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Background: Systemic lupus erythematosus (SLE) is an autoimmune disease defined by the production 
of autoantibodies and involves multiple organs and systems. Although there are reports on SLE, data on its 
pathogenesis is limited. 
Methods: Using R language software, we constructed a competing endogenous RNA (ceRNA) network. 
We then utilized the Search Tool for Recurring Instances of Neighbouring Genes (STRING) and 
cytoHubba databases to generate a protein-protein interaction (PPI) network, which led to the identification 
of hub genes. The top two hub genes with the highest Maximal Clique Centrality (MCC) score in the PPI 
network were further validated via quantitative real-time polymerase chain reaction (qRT-PCR) using in-
house clinical samples. Also, weighted gene co-expression network analysis (WGCNA) with genes from 
the Gene Expression Omnibus Series (GSE)121239 dataset identified hub modules that were associated 
with clinical indicators. In addition, the genes contained in key modules as obtained by WGCNA were 
enriched and analyzed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) 
online tool. The top hub gene, X-linked apoptosis inhibitory protein-associated factor (XAF1), was then 
identified by intersection of the PPI and WGCNA outcomes, and a pan-cancer analysis of this hub gene was 
subsequently performed.
Results: We comprehensively profiled the expression of Circular RNAs (circRNAs), MicroRNAs (miRNAs), 
and messenger RNAs (mRNAs) in SLE. We identified a hub gene, XAF1, based on evidence from the 
ceRNA network, WGCNA key module genes, and PPI network analyses. Moreover, qRT-PCR analysis 
demonstrated that the expression of XAF1 was significantly upregulated in SLE. Through the pan-cancer 
analysis, we demonstrated the common molecular roles of XAF1 in the pathogenesis of SLE and tumors, 
especially cutaneous melanoma.
Conclusions: XAF1 is a key molecular biomarker in SLE. The pan-cancer analysis in this study provided 
shared genomic characteristics in SLE and cancers, especially for skin cutaneous melanoma (SKCM).
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Introduction

Systemic lupus erythematosus (SLE) is an autoimmune 
disease that is characterized by the production of 
autoantibodies, and involves multiple organs and systems  
(1,2). SLE usually occurs in women of childbearing age (3). In 
recent years, there has been an increase in early, mild, and 
atypical SLE cases (4). The molecular mechanisms defining 
the onset and development of SLE are complex, and various 
pathogeneses have different clinical manifestations and 
molecular bases. Previous reports have shown that the 
development of SLE is correlated with genetic, immune, 
environmental, and sex hormones (5-7). SLE mainly 
manifests by the production of autoantibodies and immune 
complexes, and participates in inflammatory processes as 
well as organ damage (8,9). However, the pathogenesis of 
SLE remains unclear. Hence, it is important to explore 
the underlying mechanisms involved in the onset and 
development of SLE, and identify new molecular markers 
for the diagnosis and treatment of SLE.

Although genetic factors have been shown to mediate 
the development of SLE, they cannot fully explain the 
SLE phenotype (10). Therefore, there is need to focus 
on the relationship between epigenetics and SLE. The 
role of non-coding Ribonucleic Acids (ncRNAs), as an 
important regulator of SLE pathogenesis, has received 
increased attention. A previous study has shown that most 
of the human genome does not encode protein-coding 
genes, which only account for less than 2% (11). Circular 
RNAs (circRNAs) is a common type of non-coding RNA 
that originates from precursor messenger RNA (mRNA). 
CircRNAs consist of a continuous covalently closed loop 
and do not have the 5’-cap structure and 3’-poly A tail. 
Owing to its specific structure, circRNA resists degradation 
by exonuclease Ribonucleases (12). Since circRNAs are 
mainly enriched in microRNA (miRNA) binding sites, they 
can act as competitive endogenous RNAs. Through binding 
with the miRNA, circRNAs can regulate the functions of 
miRNA target genes, such as ceRNAs (13,14). In addition, 
previous studies have shown that circRNAs are widely 
involved in the pathogeneses of lung, colon, gastric, and 
bladder cancers, as well as autoimmune diseases, such as 
SLE and rheumatoid arthritis (RA), and are abnormally 
expressed in serum, peripheral blood mononuclear cells 
(PBMCs), or kidneys of SLE patients (15-17). A recent 
study has shown that circRNAs have the potential to be 
new diagnostic markers in SLE and indicators of disease 
development (18). 

