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Introduction

Eye injury is often observed on the battlefield as modern 
weapons are designed to inflict maximal body injury on 
enemy personnel (1,2). Seawater immersion aggravates 
the injuries incurred at sea and causes specific pathological 
changes (3,4). After explosive corneal penetrating injuries, 

seawater has been shown to cause increased pigmentation, 
inflammation, corneal thickening and vascularization, as 
well as delayed healing in rabbit eyes (5).

Aquaporins (AQPs) are a family of transmembrane water 
channels involved in various physiological functions (6,7). 
By following the local osmotic gradient, AQPs facilitate 
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fluids crossing the cell membranes into and out tissues, 
thereby regulating the cell volume. In addition, AQPs also 
play a role in cell proliferation, migration, cancer metastasis 
(8-10), and angiogenesis (11,12). 

All thirteen AQPs identified in humans are expressed 
in ocular tissues (13). The mRNAs of AQP0, 1, 2, 3, 4, 5, 
6, 11, and 12, as well as the proteins of AQP1, 3, 5, and 
11, have been detected in the rat cornea (14), whereas the 
mRNA and protein expression of AQP1, 3, and 5 have 
been detected in the canine cornea (15). AQP is involved 
in corneal injury repair and regulation of stromal thickness. 
This study investigated the changes in AQP expression 
in the rabbit cornea following seawater immersion 
after explosive penetrating injury, and its implication in 
pathological progression and injury healing was examined. 
We present the following article in accordance with the 
ARRIVE reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-2198/rc).

Methods

Animal treatment 

New Zealand White rabbits of either gender, weighing 2.0– 
2.5 kg, were provided by the Jiangnan Experimental 
Animals of Huishan, Wuxi, China. Animal experiments were 
performed under a project license (No. ZZDXOHP20191011) 
granted by ethics board of Zhengzhou University, in 
compliance with China national guidelines for the care and 
use of animals. The experiment used seawater from the 
east China sea. Animals were divided into the following 
3 groups, with 6 rabbits per group: (I) the model group; 
(II) the seawater immersion group; and (III) the seawater 
immersion combined with dexamethasone (DXM) 
treatment group. Before experimentation, rabbits were 
anesthetized with 1% pentobarbital sodium via intravenous 
injection to the ear. Rabbits were fixed onto a frame. The 
eyelid was opened through the use of an eyelid retractor. 
The rabbit eyes were injured using a firecracker, with the 
explosion center 5 mm away from corneal vertex. After the 
firecracker explosion, a 3-mm long whole-layer incision 
parallel to the corneal limbus was made in the center of 
the cornea. In the seawater immersion group, 0.2 mL of 
seawater was injected into the anterior chamber via corneal 
incision. After the anterior chamber was cleared with 
slight pressing the incision, seawater was injected again, 
and this procedure was repeated three times. The model 
group underwent the procedure as for the experimental 

group, with the exception that seawater was replaced by 
physiological saline. In the seawater immersion group, the 
eye surface was flushed for 30 minutes with seawater, and in 
the model group, physiological saline was used during this 
procedure. For the treatment group, the rabbits were given 
neomycin/polymyxin B/DXM eye drops every 3 hours,  
5 times. The aqueous humor was collected and the cornea 
was harvested on days 1 and 7 post-injury, respectively. 

Histopathological evaluation 

After euthanasia, the cornea was fixed in 10% formaldehyde 
and embedded in paraffin. Histological sections of 5 μm 
were obtained and stained with hematoxylin and eosin (HE).

Determination of cytokine concentrations in the aqueous 
humor 

The levels of tumor necrosis factor α (TNF-α), interleukin 
(IL)-1β, IL-6, monocyte chemoattractant protein 1  
(MCP-1), IL-8, transforming growth factor β (TGF-β), 
and vascular endothelial growth factor A (VEGFA) in the 
aqueous humor were measured using commercial enzyme-
linked immunosorbent assay (ELISA) kits (Elabscience 
Company, Wuhan, China) according to the manufacturer’s 
instructions.

