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Background: Type 1 diabetes mellitus (T1DM) is a metabolic disease in which the autoimmune 
destruction of pancreatic islet β-cells occurs. This study sought to investigate the role of autophagy-related 
genes and immune cells in the development of T1DM.
Methods: We acquired the raw gene expression profiles of 302 T1DM and 422 normal control peripheral 
blood samples from the Gene Expression Omnibus (GEO) database. The differentially expressed genes 
(DEGs) were identified using the Limma package, and Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analyses were performed. The Search Tool for the Retrieval of 
Interacting Genes/Proteins (https://string-db.org/) and Cytoscape autophagy genes were intersected with 
the DEGs for the immune cell analysis and the correlation analysis.
Results: A total of 568 DEGs were identified in the T1DM and normal samples, of which 301 were 
upregulated and 267 were downregulated. The results of the functional and pathway enrichment analyses 
showed that the DEGs were closely associated with autophagy and immunity. Member RAS oncogene family 
(RAB11A), protein tyrosine phosphatase non-receptor type 11, lamin A/C, heat shock protein70, heat shock 
protein family A member 4, cluster of differentiation 8A, caspase 3 (CASP3), exportin 1, proto-oncogene, 
non-receptor tyrosine kinase, SMAD family member 4, and sirtuin 1 (SIRT1) were located at the center of 
the protein-protein interaction network as the core genes. The peripheral blood T cells were more elevated 
in the T1DM subjects than the normal subjects. RAB11A, CASP3, and SIRT1 are autophagy-associated 
genes. RAB11A and CASP3 were positively correlated with most immune cells, while SIRT1 was negatively 
correlated with most immune cells.
Conclusions: Autophagy-related genes (i.e., RAB11A, CASP3, and SIRT1) and immune cells (i.e., T and B 
cells) may play important regulatory roles in the development of T1DM. Our findings provide novel insights 
into and potential targets for T1DM prediction and treatment.
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Introduction

Type 1 diabetes mellitus (T1DM) is an abnormal nutrient 
metabolism disease caused by the autoimmune destruction 
of pancreatic islet β-cells, which often results in absolute 
insulin deficiency (1,2). The global incidence of T1DM 
increases by approximately 3% per year, but the incidence 
varies widely between regions, such that there is an annual 
incidence of 57.6 per 100,000 in Finland but only 0.1 per 
100,000 in China (3-5). Additionally, T1DM tends to 
occur in younger individuals, with children and adolescents 
accounting for approximately 90% of all T1DM patients 
in Europe and the United States, and T1DM is the most 
common form of childhood diabetes in most parts of the 
world (4,6). As T1DM is incurable and requires lifelong 
insulin therapy to maintain blood glucose levels, and the 
metabolic disorders caused by T1DM have serious adverse 
effects on children, adolescents, and pregnant women 
of childbearing age, T1DM is an important disease that 
seriously threatens the health of young adults and children 
and adolescents (7,8).

Despite extensive research, the pathogenesis of T1DM 
has not been fully elucidated. T1DM is an autoimmune 
disease caused by T cells; programmed cell death protein 1 
(PD-1) is expressed in activated T cells, and programmed 
death-ligand 1 (PD-L1) deficiency acts directly on 
pathogenic T cells and increases individuals’ susceptibility 
to T1DM, while regulatory T cells and B cells prevent 
T1DM independently of the PD-1/PD-L1 pathway (9). 
Additionally, natural killer (NK) cells, Th1 cells, and 
regulatory T cells have been found to play important roles 
in the development of T1DM (10,11). In recent years, the 
positive effects of autophagy on organisms’ health have 
been widely recognized, and various studies have established 
that there is a close relationship between chronic metabolic 
diseases and autophagy, and more specifically, that the 
dysregulation of autophagy may affect the normal function 
of the body, and thus lead to the development of chronic 
metabolic diseases (12-14). Autophagy in the pathogenesis 
of T1DM is mainly reflected in the induction of antioxidant 
responses in cells, the reduction of endoplasmic reticulum 
stress, and the prevention of islet β-cell apoptosis, but 
excessive autophagy can lead to islet β-cell damage and 
death (15-17). As an intracellular protein degradation 
pathway and an organismal defense mechanism, diabetes 
affects cellular autophagy through oxidative stress response, 
endoplasmic reticulum stress, and mammalian target of 
rapamycin (mTOR)-dependent signaling pathways (18-20). 

In addition, autophagy significantly controls the immune 
response by regulating the function of immune cells and 
cytokine production (21).

