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Background: Cancer-associated metabolic reprogramming promotes cancer cell differentiation, growth, 
and influences the tumor immune microenvironment (TIME) to promote hepatocellular carcinoma (HCC) 
progression. However, the clinical significance of metabolism-related lncRNA remains largely unexplored. 
Methods: Based on The Cancer Genome Atlas (TCGA) Liver hepatocellular carcinoma (LIHC) dataset, 
we identified characteristic prognostic long non-coding RNAs (lncRNAs) and construct metabolism-related 
lncRNA prognostic signature for HCC. Gender, age, grade, stage and TP53 status were used as covariates 
were used to assess the prognostic capacity of the characteristic lncRNA signature. Subsequently, the 
molecular and immune characteristics and drug sensitivity in metabolism-related lncRNA signature defined 
subgroups were analyzed.
Results: We identified 34 metabolism-related lncRNAs significantly associated with the prognosis of 
HCC (P<0.05). Subsequently, we constructed a multigene signature based on 9 characteristics prognostic 
lncRNAs and classified HCC patients into high- and low-risk groups based on cutoff values. We found the 
lncRNA signature [hazard ratio (HR) =3.55 (2.44–5.15), P<0.001] to be significantly associated with survival. 
The receiver operating characteristic curve (ROC) curves area under the curve (AUC) values for 1-, 3-, and 
5-year survival were 0.811, 0.773, and 0.753, respectively. In univariate and multivariate Cox regression 
analyses, prognostic characteristic lncRNAs were the most crucial prognostic factor besides the stage. The 
prognostic signature was subsequently validated in the test set. In addition, Gene Ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) analyses revealed 
potential biological features and signaling pathways associated with the prognostic signature. We constructed 
a nomogram including risk groups and clinical parameters (age, gender, grade, and stage). Calibration plots 
and decision curve analysis (DCA) showed that our nomogram had a good predictive performance. Finally, 
we found reduced expression of immune-activated cells in the high-risk group.
Conclusions: The metabolism-related lncRNA signature is a promising biomarker to distinguish the 
prognosis and an immune characteristic in HCC.
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Introduction

Primary liver cancer is one of the 7 most common 
malignancies worldwide and is also a leading cause of 
cancer-related death (1). Hepatocellular carcinoma 
(HCC) is the most common type of primary liver cancer, 
accounting for approximately 80% of all cases (2). To 
date, multiple risk factors have been associated with the 
development and progression of HCC, including chronic 
infection with viruses, alcohol abuse, chronic obesity, or 
exposure to aflatoxins (2,3). Despite significant advances in 
clinical cancer treatment, the overall prognosis of patients 
with HCC remains poor due to high rates of postoperative 
tumor recurrence and metastasis (4). Previous study has 
shown that the progression of HCC is a complex process 
involving multiple factors and genes (5). The underlying 
molecular mechanisms of HCC development are unknown, 
and therefore, a better understanding of these is important 
for the prognosis and targeted therapy of HCC.

Cancer  cannot  develop without  the metabol ic 
reprogramming of cells, which is a direct and indirect 
consequence of oncogenic mutations (6,7). Cancer 
metabolic reprogramming can take many forms, such as 
the classic Warburg effect (8). Regardless of the mode of 
metabolic reprogramming, a common feature of cancer 
cells is the ability to obtain nutrients necessary for growth 
from a nutrient-deficient acidic environment and use these 
nutrients to maintain their growth transfer viability and 
build new material (9). The altered intra- and extra-cellular 
metabolites accompanying cancer-associated metabolic 
reprogramming are accompanied by corresponding 
changes in gene expression, which further affects cell 
differentiation and can even influence the tumor immune 
microenvironment (TIME) (10,11). The liver is the central 
metabolic organ that maintains blood glucose levels, 
ammonia metabolism, biotransformation of xenobiotics 
and endogenous metabolic by-products of metabolism, and 
bile synthesis under the action of multiple enzymes and 
pathways (12). Targeting cancer metabolic reprogramming 
therapy is expected to improve the risk of recurrence and 
metastasis in patients with HCC.

RNA-sequencing have revealed distinct long non-
coding RNA (lncRNA) expression profiles in HCC tissues 
and several previously published papers have reported that 
lncRNAs affect metabolic reprogramming in HCC (13,14). 
Perturbation of the CCT3-LINC00326 regulatory network 
led to decreased lipid accumulation and inhibited HCC 
growth (15). LINC01234 was highly expressed in HCC and 
associated with poor prognosis. Mechanistically, LINC01234 
downregulated the expression of Argininosuccinate synthase 1  
(ASS1), upregulated aspartate level and activation of the 
mammalian target of rapamycin pathway (16). Nevertheless, 
a single metabolism-related lncRNA cannot reflect the 
metabolic panorama of tumor tissue. Therefore, we aimed 
to construct a metabolism-related lncRNA prognosis 
signature for HCC and clarify the molecular and immune 
characteristics in defined subgroups. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-2194/rc).