Immunocytochemistry 

Histological slices were dewaxed, rehydrated, and treated 
with 3% hydrogen peroxide for 10 minutes to inactivate the 
endogenous peroxidase. Antigen repaired was performed 
using 40× antigen repair liquid, followed by blocking in 
10% normal goat serum for 1 hour at room temperature. 
The slices were then incubated with primary antibodies 
against AQP1 (1:500, 1/A5F6, Bio-Rad, Shanghai, China), 
CD68 (1:200, ab955, Abcam, Cambridge, MA, USA), AQP3 
(1:200, ab153694, Abcam), or AQP5 (1:100, SCBT, Dallas, 
TX, USA) at 4 ℃ overnight, followed by goat anti-mouse, 
goat anti-rabbit, or monkey anti-goat CY3 secondary 
antibodies (SA00009, Proteintech, Wuhan, China) away 
from light for 1 hour at room temperature. Slides were then 
counterstained with Hoechst and mounted.

Quantitative real-time polymerase chain reaction  
(qRT-PCR)

Total RNA was extracted from the cornea using RNeasy 
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mini  kits  (Qiagen,  Venlo,  Netherlands) .  Reverse 
transcription was performed with the SuperScript® III 
First-Strand Synthesis System (Life Tech, Shanghai, China) 

according to the manufacturer’s instructions using 1 g 
total RNA. qRT-PCR was performed using the SYBR® 
Green PCR Master Mix (Life Tech) on an ABI 7300 
system (Applied Biosystems, Foster City, CA, USA) with 
the following program: 95 ℃ for 3 minutes followed by 
40 cycles of 95 ℃ for 15 seconds, 55 ℃ for 15 seconds, 
and 68 ℃ for 30 seconds. The relative transcription levels 
were calculated using the 2−ΔΔCt method with β-actin as 
the internal control. The primer sequences were listed in  
Table 1.

Western blot

The nucleoproteins were extracted using the Nucleoprotein 
Extracted Kit (Bestbio, Shanghai, China), according to the 
manufacturer’s instructions. Total protein was extracted 
using the following conventional method. Tissues were 
lysed in RIPA buffer (50 mM Tris-Cl pH7.4, 150 mM NaCl, 
1% NP40, 0.25% Na-deoxycholate) containing 1× complete 
protease inhibitor cocktail (Roche Diagnostics, Indianapolis, 
IN, USA). The samples were vigorously vortexed for 
15 seconds and centrifuged at 10,000 g for 15 minutes  
at 4 ℃. Total protein (40 μg) was resolved on 8% sodium 
dodecyl sulfate polyacrylamide gels and transferred 
onto polyvinylidene fluoride (PVDF) membranes. The 
membranes were blocked for 30 minutes with 5% nonfat 
milk in phosphate buffered saline Tween (PBST; 0.1% 
Tween 20 in PBS) at room temperature, incubated with 
specific primary antibodies at 4 ℃ overnight, washed 3 
times with PBST, and incubated with the appropriate 
secondary horseradish peroxidase-conjugated antibody 
(Pierce Antibody, Thermo Scientific, Shanghai, China) for 
60 minutes at room temperature. The primary antibodies 
used were p65 (bs-0465R; Bioss, China), lamin B (ab8982; 
Abcam), and β-actin (ab8227; Abcam). The specific 
protein bands were detected with Immun-StarTM Western 
Chemiluminescence kit (Bio-Rad). 

Statistical analysis

The data was expressed as mean ± standard deviation. The 
differences between groups were analyzed by one way 
analysis of variance using GraphPad Prism 5 and Origin 
6.1. A P value less than 0.05 was considered statistically 
significant.