In this study, we developed a circRNA-miRNA-mRNA 
interaction network consisting of 16 circRNAs, 10 miRNAs, 
and 40 mRNAs based on gene expression profiles from 
the Gene Expression Omnibus (GEO) database, our high-
throughput sequencing data, and some publicly available 
bioinformatics platforms. We identified miRNAs and 
mRNAs that were implicated in the interaction network, 
as generated by weighted correlation network analysis 
(WGCNA), protein-protein interaction (PPI) network, 
as well as Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analyses to 
characterize the mechanism of circRNAs in the occurrence 
and development of SLE. Finally, we conducted a pan-
cancer analysis of X-linked apoptosis inhibitory protein-
associated factor (XAF1), a hub gene, and explored the 
role of hub genes, if any, in multiple tumor types. Overall, 
our study systematically combines internal samples and 
external GEO datasets to conduct a ceRNA regulatory 
network and also explore the molecular interactions of the 
hub gene XAF1 in cancer. This data could provide novel 
insights into the relationship between the tumors and SLE, 
and offer effective targeted therapeutic approaches for 
SLE. We present the following article in accordance with 
the STREGA reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-1533/rc).

Methods

High-throughput sequencing of PBMC samples to obtain 
circRNAs and miRNAs

We collected peripheral blood samples from inpatients 
at the Department of Dermatology and Venereology, the 
First Affiliated Hospital of Guangxi Medical University 
from June 2019 to July 2019. A human peripheral blood 
mononuclear cell separation solution (Beijing Solebao 
Technology Co., Ltd., China) was used to isolate the 
PBMCs. We used chloroform, isopropanol, 75% ethanol, 
and other reagents to extract the total RNA from the 
PBMCs according to the manufacturer’s instructions. 
We then synthesized complementary DNA (cDNA) and 
stored it at −20 ℃ for construction of an RNA-Sequencing 
(RNA-Seq) library. We performed sequencing using the 
HiSeq4000 sequencing platform (Illumina, USA). The 
study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The study was approved 
by the Ethics Committee of the First Affiliated Hospital 
of Guangxi Medical University [No. Court Review (2017 

https://atm.amegroups.com/article/view/10.21037/atm-22-1533/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-1533/rc
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Mutual KY-Guoji-081)], and written informed consent was 
obtained from all patients.

Downloading and sorting of datasets

The mRNA expression dataset used in our study was 
downloaded from the GEO database, while the mRNA 
expression profile matrix was obtained from the Gene 
Expression Omnibus Series (GSE)121239 dataset (292 
SLE and 20 normal PBMC samples), and included clinical 
information such as disease status, SLE disease activity 
index (SLEDAI), or percentage of neutrophils in peripheral 
blood.

Differentially-expressed circRNAs, miRNAs and mRNAs

Gene expression profiles were acquired from the GEO 
database and gene names were identified according to the 
GEO database platform. The Limma package in R software 
(Developed by Robert gentleman and Ross ihaka, New 
Zealand) was used to profile the expression of circRNAs 
and miRNAs. An adjusted P value <0.05 and |log2fc| 
>1 was used to screen differentially-expressed circRNAs 
(DEcircRNAs) and differentially-expressed miRNAs 
(DEmiRNAs). In addition, GEO2R was used to evaluate 
the expression of mRNA, and the criteria applied for 
screening the differentially-expressed mRNAs (DEmRNAs) 
was as follows: P<0.05 and |log2fc| >1.

Development of circRNA-miRNA-mRNA regulatory 
network and PPI interaction map

Based on the results from the differential expression 
analysis, we obtained the DEcircRNAs from the high-
throughput sequencing dataset. The circRNA-targeted 
miRNA dataset was downloaded from the circBank 

database (http://www.circbank.cn/), and Perl language 
(Developed by Larry Wall, USA) was used to predict 
DEcircRNA target miRNAs. We then intersected these 
targets with the DEmiRNAs, and the results were referred 
to as IDEmiRNAs. We also used the TargetScan database 
(http://www.targetscan.org/) to download the miRNA-
targeted mRNA dataset, and the Perl language to predict 
the IDEmiRNA target mRNA, which were then intersected 
with DEmRNAs and denoted as IDEmRNAs. The 
interaction between DEcircRNAs, IDEmiRNAs, and 
IDEmRNAs was used to construct a ceRNA network. The 
PPI of the IDEmRNAs was analyzed using the Search Tool 
for Recurring Instances of Neighbouring Genes (STRING) 
database and then visualized using Cytoscape software.

Quantitative real-time polymerase chain reaction (qRT-
PCR)

After the total RNA was extracted, the mRNA level was 
assessed using TB Green® Premix Ex TaqTMIIKit (Takara, 
Dalian, China) according to the manufacturer’s instructions, 
using primers shown in Table 1. The relative expression 
of the mRNA was calculated by the 2−ΔΔCt method and 
normalized to β-actin. 