Methods

Data acquisition

After approval from the database of Genotypes and 
Phenotypes (dbGaP) data access committee, the raw RNA 
sequencing (RNA-Seq) datasets and clinical information for 
LIHC patients were downloaded and extracted from TCGA 
(https://portal.gdc.cancer.gov/) database. All available 
raw RNA-seq data in the database were downloaded and 
normalized by using R language (version 4.1.2; https://
www.r-project.org/). Patients with a precise pathological 
diagnosis, gene expression, and clinical data were included 
in our study. In the end, we obtained 343 samples after 
excluding patients with no mutation information. The 
clinical data collected from 343 LIHC patients included 
age, gender, grade, pathologic stage, tumor-node-metastasis 
(TNM), TP53 mutational status, survival status, and 
survival time. Baseline characteristics of all included LIHC 
cases are summarized in Table 1. Then, TCGA-LIHC 
patients with complete clinical information were split into 
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Table 1 Correlation between clinicopathologic characteristics and the metabolism-related lncRNA signature in the TCGA-LIHC cohort 

Characteristics Training (n=207) Testing (n=136) Total (n=343) P value FDR

Age (years)

Mean ± SD 60.58±13.31 57.59±12.97 59.40±13.24

Median (min–max) 64.00 (16.00–90.00) 59.00 (18.00–85.00) 61.00 (16.00–90.00)

Gender, n (%) 0.98 1

Male 140 (40.82) 93 (27.11) 233 (67.93)

Female 67 (19.53) 43 (12.54) 110 (32.07)

Grade, n (%) 0.79 1

Unknown 2 (0.58) 3 (0.87) 5 (1.46)

G4 7 (2.04) 5 (1.46) 12 (3.50)

G3 68 (19.83) 44 (12.83) 112 (32.65)

G2 95 (27.70) 66 (19.24) 161 (46.94)

G1 35 (10.20) 18 (5.25) 53 (15.45)

Stage, n (%) 0.39 1

Unknown 13 (3.79) 9 (2.62) 22 (6.41)

Stage IV 3 (0.87) 0 (0.0e+0) 3 (0.87)

Stage III 44 (12.83) 36 (10.50) 80 (23.32)

Stage II 44 (12.83) 33 (9.62) 77 (22.45)

Stage I 103 (30.03) 58 (16.91) 161 (46.94)

T, n (%) 0.45 1

Unknown 3 (0.87) 0 (0.0e+0) 3 (0.87)

T4 8 (2.33) 5 (1.46) 13 (3.79)

T3 44 (12.83) 31 (9.04) 75 (21.87)

T2 46 (13.41) 38 (11.08) 84 (24.49)

T1 106 (30.90) 62 (18.08) 168 (48.98)

M, n (%) 0.23 1

Unknown 61 (17.78) 34 (9.91) 95 (27.70)

M1 3 (0.87) 0 (0.0e+0) 3 (0.87)

M0 143 (41.69) 102 (29.74) 245 (71.43)

N, n (%) 0.57 1

Unknown 63 (18.37) 38 (11.08) 101 (29.45)

N1 1 (0.29) 2 (0.58) 3 (0.87)

N0 143 (41.69) 96 (27.99) 239 (69.68)

lncRNA, long non-coding RNA; TCGA, The Cancer Genome Atlas; LIHC, liver hepatocellular carcinoma; FDR, false discovery rate. 
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a training cohort (n=207) and a testing cohort (internal 
validation set; n=136) randomly. The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013).

Identification of hub metabolism-related lncRNAs

Metabolism-related lncRNAs were searched for through 
Pearson correlation analysis between messenger RNA 
(mRNA) and lncRNA expression matrices extracted from 
the enrolled TCGA-LIHC cohort and metabolism-related 
genes obtained from gene set enrichment analysis (GSEA). 
The screening criteria were correlation coefficient 
|R2|>0.4 and P value <0.001. Tumor and paired normal 
tissue samples were screened from the samples to which 
metabolism-related lncRNAs belonged. The “limma” 
R package was used to select differentially expressed 
metabolism-related lncRNAs. The screening threshold 
was false discovery rate (FDR) <0.05 and |log2FC| ≥1. 
Univariate Cox regression analysis was performed to 
identify the metabolism-related lncRNAs significantly 
correlated with the overall survival (OS) in TCGA-LIHC 
cohort (P<0.05) by using the “survival” R package. To 
obtain the hub genes, we set the threshold as hazard ratio 
(HR) >1.35 or HR <0.65 and P<0.01 in Cox regression 
analysis and finally obtained a total of 34 hub metabolism-
related lncRNAs. These identified hub prognosis-related 
characteristic lncRNAs were used to construct a multigene 
signature.

