
Page 1 of 15

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(9):524 | https://dx.doi.org/10.21037/atm-22-1934

Original Article

Development and validation of an eight-gene signature based 
predictive model to evaluate the prognosis of hepatocellular 
carcinoma patients: a bioinformatic study

Jiehao Zhang1#, Xin Fu2#, Nannan Zhang1#, Weizhen Wang1,3, Hui Liu3, Yibin Jia4, Yongzhan Nie^

1State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, 

Fourth Military Medical University, Xi’an, China; 2National Center for International Research of Bio-targeting Theranostics, Guangxi Key 

Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland 

of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China; 3College of Life Sciences, Northwest University, Xi’an, China; 
4Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China

Contributions: (I) Conception and design: Y Nie, J Zhang, N Zhang; (II) Administrative support: None; (III) Provision of study materials or patients: 

None; (IV) Collection and assembly of data: Y Nie, X Fu, W Wang, H Liu, Y Jia; (V) Data analysis and interpretation: Y Nie, J Zhang, X Fu,  

N Zhang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.
#These authors contributed equally to this work.

Correspondence to: Yongzhan Nie. State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing 

Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China. Email: yongznie@fmmu.edu.cn.

Background: Hepatocellular carcinoma (HCC) is a malignant tumor with a poor prognosis, however, 
biomarkers for the prognostic assessment of HCC remain suboptimal. Consequently, we aimed to develop a 
reliable tool for prognostic estimation of HCC. 
Methods: Differentially expressed genes (DEGs) between HCC and adjacent normal tissues in 3 Gene 
Expression Omnibus (GEO) datasets were identified, followed by hub gene selection and least absolute 
shrinkage and selection operator (LASSO) Cox regression to develop a prognostic gene signature. Kaplan-
Meier survival analysis, univariate and multivariate Cox regression, time-dependent area under the curve 
(AUC), and integrated value of time-dependent AUC (iAUC) were used to assess the relationship between 
predictors and clinical outcomes in the training and validation datasets. Then we built nomograms including 
gene signature and clinicopathological factors to forecast the probability of death. Moreover, we performed 
quantitative real-time PCR (qPCR) to compare the expression of prognostic genes between HCC and 
adjacent normal tissues. Finally, the relationship between prognostic genes and tumor microenvironment 
(TME) was investigated using immune cell infiltration algorithms and single cell transcriptomic database.
Results: Eight prognostic genes (CDC20, PTTG1, TOP2A, CXCL2, CXCL14, CYP2C9, MT1F, and 
GHR) were finally identified to construct the gene signature. Each patient’s risk score was calculated 
according to the gene signature. Patients with high-risk scores showed worse outcomes in the training 
set [hazard ratio (HR) =3.404, P<0.001]. Risk score, age, body mass index (BMI), and TNM stage were 
identified as independent prognostic factors for overall survival (OS) in the training set. The nomogram 
including risk score and other independent prognostic factors showed better performance as opposed to the 
clinicopathological model. In the validation dataset, we obtained the similar results as well. Moreover, we 
found a close relationship between risk score and immune cell infiltration. Patients with high-risk scores had 
elevated expression of immune checkpoint genes, indicating that these patients may be more suitable for 
immunotherapy. 
Conclusions: We have established and validated an eight-gene based prognostic model, which could be an 
effective tool for the prognostic evaluation of HCC patients.

15

	
^ ORCID: 0000-0001-5201-7224.

https://crossmark.crossref.org/dialog/?doi=10.21037/atm-22-1934


Zhang et al. A novel eight-gene signature for HCCPage 2 of 15

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(9):524 | https://dx.doi.org/10.21037/atm-22-1934

Introduction

Hepatocellular carcinoma (HCC) is a commonly occurring 
malignant tumor with high incidence and mortality rates, 
ranking as the third cause of cancer-associated deaths, with 
approximately 906,000 new cases and 830,000 deaths in 
2020 (1). While a small number of early-stage HCC can be 
treated with liver resection or liver transplantation, most 
HCC patients are at an advanced stage of disease at the time 
of diagnosis and are often untreatable even with careful 
monitoring. Moreover, the prognosis is still poor on account 
of metastasis probability and high recurrence. However, 
biomarkers for the prognostic assessment of HCC patients 
remain suboptimal (2). Therefore, it is critical to develop 
reliable prognostic tools to predict clinical outcomes of 
HCC and assist in the decision-making process.

A  l a r g e  n u m b e r  o f  s t u d i e s  h a v e  d e s c r i b e d 
clinicopathological factors including tumor size, tumor 
number, vascular invasion, alanine transaminase (ALT), 
aspartate transaminase (AST), and 	 α-fetoprotein (AFP) 
to reveal the clinical outcomes of HCC patients (3,4). But 
these prognostic biomarkers for HCC remain suboptimal. 
For example, AFP has been used for many years as a serum 
marker for HCC diagnosis and screening. However, it 
has been recognized that AFP is less sensitive in detecting 
HCC, and AFP levels are often elevated in other chronic 
liver diseases such as chronic hepatitis and cirrhosis (5). 
Among these clinical variables, TNM stage is a universally 
acknowledged factor for predicting clinical outcomes. 
However, the performance of TNM stage is still far 
from satisfactory, which could be attributed to the reason 
that the prognosis of HCC is not only related to these 
clinicopathological indicators but also closely associated 
with the change in underlying molecular pathways (6). 
Consequently, considering the molecular biomarkers and 
alterations in molecular pathways may be a promising 
strategy. For example, Nault et al. developed a 5-gene score 
that was associated with disease-specific survival to predict 
outcomes of HCC patients treated by resection (7). Kim 
et al. identified a 65-gene based classifier to predict overall 

survival (OS) in HCC (8). Zhou et al. even constructed a 
plasma miRNA panel used for the diagnosis of hepatitis B 
virus-related HCC with a high accuracy (9).