Correlation analysis by WGCNA

WGCNA is a system biology approach that is used to define 
the interplay between genes and proteins. Furthermore, 
the genes are integrated into some modules and used to 
characterize the relationship between each module and 
the clinical features to identify some clinical parameter-
related genes (19). First, we calculated the appropriate soft 
threshold power (β) and then obtained scale-free topology 
using a criterion set as R2>0.85. Thereafter, we used the 
average linkage hierarchical clustering approach to separate 
genes into distinct modules. There were at least 20 genes in 
every module, and the module merging threshold was set 
to 0.25. Pearson correlation analysis was used to assess the 
relationship between each module and SLE. Modules with a 
P value <0.05 and high correlation coefficient were selected 
for further analysis. 

Functional enrichment analysis

The database with annotation, visualization, and integrated 
discovery functions (DAVID) was used for GO and KEGG 
enrichment analyses (19). We enriched and analyzed the 

Table 1 Primer sequences

Gene Sequences

XAF1 Forward: 5'-GTGTCCTGCTTGGTGCCTGAATC-3'

Reverse: 5'-GTCCTTCCGTCCCTTTCTACAGTTC-3' 

RSAD2 Forward: 5'-GTGTCCTGCTTGGTGCCTGAATC-3'

Reverse: 5'-GTCCTTCCGTCCCTTTCTACAGTTC-3'

β-actin Forward: 5'-CAGGCACCAGGGCGTGAT-3'

Reverse: 5'-TAGCAACGTACATGGCTGGG-3'
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genes involved in key modules identified by WGCNA. The 
analysis was visualized to explore the potential pathways 
affected by these genes. GO terms with a P value <0.01 
were considered as a significant enrichment.

Pan-cancer analysis of the hub gene

We selected the hub genes by integrating results from the 
WGCNA key module analysis, IDEmRNA genes, clinical 
phenotypes, and RT-PCR analysis. To identify the common 
molecular characteristics in SLE and cancers, the hub 
gene with the highest Maximal Clique Centrality (MCC) 
score in the PPI network was submitted for pan-cancer 
analysis. Pan-cancer analyses were mainly focused on gene 
expression, survival status, immune-related characteristics, 
and gene enrichment analysis.

Gene expression analysis

In this study, we used the Kruskal-Wallis test to assess 
the differential expression of the hub gene in cancer and 
paracancerous tumors from The Cancer Genome Atlas 
(TCGA) and Genotype-Tissue Expression Project (GTEx) 
databases, in order to profile the expression of the hub 
gene in 34 types of tumor tissues. P<0.05 was considered 
statistically significant.

Patient survival and prognosis 

We first used univariate survival analysis to calculate 
the relationship between overall survival (OS) and the 
expression of the hub gene in 44 different tumor types. 
Kaplan-Meier (KM) plots were then used to obtain the 
prognostic KM curve of the hub gene in significant tumors. 
Univariate Cox regression analysis and the log-rank test 
were used to determine the hazard ratio (HR) and P value 
of the 95% confidence interval (CI), respectively.

Relationship between gene expression and immunity in 
different tumors

The tumor immune assessment resource (TIMER) database 
was systematically used to analyze the immune infiltration of 
different tumor types using a variety of immune estimation 
approaches. In addition, the Spearman correlation approach 
was employed to assess the relationship between the expression 
of XAF1 and the infiltration levels of immune cells (B cells, 
CD4+ T cells, CD8+ T cells, dendritic cells, macrophages, and 

neutrophils). The Spearman approach was also used to analyze 
the correlation between common immune checkpoint genes 
and the expression of the hub gene.

Statistical analysis

Statistical analyses involved in this study were all done using 
R software (version 3.6.3). The comparison between the 
two groups was done using the independent sample t-test. 
P<0.05 was considered statistically significant.

Results

Differentially-expressed genes 

Integrated analysis of our high-throughput sequencing 
dataset identified 70 DEcircRNAs, which included 
seven upregulated DEcircRNAs and 63 downregulated 
DEcircRNAs (Figure 1A,1B).  We also obtained 38 
DEmiRNAs, of which 34 were upregulated and four were 
downregulated (Figure 1C,1D). Finally, we analyzed the 
expression of genes from the GSE121239 00 dataset using 
the GEO2R online analysis tool; 289 DEmRNAs were 
identified, including 98 upregulated and 191 downregulated 
DEmRNAs (Figure 1E,1F).