Currently, the diagnosis of T1DM remains clinical, 
and there is a lack of sensitive and effective biomarkers 
that can be used as early predictors of T1DM. The roles 
of genes related to T1DM pathogenesis, immune cells, 
and autophagy, and their relationships to T1DM have 
not yet been clarified. Thus, this study sought to uncover 
potential biomarkers related to autophagy in T1DM using 
a bioinformatics approach and to provide a theoretical basis 
for predicting T1DM and developing targeted therapeutic 
agents. We present the following article in accordance with 
the STREGA reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-1812/rc).

Methods

Raw data

We acquired the transcriptome data of GSE30211 
(including 302 T1DM samples and 422 healthy samples) 
from the Gene Expression Omnibus database. The 
sequence data from the different platforms were merged and 
normalized for further analysis. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013).

Differentially expressed genes (DEGs) between the T1DM 
and healthy samples

Using Limma package in R software, a differential analysis 
of the T1DM and healthy samples was conducted to 
identify the DEGs. The heatmap and volcano map of the 
DEGs were generated using the ggplot2 package.

Functional enrichment analysis of the DEGs

We performed a Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) functional 
enrichment analysis using the clusterProfiler package in R, 
and the results were displayed using the ggplot2 package.

Construction of the protein-protein interaction (PPI) 
network

The PPI network of the DEGs was constructed using 
Search Tool for the Retrieval of Interacting Genes/Proteins 

https://atm.amegroups.com/article/view/10.21037/atm-22-1812/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-1812/rc
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Figure 1 PCA analysis before and after data normalization. (A) PCA analysis after data normalization; (B) PCA analysis before data 
normalization. GPL13667, GPL6102 and GPL6947 are three different sequencing platforms. PCA, principal component analysis; PC1, 
principal component 1; PC2, principal component 2.

(STRING; https://string-db.org/) and displayed using 
Cytoscape software. The cytoHubba plugin was used to 
calculate the top 10 proteins for the number of link nodes.

Acquisition of hub autophagy genes of T1DM

Autophagy-related genes were obtained from the Human 
Autophagy Database. The T1DM autophagy-related hub 
genes were obtained from the intersection of the DEGs. 
The top 10 PPI genes and the autophagy-related genes 
were displayed using the VennDiagram package.

Immune-infiltration analysis of T1DM

We conducted a single-sample gene set enrichment analysis 
(ssGSEA) to analyze the immune landscapes of the T1DM 
and healthy samples. We compared the infiltration of 28 
immune cells in T1DM patients and healthy samples. 
Further, we also analyzed the relationship between the 
abundance of the 28 immune cells and the hub autophagy-
related genes in T1DM.

Statistical analysis

All the statistical analyses were performed in R software. 
The difference analysis and correlation analysis were 
performed using the Wilcoxon and Spearman tests, 
respectively. A P value <0.05 was considered statistically 
significant.

Results

Principal component analysis (PCA) of raw transcriptome 
data before and after data normalization

The PCA indicated that the principal components of the 
gene expression levels of the 3 platforms were at the same 
level after standardization (Figure 1A); however, before 
normalization, the principal components of the gene 
expression levels differed significantly (Figure 1B).

DEGs in T1DM

The T1DM-related DEGs showed that compared to the 
healthy samples, 301 genes were upregulated and 267 genes 
were downregulated in the T1DM samples (Figure 2).

Functional enrichment analysis of the T1DM-related 
DEGs

The results of the GO functional enrichment analysis of the 
T1DM-related DEGs indicated that the top 5 biological 
processes in T1DM were blood coagulation, hemostasis, 
coagulation, the regulation of small GTPase-mediated 
signal transduction, and platelet activation, while the top 5 
cell components were the cell leading edge, lamellipodium, 
cortical cytoskeleton, nuclear inner membrane, and 
tetraspanin-enriched microdomain, and the top 5 molecular 
functions were the transferase activity transferring alkyl 
or aryl (other than methyl) groups, glutathione transferase 
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Figure 2 DEGs in T1DM. (A) Heatmap of the top 50 DEGs in T1DM; (B) volcano plot of all the DEGs in T1DM; red and green 
represent the upregulated and downregulated genes, respectively. DEGs, differentially expressed genes; FC, fold change; T1DM, type 1 
diabetes mellitus.

activity, glutathione binding, oligopeptide binding, and 
GDP-dissociation inhibitor activity (Figure 3A,3B).

The results of the KEGG analysis indicated that the top 
10 enrichment pathways were endocytosis, hematopoietic 
cell lineage, nucleocytoplasmic transport, glutathione 
metabolism, platinum drug resistance, the metabolism of 
xenobiotics by cytochrome P450, the drug metabolism 
of other enzymes, the extracellular matrix-receptor 
interaction, the chemical carcinogenesis of deoxyribonucleic 
acid adducts, and the drug metabolism of cytochrome P450 
(Figure 3C,3D).