With the development of transcriptomics,  it  is 
convenient for researchers to explore the mechanism of 
cancer progression using high throughput sequencing  
nowadays (10). In this study, we extracted HCC gene 
expression data from 4 datasets in the Gene Expression 
Omnibus (GEO) database and The Cancer Genome Atlas 
(TCGA) program. We assessed differentially expressed 
genes (DEGs) that were common in 3 GEO datasets and 
constructed a gene signature for prognostic estimation 
of HCC. Kaplan-Meier survival analysis, univariate and 
multivariate Cox regression, time-dependent area under 
the curve (AUC), and integrated value of time-dependent 
AUC (iAUC) were used to assess the association between 
gene signature and clinical outcomes in the training and 
validation datasets. Furthermore, we built nomograms 
including gene signature to forecast the probability of 
death. We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-1934/rc).

Methods

Data collection and study design

The transcriptome profi les including GSE87630, 
GSE89377, and GSE121248 were obtained from the GEO 
database. GSE87630 contained 64 HCC samples as well as 
30 adjacent non-tumor samples, GSE89377 contained 40 
HCC samples and 13 non-tumor samples, and GSE121248 
contained 70 HCC samples and 37 non-tumor samples. 
The gene expression matrix and clinicopathological data 
of 377 HCC tissues were extracted from the TCGA-liver 
hepatocellular carcinoma (TCGA-LIHC) database, which 
was used as a training set (11). The validation dataset 
GSE14520 was also downloaded from the GEO database. 
Detailed information is presented in Table S1. This study 
was a bioinformatics analysis. We identified common DEGs 
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between HCC and adjacent normal tissues in 3 GEO 
datasets and constructed a gene signature by LASSO. Then 
we explored the association between gene signature and 
clinical outcomes in the training and validation datasets. 
Nomograms including gene signature were also developed 
to forecast the probability of death. We also investigated 
the relationship between gene signature and tumor 
microenvironment (TME).

Screening out DEGs

We used GEO2R to find DEGs (adjusted P value <0.05 
and |log2 fold-change| >1.5) between HCC tissues and 
the adjacent normal tissues (12). Next, a Venn diagram was 
utilized to detect overlapping DEGs among the 3 datasets. 

Identification of hub genes 

PPI information for the abovementioned 69 DEGs was 
accessed via the Search Tool for the Retrieval of Interacting 
Genes (STRING) database (http://string-db.org) (13). 
Cytoscape software (version 3.6.0) was utilized to create a 
PPI network (12). The top 20 genes that had the highest 
degree scores as classified by CytoHubba were deemed as 
hub genes.

Construction of the gene signature

Based on the identified hub genes, we carried out LASSO 
Cox regression analysis in the TCGA-LIHC cohort (14). 
The optimal penalty parameter lambda and coefficients 
of prognostic genes were determined by the minimum 
set criteria via 10-fold cross-validation. Each patient’s risk 
score was computed as follows: risk score = (coefficient1 × 
gene 1 expression) + (coefficient2 × gene 2 expressions) +  … 
+ (coefficient n × n gene expression). Thus, patients were 
categorized into 2 groups according to the median value of 
the risk score. 

Evaluation of prognostic value 

Kaplan-Meier survival analysis was used to compare the 
survival status between high-risk group and low-risk group. 
Sex, age, risk score, grade, BMI, pT, pN, pM, and TNM 
stage were subjected to univariate Cox regression analysis 
in TCGA-LIHC dataset. Characteristics which were 
significantly associated with OS in univariate Cox regression 
analysis were subjected to multivariate Cox regression 

analysis to determine independent prognostic factors. Time-
dependent AUC compared the prognostic value between 
these prognostic factors. The model’s predictive accuracy was 
also assessed via iAUC. Unbiased estimation was performed 
using 1,000× bootstrap resampling validation (15).

Nomogram

A nomogram integrating independent prognostic factors 
and risk score was determined to forecast the survival 
probabilities of patients with HCC in the training set. We 
named this model as the risk score model. The nomogram’s 
performance was evaluated using calibration curves. 

Comparison of predictive robustness between the risk score 
model and clinicopathological model

We also constructed a nomogram based on identified 
independent prognostic variables without the risk 
score, which was called the clinicopathological model. 
Calibration curves and ROC curves were employed for the 
comparison of the predictive performance of the 2 models. 
Furthermore, decision curve analysis (DCA) was used to 
quantify the clinical utility (16).

Validation of the gene signature in the GSE14520 cohort

The GSE14520 dataset includes microarray data obtained 
from 247 HCC patients. After 22 patients without detailed 
clinical information were removed, we used 225 HCC 
patients as a validation dataset to verify the gene signature’s 
robustness for prognostic prediction. The same methods 
were utilized to evaluate the gene signature’s predictive 
performance for OS and disease-free survival (DFS) in the 
GSE14520 validation dataset.