Table 1 Primers sequences of the genus rabbit

Gene Primer Sequence (5'-3')

IL-6 Forward GCGGCCTCACAAACTTCCTG

Reverse GGTGTGTTCTGACCGTGGGA

TNF-α Forward ATCGGCCCTCAGGAGGAAGA

Reverse CGTGGGCTAGAGGCTTGTCA

MCP-1 Forward GCTCTGCTTGCTGCCATTCT

Reverse ACGTAGATGGCCACGTCCTG

IL-1β Forward CTGCTCGCAGACACCCTCAT

Reverse CGTGCCAGACAACACCAAGG

IL-8 Forward CTGCTCGCAGACACCCTCAT

Reverse TTGAGGCAGCTGTGCAGGAA

TGF-β Forward GCTCCTTGGACGGATGCAGA

Reverse GGCCACGACGGGAACTTCTA

VEGFA Forward AGAGTGGTGGGAGGGCAGAT

Reverse GCCTCGGCTTGTCACATCTC

AQP1 Forward CTGGGACACCTGTTGGCGAT

Reverse CCACCCAGAAGATCCAGTGGT

AQP3 Forward TGAACCCTGCCGTGACCTTT

Reverse CAAAGATGCCTGCTGTGCCA

AQP5 Forward TGGTGCTGGCATCCTCTACG

Reverse GCGTGAGTCGGTGGAAGAGA

CD68 Forward CCTACCACTGGCCACGGAAA

Reverse GCCTGGGCTAGGACTTGGAG

β-actin Forward AGGGCGTCATGGTGGGTATG

Reverse GCCGTGCTCGATGGGATACT

IL, interleukin; TNF-α, tumor necrosis factor α; MCP-1, monocyte 
chemoattractant protein 1; TGF-β. transforming growth factor β; 
VEGFA, vascular endothelial growth factor A; AQP, aquaporin.
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Results

Seawater immersion aggravates penetrating explosion 
injuries to the cornea

Penetrating explosion injury and injury followed by 
seawater immersion caused progressive damage to corneal 
tissues. One day after injury, the epithelium was significantly 
damaged and seawater immersion worsened the damage, 
which was alleviated by neomycin/polymyxin B/DXM 
(NPD) eye drop treatment (Figure 1A). At 7 days post-
injury, prominent apoptosis of the corneal epithelial cells 
could be observed, as well as vacuolar degeneration and 
disarrangement of endothelial cells. Seawater immersion 
after injury caused corneal atrophy, increased apoptosis 
of epithelial cells, more vacuoles, and disintegration of 
the endothelium (Figure 1A). Moreover, the amount of 
CD68-positive inflammatory cells was markedly elevated 
in the stroma of injured corneas, and further increased in 
corneas that suffered both injury and seawater immersion  
(Figure 1B).

Seawater immersion exacerbates the inflammation caused 
by penetrating explosion injury to the cornea 

To determine the effects of seawater immersion on corneal 
injury caused by penetrating explosions, the levels of 
inflammatory cytokines/chemokines in the aqueous humor 
were examined at 1 day and 7 days after injury. The levels 
of IL-6, IL-1β, IL-8, TNF-α, and MCP-1 in the aqueous 
humor were significantly elevated after penetrating 
explosion injury, and further exacerbated by seawater 
immersion at 1 day (Figure 2A) and 7 days (Figure 2B) after 
injury.

Seawater immersion enhances injury-induced activation  
of NF-κB 

As explosion injury and seawater immersion caused 
significant inflammation in rabbit eyes, the expression of the 
inflammation regulator NF-κB was evaluated by Western 
blot analysis. Penetrating explosion injury caused drastic 
increases in the expression of total and nuclear-localized 
NF-κB p65 protein and these increases were heightened by 
seawater immersion after injury (Figure 3). 

Seawater immersion enhances the changes in corneal AQP 
expression caused by explosion injury 

Since the eye is a water-transporting organ (16), the changes 
in the expression of water channel AQPs in the corneas were 
examined after explosion injury and seawater immersion. 
The mRNA (Figure 4) and protein levels of AQP1 (Figure 5) 
and AQP5 (Figure 6) were significantly elevated following 
penetrating explosion injury, while the expression of AQP3 
(Figure 7) was markedly reduced in corneas after explosion 
injury compared to uninjured control corneas. Post-injury 
seawater immersion further enhanced the changes in the 
expression of the AQPs in the rabbit corneas (Figures 5-7).

Discussion

To mimic injuries suffered during maritime conflicts, a 
rabbit model was established where penetrating explosion 
corneal injury was followed by seawater immersion. The 
molecular, histological, and physiological changes after such 
insults were evaluated. Compared to injury-only corneas, 
injury followed by seawater immersion caused more severe 
and profound damage to the cornea, greater inflammation, 
and more significant changes in the expression of AQPs.