Top 10 ranked proteins of the PPI network

The PPI network of the DEGs indicated that the top 10 
ranked proteins of the DEGs in the PPI network were 
RAB11A (a member of the RAS oncogene family), protein 
tyrosine phosphatase non-receptor type 11 (PTPN11), 
lamin A/C (LMNA), heat shock protein family A (HSP70), 
heat shock protein family A member 4 (HSPA4), cluster of 
differentiation 8A (CD8A), caspase 3 (CASP3), exportin 1 
(XPO1), SRC proto-oncogene, non-receptor tyrosine kinase 
(SRC), SMAD family member 4 (SMAD4), and sirtuin 1 

(SIRT1) (Figure 4).

Acquisition and expression levels of the T1DM autophagy-
related genes

The intersection of the DEGs, PPI network, and 
autophagy-related genes showed that T1DM had the 
following 3 autophagy-related genes: CASP3, RAB11A, and 
SIRT1 (Figure 5A). CASP3, RAB11A, and SIRT1 were more 
lowly expressed in the T1DM samples than the healthy 
samples (Figure 5B-5D).

ssGSEA analysis of immune infiltration in the T1DM and 
healthy samples

Compared to the healthy samples, activated CD8 T cells, 
NK cells, activated dendritic cells, and monocytes were 
highly infiltrated in T1DM, while activated B cells, mature 
B cells, and Mast cells were lowly infiltrated in T1DM 
(Figure 6A). The correlation analysis showed that CASP3 
and RAB11A were positively correlated with the abundance 
of most immune cell infiltrates, while SIRT1 was negatively 
correlated with the abundance of most immune cell 
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Figure 3 Functional enrichment analysis results of the T1DM-related DEGs. (A) Bubble diagram of the GO enrichment function analysis; 
(B) circle diagram of specific enrichment genes involved in the biological process; (C) bubble diagram of the top 10 KEGG pathways; (D) 
circle diagram of the specific enrichment genes of the top 5 signaling pathways. The size of the bubble represents the number of enrichment 
genes, and the color represents the q value and P value. DEGs, differentially expressed genes; ECM, extracellular matrix; GO, Gene 
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; T1DM, type 1 diabetes mellitus.

infiltrates (Figure 6B).

Discussion

Patients with diabetes mellitus often have immune 
abnormalities, such as reduced immune cells and reduced 
NK cell activity, and are at high risk of developing various 
infections (22). Diabetes is one of the most common 
comorbidities in patients and is a potential risk factor for 
the poor prognosis of patients with Middle-East respiratory 
syndrome, severe acute respiratory syndrome, coronavirus 
disease 2019, and cancer (23-26). Identifying and analyzing 

the signaling pathways associated with the development 
of T1DM will extend understandings of the pathogenesis 
of T1DM and provide a basis for the early diagnosis and 
treatment of T1DM and the prevention of concomitant 
diseases.

In this study, based on the GSE30211 data set, 422 
healthy samples and 320 T1DM cases were analyzed, and 
568 DEGs were obtained in both groups, of which 301 
genes were upregulated and 267 genes were downregulated. 
The results of the functional and pathway enrichment 
analysis showed that the DEGs were closely associated with 
autophagy and immunity, which led us to speculate that 
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these molecules are active in T1DM pathogenesis. RAB11A, 
PTPN11, LMNA, HSP70, HSPA4, CD8A, CASP3, XPO1, 
SRC, SMAD4, and SIRT1 were located at the center of the 
PPI network as core genes, and thus have the potential to 
be therapeutic targets for T1DM.

To screen for autophagy-related biomarkers in T1DM, 
we performed a cross-tab analysis and identified a total of 
3 candidate autophagy-related biomarkers (i.e., RAB11A, 
CASP3, and SIRT1). RAB11A encodes a protein belonging 
to the Rab family of the small GTPase superfamily, which 
is associated with constitutive and regulatory secretory 
pathways and may be involved in protein transport (27). 
RAB11A plays an important role in the membrane receptor-
mediated cytokinesis of macromolecules, and the high 
expression of RAB11A inhibits cellular autophagy and 
enhances the proliferation of pancreatic cancer cells (28,29). 
Recent research suggests that RAB11A may be an intra-
nuclear module affecting T2DM (30). Multiple cell death 
modalities, such as apoptosis, autophagy, and necrosis, 
have been found to be associated with the pathogenesis 
of T1DM. The protein encoded by the CASP3 gene is 
a member of the cysteine-aspartate protease family, and 
the sequential activation of cysteine plays a central role 
in the execution phase of apoptosis (31). Tumor necrosis 