Gene set enrichment analysis (GSEA)

GSEA was carried out in the TCGA-LIHC training set 
to illustrate the molecular pathways (17). Gene sets which 
satisfied the following requirements were considered 
significant: normalized (NOM) P value <0.05 and false 
discovery rate (FDR) <0.25. 

Immune infiltration analysis and immune checkpoint 
correlation analysis

We downloaded infiltration estimation results of all 

http://string-db.org
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TCGA tumors from TIMER 2.0 (18), which used the 
“immunedeconv” R package to evaluate immune infiltration 
status (19). Then, we selected the results of TCGA-LIHC 
samples. Subsequently, we performed correlation analysis 
between TIMER immune infiltration scores and the risk 
scores of each patient in TCGA-LIHC using Spearman 
correlation analysis. Furthermore, we compared the 
differences of CIBERSORT immune infiltration scores 
and immune checkpoint gene expression levels between 2 
groups using the Wilcoxon rank sum test. 

Tumor Immune Single Cell Hub (TISCH) Database

TISCH (http://tisch.comp-genomics.org/home/) is an 
online database of 76 tumor single-cell RNA sequencing 
datasets based on 27 types of tumors (20). In this study, 
we used TISCH to illustrate the relationship between 
prognostic genes and the TME of liver cancer. 

Human liver tissue sample collection

A total of 15 paired HCC primary tissues and adjacent 
normal tissues were collected from Xijing Hospital, which 
was approved by the drug clinical trial Ethics Committee, 
Fourth Military Medical University (No. KY20193057). All 
the patients who donated tissue samples provided written 
informed consent. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Extraction of RNA and quantitative real-time PCR (qPCR)

The mRNA isolation kit (cat# 74104, Qiagen, Germany) 
was employed to isolate total RNA. The final samples of 
RNA were kept at −80 ℃. The cDNA synthesis kit (Code 
No. 6215A, Takara, Japan) was utilized for cDNA synthesis 
based on 1,000 ng of total RNA, which was further analyzed 
by qPCR. Gene-specific primers were used to determine the 
relative mRNA amount. β-actin was the internal control. 
Table S2 displays the sequences of primers.

Statistical analysis

All statistical analyses were performed using SPSS software 
(version 24.0) and R software (version 3.6.1). P values <0.05 
(two-sided) were considered significant.

Results

Identification of 69 genes shared by 3 GEO datasets

DEGs between tumor and non-tumor tissues were screened 
out in the GSE87630, GSE89377, and GSE121248 
datasets. We found 403 DEGs in GSE87630, 151 DEGs in 
GSE89377, and 432 DEGs in GSE121248 (Figure 1A-1C).  
Among them, 82, 30, and 115 genes were upregulated in 
the GSE87630, GSE89377, and GSE121248 datasets, 
respectively. Additionally, 321, 121, and 317 genes 
were downregulated in the GSE87630, GSE89377, and 
GSE121248 datasets, respectively. Finally, 69 overlapping 
DEGs (10 upregulated, 59 downregulated) were used for 
the subsequent analyses (Figure 1D). 

Identification of hub genes and construction of the gene 
signature

STRING and Cytoscape software were employed to 
create a PPI network for the 69 DEGs (Figure 1E). We 
used CytoHubba to select hub genes, and the top 20 genes 
with the highest degree scores are shown in Table S3. 
Subsequently, we carried out LASSO regression analysis 
and identified 8 genes that were significantly related to 
OS (CDC20, PTTG1, TOP2A, CXCL2, CXCL14, MT1F, 
GHR, CYP2C9) (Figure 1F,1G). Therefore, we constructed 
a gene signature based on prognosis-related genes and 
LASSO coefficients. Each patient’s risk score was computed 
as follows: risk score = (0.0137 × expression of CDC20) + 
(0.0065 × expression of PTTG1) + (0.0071 × expression of 
TOP2A) + (−0.0005 × expression of CXCL2) + (−0.0047 × 
expression of CXCL14) + (−0.0013 × expression of GHR) + 
(−0.0014 × expression of CYP2C9) + (−0.0007 × expression 
of MT1F). The coefficients suggested that CDC20, PTTG1, 
and TOP2A were risk genes while CXCL2, CXCL14, GHR, 
CYP2C9, and CYP2C9 played a protective role. Although 
only 8 genes were included in the model (CDC20, PTTG1, 
TOP2A, CXCL2, CXCL14, GHR, MT1F, CYP2C9), it still 
performed optimally. 

Patients were categorized into high-risk and low-risk 
groups according to the median value of the risk score. 
Patients in the high-risk group showed worse outcomes. 
The heatmap illustrated that high-risk patients had higher 
expression of CDC20, PTTG1, and TOP2A and lower 
expression of CXCL2, CXCL14, MT1F, GHR, and CYP2C9 

https://cdn.amegroups.cn/static/public/ATM-22-1934-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-1934-supplementary.pdf
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Figure 1 Identification of DEGs and development of gene signature. (A-C) Volcano plots of DEGs from GSE87630, GSE89377, and 
GSE121248. (D) Venn diagram of the overlapping DEGs between the 3 GEO datasets. (E) PPI network of the 69 identified DEGs. (F) 
Optimized lambda determined by LASSO. (G) The LASSO coefficients of 20 hub genes. DEG, differentially expressed gene; GEO, Gene 
Expression Omnibus; PPI, protein-protein interaction; LASSO, least absolute shrinkage and selection operator.
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(Figure 2A). Kaplan-Meier survival analysis also illustrated 
that the survival rate of patients with high risk scores was 
distinctively lower (Figure 2B). Moreover, we validated the 
results in the validation dataset GSE14520. The performance 
of the gene signature in predicting OS (Figure 2C,2D) and 
DFS (Figure S1) in GSE14520 was excellent as well. 