Construction of the ceRNA network and PPI

Using the circRNA-targeted miRNA dataset downloaded 
from the circBank database, we predicted 571 upregulated 
miRNAs and 3,227 downregulated miRNAs. Further 
analysis of the correlation between circRNA and miRNA 
showed that there was one downregulated IDEmiRNA from 
the intersection of upregulated miRNAs and downregulated 
DEmiRNAs (Figure 2A), and 21 upregulated IDEmiRNAs 
from the intersection of downregulated miRNAs and 
upregulated DEmiRNAs (Figure 2B). Furthermore, based 
on the miRNA-targeted mRNA dataset downloaded from 
the TargetScan database, we predicted 4,291 downregulated 
IDEmiRNA-targeted mRNAs and 8,812 upregulated 
IDEmiRNA-targeted mRNAs using Perl language. We 
intersected the downregulated mRNAs and upregulated 
DEmRNAs, and obtained 27 upregulated IDEmRNAs 
(Figure 2C). On the other hand, we also intersected 
the upregulated IDEmiRNA-targeted mRNAs and 
downregulated DEmRNAs, and obtained 135 IDEmRNAs 
(Figure 2D). 

To achieve better visualization of the ceRNA network, 
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Figure 1 Differentially expressed genes in SLE and healthy controls. Heatmap showing DEcircRNAs (A), DEmiRNAs (B), and 
DEmRNAs (C). Volcano plots of the DEcircRNAs (D), DEmiRNAs (E), and DEmRNAs (F). For (D-F), red circles represent genes that 
are differentially up-regulated in SLE, blue circles represent genes that are differentially down-regulated in SLE. SLE, systemic lupus 
erythematosus. 

we obtained 13 IDEmRNA with more than 14 interactions 
with miRNAs. The analysis showed that circRNAs and 
miRNAs that were not in the interaction were deleted. 
After integration, we obtained 17 DEcircRNA, including 

two upregulated IDEcircRNA and 15 downregulated 
DEcircRNAs. We also obtained 10 IDEmiRNA, including 
nine upregulated IDEmiRNA and one downregulated 
IDEmiRNA. We also obtained 40 IDEmRNA, including 



Lin et al. A ceRNA network in SLE Page 6 of 19

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(10):563 | https://dx.doi.org/10.21037/atm-22-1533

col1

500 1 3 1,603 21 13 4,264 27 73 8,677 135 61

col1 col1 col1

col2 col2 col2 col2

A B C D

Figure 2 The intersection of circRNAs, miRNAs, and mRNAs. (A) Venn diagram showing the common circRNAs in the upregulated 
DEcircRNA-targeted miRNAs and downregulated miRNAs; (B) Venn diagram showing common circRNAs in the downregulated 
DEcircRNA-targeted miRNAs and upregulated miRNAs; (C) Venn diagram showing common miRNAs between the downregulated 
IDEmiRNA-targeted mRNAs and upregulated mRNAs; (D) Venn diagram showing common mRNAs in the upregulated IDEmiRNA-
targeted mRNAs and downregulated mRNAs.

27 upregulated IDEmRNAs and 13 downregulated 
IDEmRNAs. 

Finally, we used R language software package to 
construct the Sanji diagram of the visual circRNA-miRNA-
mRNA interaction network (Figure 3). To construct the PPI 
network, we fed 40 IDEmRNAs into the STRING database 
for analysis, and then visualized the results with Cytoscape 
and its plugin, cytoHubba. We identified a key module by 
cytoHubba, which included 11 nodes and 110 edges, of 
which XAF1 and RSAD2 were seed genes (Figure 4).

Validation of differentially expressed hub genes in SLE 
patients of a new group

To further estimate the effect of the GSE121239 dataset, 
the top two hub genes with the highest MCC scores in the 
PPI network were applied to assess the expression using 
in-house samples. Similar to the RNA sequencing results, 
the expression of XAF1 and RSAD2 were significantly 
upregulated in the SLE PBMC samples compared to the 
control samples (Figure 5A,5B).

WGCNA identified clinically valuable modules

We used 9,998 genes from the GSE121239 dataset to 
construct a weighted gene co-expression network. We first 
constructed a sample clustering tree and showed no obvious 
outlier samples (Figure 6A). Secondly, when R2>0.85, the 
soft threshold reached 6, and the average connectivity was 
relatively high (Figure 6B). Finally, a total of 20 modules 
were obtained (Figure 6C). Among these modules, the tan 
module had a correlation coefficient of 0.35 with phenotype 
1 (SLEDAI), which was the highest correlation coefficient. 

Its correlation coefficient with percentage of neutrophils 
(phenotype 2) was 0.21. Therefore, we selected the tan 
module, which included 183 genes, as the key module (Table 2).