Ocular inflammation is one of the most prominent 
events during corneal wound recovery (16). A blast 
injury causes a series of pathological changes in the 
ocular system, including corneal edema, inflammation, 
glial reactivation, neovascularization, and apoptosis 
(17,18). Exposure to sulfur mustard has been shown to 
cause corneal epithelium loss, corneal edema, limbal 
engorgement, and ocular inflammation in mice, as well 
as significant increases in the expression of IL-1α, IL-
1β, IL-6, MCP-1, and soluble vascular cell adhesion 
molecule-1 (sVCAM-1) in the eyes (19). Nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidases 
2 and 4 have been shown to be upregulated in alkali-
burned human and mouse corneas, and induced oxidative 
stress and inflammation (20). Telomeric repeat binding 
factor 2, interacting protein (TERF2IP) knockout mice 
had substantially lower IL-1α levels compared to wild 
type mice after alkali burn to the cornea (21). Deletion 
of transient receptor potential ankyrin 1 (TRPA1) also 
suppressed corneal inflammation and fibrosis after alkali 
burn (22). Taken together, these results demonstrated that 
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Figure 1 Seawater immersion exacerbated corneal injury caused by explosion incision. (A) Representative micrographs of cornea HE 
staining. Arrows indicated the injury sites. (B) Immunohistochemical staining of CD68 positive cells in rat cornea (original ×100, enlarged 
×400). NPD, neomycin/polymyxin B/dexamethasone.
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Figure 2 Seawater immersion aggravated explosion incision injury induced ocular inflammation. The levels of aqueous humor IL-6, 
TNF-α, IL-1β, IL-8, and MCP-1 at day 1 (A) and day 7 (B) after injury were assessed by ELISA. N=12 eyes. *, P<0.05 compared to CN; ^, 
P<0.05 compared to In; +, P<0.05 compared to In + SW. CN, control; In, injured; SW, seawater immersion; NPD, neomycin/polymyxin B/
dexamethasone; IL, interleukin; MCP-1, monocyte chemoattractant protein 1; TNF-α, tumor necrosis factor α.
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inflammation is a natural pathological process after corneal 
injuries, and this was confirmed in our current study 
showing that proinflammatory cytokines and chemokines 
were upregulated after corneal injury.

AQPs have been shown to participate in many 
physiopathological processes. Pulmonary AQP5 levels 
were reduced after acute kidney injury caused by indoxyl 
sulfate, which was alleviated by oral administration of 
clinically-used oral spherical adsorptive carbon beads AST-
120 (23). X-ray irradiation on the rat thorax caused lung 

inflammation and fibrosis, decreased expression of AQP1, 
as well as a short-term increase (7 days after irradiation) 
followed by a decrease in AQP5 levels in the lungs (24). 
AQP3 has been shown to be significantly upregulated in 
the epidermis around the burn wound edge (25,26), but 
was unchanged after a postmortem burn or mechanical 
wound of skin (26). Moreover, severe burning can cause 
myocardial edema and upregulation of AQP1 and other 
AQPs, including AQP3 (27). Seawater drowning results in 
acute lung injury and overexpression of AQP1 and AQP5 

Figure 3 Explosion incisive injury caused NF-κB activation in cornea was enhanced by seawater immersion. (A) Western blot showed the 
total and nuclear levels of NF-κB p65 protein. Quantification of the total (B) and nuclear (C) NF-κB p65 protein from three experiments. 
N=3. *, P<0.05 compared to CN; #, P<0.05 compared to In; ^, P<0.05 compared to In + SW. CN, control; In, injured; SW, seawater 
immersion; NF-κB, nuclear factor κB; NPD, neomycin/polymyxin B/dexamethasone.

Figure 4 Seawater immersion augmented the changes of AQP transcript levels in cornea caused by explosion incisive injury. *, P<0.05 
compared to CN; #, P<0.05 compared to In; ^, P<0.05 compared to In + SW. CN, control; In, injured; SW, seawater immersion; AQP, 
aquaporin; NPD, neomycin/polymyxin B/dexamethasone.