Appraisal of prognostic value in the TCGA-LIHC training 
cohort

Sex, age, risk score, grade, BMI, pT, pN, pM, and TNM 
stage were subjected to univariate Cox regression analysis 
in TCGA-LIHC dataset. According to Figure 3A, age 
[HR =1.502 (95% CI: 1.038–2.173), P=0.031], risk score 
[HR =3.404 (95% CI: 2.335–4.962), P<0.001], body mass 
index (BMI) [HR =1.554 (0.811–1.824), P=0.001], T stage 
[HR =1.516, (95% CI: 1.260–1.893), P<0.001], M stage 
[HR =3.849 (95% CI: 1.218–2.164), P=0.022], and TNM 
stage [HR =1.574 (95% CI: 1.291–1.918), P<0.001] were 
significantly correlated with OS in univariate Cox regression 
analysis. These factors were then included in a multivariate 
Cox proportional hazard model. As shown in Figure 3B, 
multivariate Cox regression showed that age [HR =1.582 
(95% CI: 1.09–2.296), P=0.016], risk score [HR =1.878 
(95% CI: 1.273–2.768), P=0.001], BMI [HR =1.683 (95% 
CI: 1.169–2.422), P=0.005], and TNM stage [HR =1.397 
(95% CI: 1.138–1.715), P=0.001] should be considered as 
independent OS risk factors. Compared with TNM stage, 
age, and BMI, the novel gene signature showed significantly 
improved AUC at all time points (Figure 3C). Among the 
various clinical parameters, the risk score had the highest 
mean iAUC (Figure 3D). Overall, these results showed that 
the risk score of our novel gene signature was a noteworthy 
independent prognostic variable and had the best prognostic 
value compared with other clinical characteristics. 

Validation in the GSE14520 cohort

To examine whether the gene signature could be effective 
in other datasets, we further examined the GSE14520 
validation group. Sex, age, risk score, TNM stage, AFP, 
tumor size, and ALT were subjected to univariate Cox 
regression analysis. Results (Figure 4A) showed that, risk 
score [HR =1.974 (95% CI: 1.277–3.051), P=0.002], TNM 
stage [HR =2.329 (95% CI: 1.760–3.083), P<0.001], AFP 
[HR =1.556 (95% CI: 1.015–2.384), P=0.042], tumor 
size [HR =1.842 (95% CI: 1.264–2.983), P=0.042] were 
significantly correlated with OS. These factors were then 

subjected to multivariate Cox regression analysis. Results 
(Figure 4B) indicated that risk score [HR =1.5941 (95% 
CI: 1.09–2.493), P=0.03], TNM stage [HR =2.145 (95% 
CI: 1.552–2.964), P<0.001], and tumor size [HR =1.001 
(95% CI: 0.599–1.675), P=0.038] were independent OS 
risk factors. Time-dependent AUC and iAUC illustrated 
that, compared with TNM stage and tumor size, the gene 
signature showed a significantly improved AUC at all time 
points (Figure 4C), and the risk score had the highest mean 
iAUC (Figure 4D). In comparison with OS, the DFS may 
be more specific in reflecting clinical benefits. Thus, we 
also used DFS as a clinical endpoint in the validation set 
GSE14520, and similar results could also be found for DFS 
(Figure S2A-S2D).

Construction of the predictive nomogram models

For better prediction of prognosis, we constructed a 
nomogram to forecast the death probability of HCC patients 
in the training set. The independent prognostic variables 
including risk score were incorporated in the prediction 
model, which was called the risk score model (Figure S3A). 
We also constructed a nomogram without risk score in 
the training set, which was called the clinicopathological 
model (Figure S3B). In the validation dataset GSE14520, 
we constructed the risk score model (Figure S4A) and 
clinicopathological model (Figure S4B) as well. Calibration 
curves could depict consistency between prediction and real 
observations. Thus, we used calibration curves to evaluate the 
predictive performance of the 2 models. Results showed that, 
at the time point of 3 years, the calibration curves of both 
models exhibited great concordance with the actual survival 
rate in the training and validation sets (Figure S5A,S5B).  
Then, we compared the predictive value between the 
clinicopathological model and risk score model. Time-
dependent ROC curves showed that the AUC of the risk 
score model was higher than that of the clinicopathological 
model in the 2 datasets (Figure S5C,S5D), indicating that 
the accuracy of the risk score model was better than that 
of the clinicopathological model. DCA curves suggested 
that the risk score model had a better net benefit than the 
clinicopathological model, indicating that the risk score 
model can help clinicians make more accurate assessments of 
liver cancer prognosis (Figure S5E,S5F).