Enrichment analysis 

The DAVID online analysis tool was used to perform the 
GO function and KEGG enrichment analyses of proteins 
encoded by the 183 genes in the tan module, and their 
biological effects were studied. P<0.01 was used for the 
GO terms. Significant enrichment was indicated for the 
following biological processes: defense response to viruses, 
the type I interferon signaling pathway, innate immune 
response, negative regulation of viral genome replication, 
the interferon-gamma-mediated signaling pathway, 
apoptosis, inflammatory response, immune response, 
the cell surface receptor signaling pathway, response to 
interferon-gamma, positive regulation of nuclear factor 
kappa-B (NF-κB) transcription factor activity, tumor 
abnormal protein (TAP) dependent mRNA stability 
regulation, positive regulation of sequence-specific DNA 
binding transcription factor activity, the tumor necrosis 
factor (TNF) mediated signaling pathway, and the typical 
Wingless/Integrated (Wnt) signaling pathway (Figure 7A).

For the cell composition analysis, gene expression 
was significantly enriched in the cytoplasm, host cell, 
mitochondria, cytoplasm, perinuclear region, membrane, 
extracellular body, nuclear plasma, lysosomal lumen, 
and cell-cell adhesion junction (Figure 7B). In addition, 
molecular functions were significantly enriched in protein 
binding, double-stranded RNA binding, enzyme binding, 
2-amino-5-oligoadenylate synthase activity, identical 
protein knot, C3HC4 ring finger domain binding, zinc 
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Figure 3 Sankey diagram representing the circRNA-miRNA-mRNA network. Each rectangle represents a gene, and the connection degree 
of each gene is visualized based on the size of the rectangle.

ion binding, natural killer cell lectin-like receptor binding, 
guanosine triphosphate (GTP) binding, RNA binding, 
and double-stranded DNA binding (Figure 7C). A KEGG 

with a P value <0.01 was considered to indicate significant 
enrichment of pathways affected by influenza A, herpes 
simplex virus infection, measles virus carcinogenesis, 
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antigen processing and presentation, hepatitis C, hepatitis 
B, osteoclast differentiation, the TNF signaling pathway, 
Epstein-Barr (EB) virus infection, the Janus Kinase-Signal 
Transducer and Activator of Transcription (JAK-STAT) 
signaling pathway, the Toll-like receptor signaling pathway, 
and the proteasome cytoplasmic DNA sensing pathway 
(Figure 7D).

Pan-cancer analysis of XAF1

Although the GO and KEGG enrichment analyses 
suggested a potential common biological effect of XAF1 

in SLE and tumors, similarities between SLE and tumors 
in the transcriptome are currently still unclear. XAF1 is 
one of the two top hub genes in the IDEmRNAs and PPI 
interaction network that constructed the ceRNA network, 
and is the key tan module in WGCNA, which is positively 
correlated with phenotypes 1 and 2. Thus, we performed 
pan-cancer analysis of XAF1 to understand the biological 
role of XAF1 in human pan-cancer and explore the 
similarities between XAF1 in SLE and cancers.

Expression of XAF1 in pan-cancer

We used both the TCGA and the GTEx databases to 
analyze expression of XAF1 in 34 different types of 
cancerous and normal tissues. The data showed that XAF1 
was significantly downregulated in GBMLGG, LGG, 
UCEC, BRCA, LUAD, KIRP, COAD, COADREAD, 
PRAD, LUSC, LIHC, WT, SKCM, THCA, OV, TGCT, 
UCS, ACC, and KICH. Thus, XAF1  might play a 
carcinogenic role in multiple cancer types (Figure 8).

Survival analysis

Survival difference between high and low XAF1 expressions 
was analyzed using KM survival analysis. Our analyses 
showed that increased XAF1 expression levels were closely 
associated with inferior OS in glioblastoma multiforme/
lower grade glioma (GBMLGG) (P=1.7e-25), LGG 
(P=5.7e-16), Pan-kidney cohort (KICH + KIRC + KIRP) 

Figure 4 Network diagram of the 11 hub genes of the key module. 
Darker colors were indicative of a higher rank.
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Figure 5 The expression of the top two hub genes with the highest MCC scores in the PPI network were analyzed in SLE and healthy 
samples. RNA expression of the XAF1 (A) and RSAD2 (B) was detected in blood samples using qRT-PCR. P values were calculated using a 
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(KIPAN) (P=1.7e-6), Acute Myeloid Leukemia (LAML) 
(P=6.7e-5), and kidney renal clear cell carcinoma (KIRC) 
(P=7.3e-3), but with superior OS in SKCM (P=8.9e-6) and 
SKCM-M (P=7.2e-6) (Figure 9). Our findings showed that 
the expression of XAF1 was closely related to numerous 
cancer types.