factor activates CASP3, which causes apoptosis in T1DM 
islet β-cells (32). Recent research has shown that CASP3 
can predict the onset of diabetic events (33). However, 
the exact mechanism of CASP3 in TIDM is not yet clear. 
SIRT1, a NAD-dependent protein deacetylase involved in 
the amelioration of several metabolic diseases, increases 
insulin sensitivity in the liver, and is strongly associated 
with insulin resistance in different pathological states (34).  
SIRT1 regulates the activity of forkhead box O1 (FOXO1) 
through the regulation of the occurrence of autophagy (35).  
Additionally, SIRT1 is a potential target for protecting 
pancreatic β-cells from hypoxic damage during islet 
transplantation (36). The above report is consistent with 
our findings that RAB11A, CASP3, and SIRT1 are all 
lowly expressed in T1DM. Thus, these 3 genes represent 
promising biomarkers and therapeutic targets.

Additionally, we analyzed the differences in the levels of 
immune cells in T1DM and healthy subjects and found that 
activated CD8 T cells, NK cells, activated dendritic cells, 
and monocytes were higher in T1DM patients than normal 
subjects, and activated B cells, immature B cells, and mast 
cells were lower in T1DM patients than normal subjects, 
indicating that these immune cells play an important role in 
the development of T1DM. The maintenance of immune 
homeostasis is the result of an interaction between immune 
cells and regulatory immune cells. A study has reported that 
the proportion of both B cells and follicular helper T (Tfh) 
cells is significantly higher in T1DM patients than healthy 
patients, and the suppression of B cell function delays 
the onset of diabetes to some extent (37). Tfh cells play 
a key role in the process of helper humoral immunity by 
secreting interlukin-21, inducing the massive proliferation 
of B cells, and differentiating to form plasma cells (38). In 
relation to T cells, current studies have shown an increase 
in Th1 and Th17 cells and a decrease in regulatory T cell 
subpopulations during T1DM disease episodes (39,40). 
In the peripheral blood of children with T1DM, the 
percentage of intermediate T cells and memory T cells 
is increased, and both are positively correlated with and 
specific to T1DM (41). Our results showed that T cells 
were increased and B cells were decreased in patients with 
T1DM, which differed from the current report, suggesting 
that cellular immunity is activated, and humoral immunity 
is suppressed in T1DM patients, which in turn suggests that 
T1DM may be in a stable phase and may be an important 
cause of islet cell damage. Subsequently, we examined 
the correlations between RAB11A, CASP3, and SIRT1 
and immune cells, and found that RAB11A and CASP3 

RAB11A

PTPN11

LMNA

HSPA4

CD8A

CASP3

XPO1

SRC

SMAD4

SIRT1

Figure 4 Top 10 ranked proteins of the PPI network. The 
connection represents the interaction between proteins; the redder 
the color, the higher the number of links. CASP3, caspase 3; 
CD8A, cluster of differentiation 8A; HSPA4, heat shock protein 
family A member 4; LMNA, lamin A/C; PPI, protein-protein 
interaction; PTPN11, protein tyrosine phosphatase non-receptor 
type 11; RAB11A, member RAS oncogene family; SIRT1, sirtuin 
1; SMAD4, SMAD family member 4; SRC, SRC proto-oncogene, 
non-receptor tyrosine kinase; XPO1, exportin 1.
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Figure 5 Acquisition and expression level of T1DM autophagy-related genes. (A) A Venn diagram showing the intersection of the DEGs, 
PPI network and autophagy-related genes; (B) expression level of CASP3 in the healthy and T1DM samples; (C) expression level of RAB11A 
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were positively correlated with most of the immune cells, 
and SIRT1 was negatively correlated with most of the 
immune cells. Thus, SIRT1 may be associated with T1DM 
stabilization, while RAB11A and CASP3 may be associated 
with TIDM progression.

We systematically analyzed DEGs, autophagy-related 
genes, and immune cells and their relationships with 
T1DM. However, this study had a number of limitations, 
including that only a single data set was analyzed and that 
experimental validation is required. Further expansion of 
the data set and population and basic experiments need 
to be conducted to reveal the detailed mechanisms of 
autophagy-related genes in T1DM.

Conclusions

In this study, RAB11A, CASP3, and SIRT1 were identified 
as potential autophagy-related biomarkers and clinical 
therapeutic targets in T1DM. This study revealed for the 
first time the association between autophagy-associated 
genes and immune cells. However, further experiments 
still need to be conducted to explore the functions and 
mechanisms of autophagy-related genes in T1DM.
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