Validation of the expression levels of the 8 genes 

The mRNA levels of CDC20, PTTG1, TOP2A, CXCL2, 

https://cdn.amegroups.cn/static/public/ATM-22-1934-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-1934-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-1934-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-1934-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-1934-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-1934-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-1934-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-1934-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-1934-supplementary.pdf
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Figure 2 Evaluation of gene signature in TCGA-LIHC training set and GSE14520 validation set. (A) The distribution of risk score, 
survival status, and gene expression panels of HCC patients in the TCGA-LIHC training set. (B) Kaplan-Meier survival analysis between 
the 2 groups separated by the median value of the risk score in the TCGA-LIHC training set. The upper part illustrates the Kaplan-Meier 
curves for the 2 groups while the bottom illustrates the number of living patients. (C) The distribution of risk score, survival status, and gene 
expression panels of HCC patients in the GSE14520 validation set. (D) Kaplan-Meier survival analysis between high-risk group and low-
risk group in the GSE14520 validation set. HCC, hepatocellular carcinoma; TCGA-LIHC, The Cancer Genome Atlas-liver hepatocellular 
carcinoma; OS, overall survival.

TCGA-LIHC training set GSE14520 validation set
R

is
k 

sc
or

e

R
is

k 
sc

or
e

O
S

, m
on

th
s

O
S

, m
on

th
s

Alive

Dead
Alive

Dead

High-risk

Low-risk

High-risk

Low-risk

Status Status

Risk score Risk score

2

1

0

−1

0.20

0.15

0.10

0.05

0.00

125

100

75

50

25

0

CXCL14
MT1F
GHR

CXCL2
CYP2C9

CDC20  
PTTG1
TOP2A

CXCL14
MT1F
GHR

CXCL2
CYP2C9

CDC20  
PTTG1
TOP2A

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

0	 12	 24	 36	 48	 60	 72	 84	 96
Time, months

0	 12	 24	 36	 48	 60	 72
Time, months

0	 12	 24	 36	 48	 60	 72
Time, months

0	 12	 24	 36	 48	 60	 72	 84	 96
Time, months

189	119	 59	 39	 26	 16	 12	 6	 3

188	152	 89	 56	 41	 26	 16	 5	 3

110	 87	 63	 53	 47	 14	 0

111	 100	 90	 83	 76	 27	 0

Number at risk Number at risk

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l p
ro

ba
bi

lit
y

High-risk
Low-risk High-risk

Low-risk

High-risk

Low-risk

High-risk

Low-risk

P<0.0001
P=0.0018

Gene expression Gene expression

1.5

0

−1.5

1.5

0

−1.5

60

40

20

0

C

D

A

B



Zhang et al. A novel eight-gene signature for HCCPage 8 of 15

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(9):524 | https://dx.doi.org/10.21037/atm-22-1934

Figure 3 Identification of independent prognostic factors and comparison of predictive accuracy for OS in TCGA-LIHC cohort. (A,B) 
Univariate and multivariate Cox regression analysis of risk score and other clinicopathological characteristics in the TCGA-LIHC dataset. 
(C) Time-dependent AUC of risk score and other independent prognostic variables in the TCGA-LIHC dataset. (D) The predictive 
accuracy for OS based on the iAUC. The iAUC denotes the integrated area under the ROC curve. BMI, body mass index; TCGA-LIHC, 
The Cancer Genome Atlas-liver hepatocellular carcinoma; AUC, area under the curve; OS, overall survival; iAUC, integrated value of time-
dependent AUC; ROC, receiver operating characteristic.
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CXCL14, GHR, CYP2C9, and MT1F in 15 HCC tissues 
and adjacent normal tissues were evaluated using qPCR. As 
expected, the mRNA levels of CDC20, PTTG1, and TOP2A 
were significantly elevated in HCC tissues as opposed to the 
adjacent normal tissues (Figure 5A-5C). CXCL2, CXCL14, 
GHR, CYP2C9, and MT1F displayed higher expression 
in adjacent non-tumor tissues in comparison with HCC 

tissues (Figure 5D-5H). The same results were obtained 
from the GEPIA database. We also used GEPIA to perform 
survival analysis of the 8 genes. The outcomes showed 
that HCC patients who had higher expression of CDC20, 
PTTG1, and TOP2A experienced a worse outcome, while 
higher expression of CXCL2, CXCL14, GHR, CYP2C9, and 
MT1F represented better OS (Figure S6). Similar to the 

https://cdn.amegroups.cn/static/public/ATM-22-1934-supplementary.pdf
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Figure 4 Identification of independent prognostic factors and comparison of predictive accuracy for OS in GSE14520 cohort. (A,B) 
Univariate and multivariate Cox regression analysis of risk score and other clinicopathological characteristics in the GSE14520 validation 
set. (C) Time-dependent AUC of risk score and independent prognostic variables in the GSE14520 validation set. (D) The predictive 
accuracy for OS according to the iAUC. AFP, α-fetoprotein; ALT, alanine transaminase; AUC, area under the curve; OS, overall survival; 
iAUC, integrated value of time-dependent AUC.
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conclusions drawn from the LASSO coefficients, the results 
of GEPIA showed that CDC20, PTTG1, and TOP2A may 
be the risk genes for HCC, while CXCL2, CXCL14, GHR, 
CYP2C9, and MT1F may be protective. 