Immune infiltration

To validate the role of XAF1 in the tumor immune 
microenvironment, the TIMER database was utilized 
to verify the relationship between XAF1 expression and 
tumor-infiltrating immune cells (Figure 10A). Correlation 
analyses showed that XAF1 expression was associated with 
B cells in 27 cancer types, CD4+ T cells in 35 cancer types, 
CD8+ T cells in 30 cancer types, neutrophils in 34 cancer 
types, macrophages in 26 cancer types, and DC cells in 36 
cancer types. Also, the expression of XAF1 was markedly 

positively correlated with infiltrating immune cells in most 
cancer types. 

We performed further analysis utilizing the ESTIMATE 
algorithm to estimate the stromal score, immune score, 
and estimate score of the infiltration of stromal cells and 
immunocytes in 44 tumors (Figure 10B). In most tumor 
types, the expression of XAF1 was positively correlated with 
infiltrating immune cells. The following tumor types were 
significantly correlated with the XAF1 expression level: 
GBMLGG, BRCA, KIPAN, COADREAD, and PRAD 
(immune score); BRCA, KIPAN, COADREAD, SKCM, 
and SKCM-M (estimate score); and BRCA, KIPAN, 
COADREAD, PRAD, and SKCM (stromal score). Immune 
checkpoints were also shown to be very important in the 
immunotherapy response. Moreover, to explore the role of 
XAF1 as a potential therapeutic target, we collected data on 
60 common immune checkpoint genes, and analyzed the 
correlation between the XAF1 expression level and common 
immune checkpoint genes (Figure 10C).

Discussion

With the continuous improvement in the diagnosis and 
treatment of SLE, there has been decline in SLE-related 
mortality over the past 50 years. However, its pathogenesis 
is still unclear, and high-dose glucocorticoid therapy causes 
considerable pain to patients, resulting in a poor quality of 
life (20). Since the expression of circRNAs is very stable 
and has space-time specificity, circRNAs could be reliable 
biomarkers with high clinical application prospects (21). In 
addition, compared with lncRNAs, circRNAs expression 
in mammalian cells had wider range, higher specificity, and 
higher stability (22,23). Therefore, there is need to assess 
the regulatory role, if any, of circRNAs in the pathogenesis 
of SLE. In this study, we demonstrated novel circRNAs that 
regulate downstream target genes by acting as sponges that 
adsorb miRNAs, and estimated the molecular mechanism 
of the circRNAs. We also intersected datasets downloaded 
from the GEO database and our high-throughput 
sequencing dataset according to the negative relationship 
between circRNA-miRNA and miRNA-mRNA. Finally, 
we constructed a tertiary circRNA-miRNA-mRNA 
interaction network based on DEcircRNA, IDEmiRNA, 
and IDEmRNA. 

In our study, we combined the GSE121239 dataset and 
internal qRT-PCR data to construct a ceRNA network of 
SLE through various methods. Specifically,we obtained a 

Table 2 The top 20 tan module genes

Gene Module cor_R A B

OASL tan 0.941313 0.368074 0.22114

XAF1 tan 0.931237 0.315032 0.109385

OAS2 tan 0.924781 0.343379 0.115091

IFIT3 tan 0.920817 0.312403 0.197628

OAS1 tan 0.917161 0.361821 0.209484

IFIT1 tan 0.915736 0.311374 0.208413

IFI44L tan 0.911379 0.320178 0.17644

ISG15 tan 0.908596 0.323301 0.169446

LY6E tan 0.907333 0.342591 0.148327

LAMP3 tan 0.904366 0.332263 0.161075

UBE2L6 tan 0.903763 0.319622 0.216449

MX1 tan 0.901689 0.315547 0.206889

SERPING1 tan 0.900717 0.328277 0.186711

IFIT5 tan 0.900539 0.353306 0.219406

PLSCR1 tan 0.881469 0.318648 0.226721

EIF2AK2 tan 0.878226 0.321303 0.233111

TIMM10 tan 0.859709 0.331572 0.114634

IFIH1 tan 0.855937 0.313833 0.190282

IFI27 tan 0.848601 0.309747 0.156279

MX2 tan 0.846245 0.356944 0.329675
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Figure 7 Functional analysis of 183 genes in the tan module. (A) Biological processes; (B) cellular components; (C) molecular functions; (D) 
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total of 16 circRNAs (hsa_circ_0027353, hsa_circ_0002173, 
hsa_circ_0002110, hsa_circ_0045861, hsa_circ_0002003, 
hsa_circ_0084691, hsa_circ_0081828, hsa_circ_0073236, 
hsa_circ_0066636, hsa_circ_0003661, hsa_circ_0006515, 
hsa_circ_0004604, hsa_circ_0060158, hsa_circ_0056589, 
hsa_circ_0073505, hsa_circ_0061938) in this ceRNA 
network. Of these, only one study reported up-regulation 
of hsa_circ_0002003 in Crohn’s disease (CD). The etiology 
of CD was unclear, but immune factors are thought to be 
involved (24). As an autoimmune disease, autoimmunity 
was an important culprit in the pathogenesis of SLE (25). 