NF-κB p65 

β-actin 

Nuclear NF-κB p65 

Lamin B

C
N

In
 +

 S
W

In
 +

 S
W

 +
 N

P
D

In

A

p6
5/
β -

ac
tin

p6
5/

la
m

in
 B

1.0

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

CN CN

In + SW In + SW
In+ SW + NPD In+ SW + NPD

In In

B C

*#^

*#^

*# *#

* *

1.5

1.0

0.5

0.0

4

3

2

1

0

3

2

1

0

R
el

at
iv

e 
m

R
N

A
 le

ve
l

R
el

at
iv

e 
m

R
N

A
 le

ve
l

R
el

at
iv

e 
m

R
N

A
 le

ve
l

AQP1 AQP3 AQP5

*#^
*#^

*^

*#

*#

*#

*
*

*

CN In + SW

In+ SW + NPDIn



Wang et al. Seawater immersion exacerbates corneal injuryPage 8 of 12

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(10):589 | https://dx.doi.org/10.21037/atm-22-2198

Control

Injury/Seawater

Injury/Seawater/NPD

Injury

Hoechst AQP1 Merge

Figure 5 Seawater immersion enhanced the upregulation of AQP1 expression in cornea by explosion incisive injury. The protein levels of 
AQP1 in rat cornea were examined by immunohistochemical staining (original ×100, enlarged ×400). AQP, aquaporin; NPD, neomycin/
polymyxin B/dexamethasone.

in lung tissues (28). Together with these studies, the data 
presented herein demonstrated the importance of AQPs 
in maintaining water homeostasis and the pathological 
processes of different tissues including the eyes. AQP1 is 
expressed in corneal endothelium and critical for transport 
water out of the corneal stroma while AQP3 and AQP5 are 
expressed in stratified epithelium of the anterior corneal 
epithelium to transport water away from the cornea (29). 
Moreover, knockout mouse AQP5 inhibited corneal wound 
healing (30), deletion of AQP3 substantially delayed 

mouse corneal re-epithelialization after injury (31), and 
AQP1 levels were decreased in cornea of human corneal 
endothelial disease or mouse corneal endothelial injury (32).

AQPs are intimately involved in inflammation in 
different tissues caused by various stimuli (33-40). AQP5 is 
required for house dust mite-induced airway inflammation, 
as increased expression of inflammatory cytokines (including 
IL-2, IL-4, IL-10, and interferon-γ), mucin hypersecretion, 
and T helper 2 (Th2) inflammatory cells were prominent in 
wild type C57BL/6 mice but suppressed in AQP5 knockout 
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Figure 6 Seawater immersion enhanced the downregulation of AQP5 expression in cornea by explosion incisive injury. The protein levels 
of AQP5 in rat cornea were examined by immunohistochemical staining (original ×100, enlarged ×400). AQP, aquaporin; NPD, neomycin/
polymyxin B/dexamethasone.

mice (33). 
Similarly, AQP3 knockout mice had significantly less 

airway inflammation than wild type mice upon ovalbumin-
induced asthma and AQP3 stimulated the production of 
inflammatory chemokines including CCL22 and CCL24 
by alveolar macrophages and T cell trafficking (34).  
AQP1 expression was upregulated in leukocytes of 
sepsis patients (37) and in fibrochondrocytes of anterior 
cruciate ligament transaction induced osteoarthritic rat  
meniscus (38). In cultured polymorphonuclear granulocytes, 
AQP1 expression was induced by lipopolysaccharide 
(LPS) in a NF-κB dependent manner and accompanied 

by cellular edema and IL-8 production (37). AQP1 
deficiency or blockade impeded macrophage swelling, 
NLRP3 inflammasome activation, and IL-1β mature and  
secretion (35). Similarly, the current study showed that 
seawater immersion of injured eyes resulted in changes 
of AQPs accompanied by macrophage infiltration and 
increases of cytokines/chemokines.

In summary, seawater immersion aggravated corneal 
injury, inflammatory response, cytokine/chemokine 
secretion, and AQP expression, which demonstrated the 
urgent need for fast care for wound individuals during 
maritime events.
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polymyxin B/dexamethasone.
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