Molecular pathways of prognostic genes

Results of GSEA illustrated that the high-risk group 

was linked to oncogenic pathways, such as DNA repair 
[normalized enrichment score (NES) =2.0, nominal 
P<0.001], MYC targets (NES =2.0, nominal P<0.001), G2M 
checkpoint (NES =2.1, nominal P<0.001), and E2F targets 
(NES =2.2, nominal P<0.001) (Figure 5I). In contrast, the 
low-risk group was associated with bile acid metabolism 
(NES =−2.1, nominal P=0.002), xenobiotic metabolism 
(NES =−2.1, nominal P<0.001), coagulation (NES =−1.8, 
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Figure 5 mRNA expression levels of 8 genes and significantly enriched pathways identified by GSEA. (A-C) qPCR shows increased 
expression of CDC20, PTTG1, and TOP2A in 15 HCC tissues comparative to adjacent non-tumor tissues. (D-H) qPCR shows decreased 
expression of CXCL2, CXCL14, GHR, CYP2C9, and MT1F in 15 HCC tissues comparative to adjacent non-tumor tissues. (I) Upregulated 
pathways in the high-risk group identified by GSEA. (J) Downregulated pathways in the high-risk group. **, P<0.01; ****, P<0.0001. NES, 
normalized enrichment score; FDR, false discovery rate; qPCR, quantitative real-time PCR; HCC, hepatocellular carcinoma; GSEA, gene 
set enrichment analysis.
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nominal P<0.001), and fatty acid metabolism (NES =−1.8, 
nominal P<0.001) (Figure 5J). 

Relationship between the gene signature and the TME

Correlation analysis showed that risk score was positively 
correlated with the infiltration of B cell, CD4+ T cell, 
macrophage, neutrophil,  and dendritic cell  in the 
hepatocellular TME, while there was no significant 
corre lat ion between r i sk  score  and CD8 + T ce l l  
(Figure 6A-6F). CIBERSORT indicated that, as opposed to 
the low-risk group, high-risk patients had more infiltration 
of memory B cells, plasma B cells, activated CD4+ memory 
T cells, T follicular helper cells, regulatory T cells, and 
M0 macrophages. The low-risk group attracted more naïve 
B cells, activated CD4+ memory T cells, resting natural 
killer (NK) cells, monocytes, and activated mast cells 
(Figure 6G). Furthermore, we compared the expression of 
classical immune checkpoint genes in the 2 groups. The 
results demonstrated that CTLA4, PD-1 (PDCD1), TIM-3 
(HAVCR2), LAG3, and TIGIT were highly enriched in the 
high-risk group (Figure 6H), which indicated that high-risk 
patients are inclined to benefit from immune checkpoint 
inhibitor (ICI) treatment.

Meanwhile, we used TISCH, a single-cell RNA 
sequencing database, to explore the single-cell transcriptome 
profiles of liver cancer. The relationship between the 
8 prognostic genes and immune cells of the TME was 
investigated in the LIHC_GSE140228_10X dataset. 
The cells in the LIHC_GSE140228_10X dataset were 
categorized into 12 types. Figure S7A,S7B depict the 
distribution and number of various immune cells. Results 
(Figure S7C-S7J) showed that CDC20, PTTG1, and TOP2A 
were highly expressed in proliferating T cells, which 
suggested that CDC20, PTTG1, and TOP2A may have an 
imperative function in T cell proliferation. CXCL2, which is 
a classical chemokine, was highly expressed in macrophages, 
indicating that macrophages in the TME may be attracted 
by the CXCL2-CXCR2 axis. MT1F was shown to be highly 
expressed in proliferating T cells, followed by exhausted 
CD8+ T cells, implying that MT1F is an important regulator 
in T cell development. While these results need further 
experiments for verification, these findings suggest that these 
8 genes are closely related to the TME in liver cancer. 

Discussion

HCC is a highly heterogeneous cancer with a high mortality 

rate and recurrence rate. Nevertheless, there are as yet no 
accurate and reliable prognostic biomarkers for predicting 
HCC risk in clinical practice. As such, it is imperative to 
develop novel prognostic biomarkers for patients with 
HCC (21). In this research, an 8-gene signature for HCC 
was developed based on transcriptome analysis. The risk 
score computed by the sum of the weighted expression 
levels of the 8 genes, including CDC20, PTTG1, TOP2A, 
CXCL2, CXCL14, CYP2C9, MT1F, and GHR, could be 
employed in predicting the clinical outcome of HCC 
patients. Patients that have a relatively high risk score may 
have a shorter DFS and OS time; thus, more aggressive 
therapies are necessary for these patients. Furthermore, this 
8-gene signature is an independent prognostic factor, and 
the prognostic model based on the 8-gene signature showed 
great predictive performance. 

These 8 genes are important regulators of the cell 
cycle, inflammation, and cellular metabolism, which are 3 
important hallmarks of cancer (22). For example, CDC20, 
PTTG1, and TOP2A are involved in cell cycle regulation. 
CDC20 is a cell cycle progression hub gene that contributes 
to the progression of many cancers (23). In HCC, CDC20 
stimulates PHD3 ubiquitination and activates the HIF-
1 pathway, thus accelerating cancer cell proliferation (24).  
PTTG1 is highly expressed in several tumors and is 
correlated with tumor differentiation, invasion, and 
metastasis (25). Fujii et al. reported that PTTG1 was a 
biomarker for DFS and OS in HCC. PTTG1 may be 
involved in the progression of HCC through promoting 
angiogenesis (26). TOP2A is another cell cycle-related 
gene that encodes an enzyme called DNA topoisomerase 
2-alpha to alter the DNA strand topology states in the 
replication process. TOP2A is overexpressed in many 
types of cancers (27). TOP2A overexpression in HCC was 
reported to correlate with onset at an early age, shorter OS, 
and resistance to chemotherapy (28). In this research, the 
expression of CDC20, PTTG1, and TOP2A was upregulated 
in the high-risk group and indicative of poor prognosis as 
well.