The above evidence indicated that the up-regulated hsa_
circ_0002003 expression in SLE may be involved the 
regulation of immune responses, thereby playing a vital 
in the occurrence and development of SLE. Data on the 
other 15 circRNAs has not been previously reported in the 
literature. Additional experiments are required in the future 
to define the expression profile of these circRNAs as well as 
their impact on the pathogenesis of SLE.

In this era of precision medicine, there is more interest 
in targeted therapy for specific molecular biomarkers as 
opposed to diseases. A previous study has shown that SLE is 
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Figure 8 XAF1 expression in different cancer types. The expression levels of XAF1 in both the GTEx database and TCGA. *, P<0.05; 
**, P<0.01; ***, P<0.001; ****, P<0.0001. GBM, glioblastoma multiforme; GBMLGG, glioblastoma multiforme/lower grade glioma; 
LGG, lower grade glioma; UCEC, uterine corpus endometrial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous 
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esophageal carcinoma; KIRP, kidney renal papillary cell carcinoma; KIPAN, pan-kidney cohort (KICH + KIRC + KIRP); COAD, colon 
adenocarcinoma; COADREAD, colon adenocarcinoma/rectum adenocarcinoma esophageal carcinoma; PRAD, prostate adenocarcinoma; 
STAD, stomach adenocarcinoma; HNSC, head and neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; LUSC, lung 
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associated with an overall increased risk of cancer compared 
with the general population, but this risk is a function of the 
type of cancer (26). Therefore, it is imperative to explore 
common molecular mechanisms between SLE and cancers. 
Potential risk factors include inherent autoimmune features, 
such as chronic inflammation, use of immunosuppressive 
drugs (ISDs), and susceptibility to viral infections (26). 
SLE patients have an increased incidence of hematological 
malignancies (non-Hodgkin’s lymphoma, leukemia) and 
certain solid cancers (vulva and cervix, thyroid, lung, liver) 
(27). In contrast, SLE appears to play a protective role in 
hormone-sensitive cancers, such as breast and prostate 
cancers (28,29). It is possible that SLE-related chronic 
immune disorders, such as T and B lymphocyte dysfunction, 
could lead to the uncontrolled activation and proliferation 
of lymphocytes, thereby increasing the possibility of 
the malignant transformation of lymphocytes, such as 
Hodgkin’s lymphoma, non-Hodgkin’s lymphoma, multiple 
myeloma, and lymphocytic leukemia (30). Notably, immune 
phenotypes have been shown to be important mediators of 
carcinogenesis and cancer development. 

Multiple carcinoma pathways, such as the Wnt/β-catenin, 
JAK-STAT, and NF-κB signaling pathways, also actively 

participate in the development of SLE. Numerous studies 
have shown that the Wnt/β-catenin signaling pathway is 
involved in the occurrence and development of a variety of 
human cancers, such as colorectal, breast, prostate, and liver 
cancers (31-34). Abnormalities in dendritic cells, B cells, 
CD4+ T cells, and other immune cells in the pathogenesis of 
SLE are also related to abnormal Wnt/β-catenin signaling 
(35-37). Furthermore, the JAK-STAT signaling pathway 
has been shown to play an important role in the occurrence 
and development of many types of hematological and solid 
tumors (38). Similarly, this pathway is also closely related 
to the occurrence, development and prognosis of SLE (39). 
NF-κB is a key transcription factor family, which is not only 
involved in innate immunity, but is also involved in the onset 
and development of tumors (40). Interestingly, the NF-
κB pathway is considered to be a classic pro-inflammatory 
signaling pathway that can regulate the transcriptional 
activation of genes related to the pathogenesis of SLE, and 
its key proteins are significantly upregulated in patients with 
SLE (41,42). Our GO and KEGG enrichment analyses of 
the key module genes of the WGCNA showed significant 
enrichment of the positively regulated status of the typical 
Wnt signaling pathway, NF-κB transcription factor activity, 
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Figure 9 Forest plot of univariate Cox survival analyses. The highlighted terms demonstrated that XAF1 expression was significantly 
associated with survival in these tumors (P<0.05). A hazard ratio >1 showed that XAF1 expression promoted survival. TCGA, The Cancer 
Genome Atlas; TARGET, Therapeutically Applicable Research To Generate Effective Treatments; GBMLGG, glioblastoma multiforme/
lower grade glioma; LGG, lower grade glioma; KIPAN, Pan-kidney cohort (KICH + KIRC + KIRP); LAML, acute myeloid leukemia; 
KIRC, kidney renal clear cell carcinoma; PAAD, pancreatic adenocarcinoma; PAAD, pancreatic adenocarcinoma;, UVM, uveal melanoma; 
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as well as the JAK-STAT signaling pathway. These findings 
highlighted multiple similarities between SLE and cancers, 
which should be explored in the future.

