some rare 
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diseases and now broadly applied in cancer care, the 
precision medicine approach is now beginning to be 
adapted to dementia.

Capitalizing in particular on the advances in genomic 
and imaging technologies, over the past 5 years in particular 
progress in identifying underlying genetic risk variants 
pinpointing specific molecular pathways, and developing 
tools to detect pathophysiologic processes has been made. 
In addition, to advance the development of therapeutic 
targets, precision medicine is now beginning to be 
incorporated into clinical trials: the Alzheimer’s Prevention 
Initiative (54), the Dominantly Inherited Alzheimer 
Network Trial (56), and the Anti-Amyloid Treatment in 
Asymptomatic Alzheimer Disease (57) trial all are focusing 
on subgroups of individuals with known genetic risk for AD 
and biofluid biomarkers or neuroimaging to detect onset 
of disease. Although successful application of precision 
medicine to AD will demand extensive additional work to 
identify risk groups, the underlying pathological processes 
and develop new interventions, and will continue to require 
significant involvement of biologists, physicians, technology 
developers, data scientists, patient groups and others, it 
is anticipated that this is only the beginning of a broad 
precision medicine approach targeting the clinical and 
biological complexity of AD and building the evidence base 
needed to guide clinical practice.
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