C-X-C motif chemokine ligands (CXCLs) are important 
in the immune regulation of cancer, among which CXCL2 
and CXCL14 are essential members (29). CXCL2 is a 
cytokine produced by macrophages and monocytes, and 
is chemotactic for hematopoietic stem cells as well as 
polymorphonuclear leukocytes (29). Ding et al. found that 
CXCL2 was downregulated in almost all HCC issues as 
opposed to adjacent normal tissues. Furthermore, CXCL2 
overexpression impedes proliferation and stimulates 

https://cdn.amegroups.cn/static/public/ATM-22-1934-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-1934-supplementary.pdf
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Figure 6 Immune cell infiltration and expression of immune checkpoint genes between high-risk and low-risk groups. (A-F) Correlation 
analysis between risk score and immune infiltration score calculated by TIMER. (G) Box plot of the infiltration of 22 immune cells in the 
high-risk group and low-risk group calculated by CIBERSORT. (H) Expression (log2 transformed FPKM) of immune checkpoint molecules 
in the 2 groups. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001; ns, not statistically significant. NK cell, natural killer cell; FPKM, 
fragments per kilobase of exon model per million mapped fragments.
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the apoptosis of HCC cell lines (30). CXCL14 is also a 
cytokine, which is constitutively expressed at high levels in 
many normal tissues (31). However, it is reduced or absent 
in cancer. This chemokine is chemotactic for and activates 
monocytes, dendritic cells, and NK cells. It was reported 
that overexpression of CXCL14 inhibits the angiogenesis 
of HCC. Lin et al. suggested that CXCL2/10/12/14 can 
be utilized as prognostic biomarkers for HCC (32). In this 
research, we found that downregulation of CXCL2 and 
CXCL14 in HCC to some extent changed immune cell 
infiltration to promote inflammation and tumor growth. 
However, this conclusion needs further confirmation.

CYP2C9 participates in the metabolism of xenobiotics 
and fatty acids in the liver. Downregulation of CYP2C9 
may be a biomarker of HCC (33). Yu et al. showed that 
CYP2C9 suppression by hsa-miR-128-3p is involved in 
the pathogenesis of HCC (34), which is implicated in the 
etiology of HCC. The GHR gene encodes growth hormone 
receptor, which is embedded in the cell membrane and 
is most abundant in liver cells. Growth hormone and 
growth hormone receptors are critical for cell proliferation 
and metabolism in the liver. It was reported that GHR 
participated in the pathogenesis of HCC with chronic 
hepatitis C (35). GHR downregulation was found to be a 
new HCC biomarker. Furthermore, Gao et al. showed that 
GHR was involved in the sorafenib resistance of HCC cell 
lines (36). The last gene, MT1F, encodes an enzyme called 
metallothionein-1F involved in the maintenance of metal 
ion homeostasis. MT1F participates in cell proliferation 
as well as apoptosis (37), and serves as a tumor suppressor. 
In HCC tissue, MT1F shows downregulated expression, 
and overexpression of MT1F inhibits the growth of the 
HepG2 cell line (38). As reprogrammed energy metabolism 
is a significant hallmark of cancer, and the genes we 
identified (CYP2C9, GHR, and MT1F) are associated with 
metabolism, combing these genes in our model delivers 
good performance.

Prognostic biomarkers of tumors have been widely 
studied based on transcriptional profiles in recent years. For 
example, Yuan et al. constructed a metabolism-related gene 
signature (including FABP6, ELOVL3, CSPG5, HMMR, 
AKR1B15, and G6PD) for HCC prognosis prediction (39).  
Lin et al. constructed an inflammatory response gene 
signature for HCC, which was also proven to have an impact 
on immune cell infiltration (40). Zhang et al. developed 
a gene signature including cell cycle-related genes such 
as CDC20, PTTG1, CCNB1, CDK1, and CCNA2 (41).  
However, these gene signatures mainly focus on 1 typical 

characteristic of tumors, and cannot fully reflect all 
the hallmarks of cancer. Consequently, we integrated 
genes representing cell proliferation, tumor-promoting 
inflammation, and aberrant metabolism into 1 model. Our 
model showed better predictive performance than the 
clinicopathological model, which proves the importance of 
these 8 genes. Moreover, we showed that high-risk patients 
have elevated expression of immune checkpoint genes, 
which may make them more suitable for ICI treatment. 
Single-cell RNA sequencing indicated that CDC20, PTTG1, 
and TOP2A are correlated with T cell proliferation, while 
CXCL2 may be involved in macrophage recruitment in 
HCC. Our study demonstrated that these 8 genes could be 
probable therapeutic targets for HCC in the future.

Although the gene signature has great predictive 
performance, our model still has limitations. Firstly, the 
relationship between the 8 genes and OS should be explored 
at the protein level as well. Secondly, our study should be 
validated prospectively in independent HCC cohorts in the 
future. Thirdly, the gene signature must also be evaluated 
in cohorts with larger sample sizes. Additionally, although 
we carried out GSEA analysis to clarify the mechanism of 
this model for predicting HCC prognosis, the underlying 
mechanism is still unclear, so further experiments need to 
be conducted in the future. Lastly, significant efforts are 
required to translate this study into clinical application. 