Apoptosis is a programmed cell death process that is 
activated by several caspases. Previous data has demonstrated 
that apoptosis can destabilize or degrade structural elements 
of cells or activate the executors of subsequent apoptotic 
processes (43,44). X-linked inhibitor of apoptosis protein 
(XIAP) is a strong apoptosis inhibitory protein that blocks 
the terminal apoptotic response by binding to Caspases 3, 
7, and 9 (45). In contrast, XAF1, an endogenous inhibitor 
of XIAP, promotes apoptosis by antagonizing XIAP and 
releasing Caspases via XIAP-mediated inhibition. One 
of the key features of cancer is the ability to circumvent 
apoptosis (46). Indeed, there is low expression or deletion 
of XAF1 in some malignancies, such as prostate cancer, 
ovarian carcinoma, and cutaneous melanoma (47-50), 
which is mainly caused by promoter hypermethylation (51).  
Restoration of the XAF1 expression status inhibits 
tumor growth, promotes apoptogenesis, and increases 
tumor sensitivity to apoptosis-inducing factors (52).  
In addition, XAF1 inhibits the cycle progression of tumor 
cells (53) and promotes mitotic catastrophe (54). In some 
malignant tissue samples, XAF1 expression and methylation 
status have been shown to be correlated with tumor drug 
resistance and survival, with lower XAF1 expression 
indicating a worse tumor prognosis (51,55). Therefore, XAF1 
plays significant roles in tumorigenesis and development.

Similarly, apoptosis also plays an important role in 
the pathogenesis of SLE (56). Patients with SLE exhibit 
increased levels of apoptotic total T-lymphocytes and CD4+ 
T cells (57). Moreover, increased apoptosis is correlated with 
SLE disease activity and might be responsible for reduced T 
cell frequency (58). The major apoptosis induction route in 
activated lymphocytes is through Fas (59); increased FasL/
Fas and caspase-3 expression together with subsequent 
T-lymphocyte cell apoptosis, particularly in CD4+ T cells, 
has been detected in human SLE (60,61). However, the 
response mechanisms to the regulation of apoptosis in SLE 
remain unclear.

In this study, we identified a hub gene, XAF1, based on 
evidence from a ceRNA network, WGCNA key module 
genes, and PPI network analyses. Moreover, qRT-PCR 
analysis demonstrated that the expression of XAF1 was 
significantly upregulated in SLE, which was consistent with 
the bioinformatics analysis results. Therefore, XAF1 might 
play a potentially important role in SLE. However, there is 
still no report on the relationship between XAF1 and SLE. 

According to the pan-cancer analysis conducted in this study, 
it was demonstrated that increased XAF1 expression levels 
were positively correlated with OS in SKCM and SKCM-M. 
Thus, XAF1 seems to play a protective role in SKCM and 
SKCM-M. Song et al. showed that SLE could decrease the 
risks of cutaneous melanoma (62). Furthermore, TIMER 
analysis indicated that XAF1 was markedly positively 
correlated with tumor lymphocytes levels in most cancer 
types, including SKCM and SKCM-M. Based on the above 
evidence, we hypothesize that increased XAF1 expression 
may induce apoptosis of lymphocytes, especially CD4+ T 
cells, and also promote the apoptosis of melanoma cells.

Despite the important findings highlighted in this study, 
there was a lack of in vivo or in vitro evidence to validate 
the upstream and downstream molecular regulatory 
mechanisms of XAF1 in SLE. Notably, our study showed 
that the XAF1 gene plays a key role in the development of 
multiple tumors and in SLE. Therefore, the specific and 
common molecular roles of XAF1 in the pathogenesis of 
SLE and tumors, especially cutaneous melanoma, should 
be further explored, which might provide new insights into 
individualized medicine.

Conclusions

Our study comprehensively profiled the expression of 
circRNAs, miRNAs, and mRNAs in SLE. Further analyses 
showed that XAF1 is a key molecular biomarker in SLE. In 
addition, pan-cancer analysis defined the common genomic 
characteristics in SLE and cancers, especially for SKCM. 
However, further analysis is needed to validate our findings.
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