Conclusions

In conclusion, this research developed a novel 8-gene 
signature based predictive model for HCC prognostic 
prediction based on GEO and TCGA datasets. The 
nomogram based on the gene signature showed better 
performance as opposed to the clinicopathological model. 
This study might provide potential biomarkers for liver 
cancer. However, gene signature validation in clinical 
cohorts and functional experiments of these genes are 
warranted. 
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Table S1 The clinical data of the 5 independent cohorts

Characteristic TCGA-LIHC GSE14520 GSE87630 GSE89377 GSE121248

Platform Illumina HiSeq2000 GPL571 GPL3921 GPL6947 GPL6947 GPL570

Samples 427 488 94 53 107

Normal 50 241 30 13 37

Tumor 377 247 64 40 70

Survival status

Death 128 96 NA NA NA

Survival 249 146 NA NA NA

Age, years 107

≤65 235 216 NA NA 65

>65 141 26 NA NA 42

Gender 107

Female 122 31 NA NA 15

Male 255 211 NA NA 92

TNM stage

I 180 96 NA NA NA

II 89 78 NA NA NA

III 76 51 NA NA NA

IV 8 0 NA NA NA

T classification

T1 182 NA NA NA NA

T2 91 NA NA NA NA

T3 63 NA NA NA NA

T4 17 NA NA NA NA

N classification

N0 349 NA NA NA NA

N1 4 NA NA NA NA

M classification

M0 349 NA NA NA NA

M1 4 NA NA NA NA

Supplementary
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Table S2 The primer sequences of eight prognostic genes and β-actin

Primer Forward sequence Reverse sequence

CDC20 CGGAAGACCTGCCGTTACATTC CAGAGCTTGCACTCCACAGGTA

PTTG1 GCTTTGGGAACTGTCAACAGAGC CTGGATAGGCATCATCTGAGGC

TOP2A GTGGCAAGGATTCTGCTAGTCC ACCATTCAGGCTCAACACGCTG

CXCL2 GGCAGAAAGCTTGTCTCAACCC CTCCTTCAGGAACAGCCACCAA

CXCL14 AGATCCGCTACAGCGACGTGAA GCAGTGCTCCTGACCTCGGTA

CYP2C9 CAGAGACGACAAGCACAACCCT ATGTGGCTCCTGTCTTGCATGC

GHR GCAGCTATCCTTAGCAGAGCAC AAGTCTCTCGCTCAGGTGAACG

MT1F GACTGATGCCAGGACAACCT AGGAATGTAGCAAATGGGTCA

β-actin CACCAACTGGGACGACAT ACAGCCTGGATAGCAACG

Table S3 Top 20 genes ranked by the degree method

Rank Gene Score Rank Gene Score

1 PTTG1 6 10 IGFALS 2

1 CDC20 6 10 STAB2 2

1 CCNB2 6 10 CXCL2 2

1 NUSAP1 6 10 CXCL12 2

1 TOP2A 6 10 CYP1A2 2

1 PRC1 6 10 CYP2C9 2

1 ASPM 6 10 MT1G 2

8 FOS 3 10 MT1H 2

8 CYP2E1 3 19 CXCL14 1

10 MT1F 2 19 GHR 1
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Figure S1 Kaplan-Meier analysis shows that HCC patients with high risk scores have poorer DFS in the GSE14520 validation set. 
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Figure S2 (A,B) Univariate and multivariate Cox regression analysis for DFS in the GSE14520 validation set. (C) Time-dependent AUC 
for DFS shows that risk score has better predictive accuracy than TNM stage in the GSE14520 validation set. (D) The iAUC indicates 
integrated area under the ROC curve, which shows that risk score has better predictive performance than TNM stage. DFS, disease-free 
survival; AUC, area under the curve; iAUC, integrated value of time-dependent AUC.
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Figure S3 (A) The nomogram to forecast the 1-, 3-, and 5-year death likelihood of HCC patients in the TCGA-LIHC training set. The 
nomogram model is constructed based on BMI, TNM stage, age, and risk score of the 8 risk genes. (B) The nomogram without risk score in 
the TCGA-LIHC training set. 
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Figure S4 (A) The nomogram to forecast the death likelihood of HCC patients at 1, 3, and 5 years in the GSE14520 validation set. The 
nomogram model is constructed based on TNM stage, tumor size, and risk score of the 8 risk genes. (B) The nomogram without risk score 
constructed in the GSE14520 validation set. 
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Figure S5 (A,B) The nomogram calibration curves in the TCGA-LIHC dataset and GSE14520 validation set. (C,D) Time-dependent AUC 
of the risk score model and clinicopathological model in the training set and validation set. (E,F) DCA curves of the risk score model and 
clinicopathological model in the training set and validation set. 
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Figure S6 (A-H) Comparisons of mRNA expression of each gene in HCC tissues versus adjacent normal tissues in TCGA-LIHC via 
GEPIA. (I-P) Validation of the prognostic role of each gene by Kaplan-Meier survival analysis via GEPIA. *, P<0.05.
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Figure S7 (A) The landscape of different cell types in the LIHC_GSE140228_10X single-cell RNA sequencing dataset. (B) The cell types 
as well as their distribution in the LIHC_GSE140228_10X dataset. (C-J) The expression of CDC20, PTTG1, TOP2A, CXCL2, MT1F, GHR, 
CYP2C9, and CXCL14 in different cell types. 