Construction and validation of the metabolism-related 
lncRNAs prognostic signature

The least absolute shrinkage and selection operator 
(LASSO) Cox regression analysis

and construction of metabolism-related lncRNAs 
prognostic signature were performed as previously 
described (17). All HCC cases in the training set were 
separated into two groups by the cutoff point. Survival 
curves of two groups were constructed by the Kaplan-
Meier method. To evaluate the predictive accuracy of the 
prognostic metabolism-related lncRNA signature, time-
dependent ROC curves were derived with the “survival 
ROC” R package and the corresponding area under curve 
(AUC) values calculated. Furthermore, the training set 
applied univariate and multivariate Cox regression analyses 
to determine the effect of metabolism-related lncRNAs 
prognostic signature and clinical parameters (including age, 

gender, grade, stage, and TP53 mutational status) on OS. 
Finally, we used the testing set as internal validation set to 
examine the reliability of the prognostic metabolism-related 
lncRNA signature. 

Identification of the metabolism-related lncRNAs 
prognostic signature associated biological characteristics

To explore the associated biological characteristics and 
potential signaling pathways, all the hub prognosis-
related characteristic lncRNAs were subjected to Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis. The Cell-type Identification 
by Estimating Relative Subsets of RNA Transcripts 
(CIBERSORT) algorithm and single sample gene 
set enrichment analysis (ssGSEA) were performed as 
previously described (18). The “GSVA” R package was 
used to calculate the enrichment score of each sample. The 
“pRRophetic” R package was used to predict differences in 
drug sensitivity between high- and low-risk groups. Somatic 
mutation analysis between the 2 groups was performed 
using the “maftools” R package.

Evaluation of the clinical validity of the prognostic 
signature

We used age, gender, grade, stage, and risk score to 
construct a nomogram for the training set via the “rms” 
R package. Calibration curves were plotted to evaluate 
actual and predicted survival consistency. The “ggDCA” 
R package was used to plot decision curve analysis (DCA) 
curves to verify the accuracy of prognostic signature.

Statistical analysis

Wilcoxon and Kruskal-Wallis tests were used to compare 
continuous variables. Categorical variables were analyzed 
using the chi-square test. Mann-Whitney test was used 
to compare the ssGSEA scores of immune characteristics 
between the high- and low-risk groups. We adjusted P 
values with the Benjamini & Hochberg method. The 
OS between different groups was compared by Kaplan-
Meier analysis with the log-rank test. Significant variables 
on univariate Cox regression analysis (P<0.05) were 
subjected to multivariate Cox regression analysis to identify 
independent predictors of OS. All P values were based 
on a 2-sided statistical test, and P<0.05 was considered 
statistically significant. All statistical analyses were 
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conducted using the R software.

Results

Identification of differential metabolism-related lncRNAs 
and visualization of their biological functions

The acquisition of metabolism-related lncRNAs in the 

current study is displayed in the flowchart in Figure 1A. 
All differentially expressed genes and metabolism-related 
lncRNAs are presented in the form of volcano maps  
(Figure 1B,1C). In GO and KEGG analysis, characteristic 
lncRNAs were significantly associated with metabolic 
pathways, such as glycolytic pathways, certain amino acid 
metabolism, and so on (Figure 1D,1E).

Figure 1 Acquisition of hub metabolism-related lncRNAs and biological functions based on TCGA database in LIHC patients. (A) 
Flowchart for bioinformatics analysis of publicly available data from TCGA databases. (B,C) The heatmap showed differential expression 
in metabolism-related genes (B) and metabolism-related lncRNAs (C). Red means up-regulated, green means down-regulated, and grey 
means no significance. (D,E) GO, and KEGG analysis demonstrated the biological functions of hub metabolism-related lncRNAs. lncRNA, 
long non-coding RNA; TCGA, The Cancer Genome Atlas; LIHC, liver hepatocellular carcinoma; GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.
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Construction of the metabolism-related lncRNAs prognostic 
signature model

Univariate Cox regression analysis was performed on 
enrolled HCC patients to explore the prognostic value 
of metabolism-related lncRNAs. A total of 34 lncRNAs 
were screened for prognosis-related lncRNAs based on the 
criterion of P<0.05. The forest map showing the risk ratios 
and corresponding confidence intervals for each prognosis-
related lncRNAs showed that most of these genes were 
risk genes (Figure 2A). Next, these prognostic lncRNAs 
were included in further LASSO Cox regression analysis. 
The prognostic lncRNAs with the highest contribution to 
the OS of HCC were generated by performing LASSO 
Cox regression analysis in the training cohort. The 
corresponding regression coefficients were calculated. 
Figure 2B illustrates that the model performed best with 
9 lncRNAs involved. Figure 2C indicates the spectrum of 

LASSO regression coefficients for the 9 lncRNAs.

Evaluation of the prognostic model

Based on the HCC prognostic signature, we divided 
the cases into high- and low-risk groups. Kaplan-Meier 
survival curves suggested that HCC patients with higher 
risk scores had less favorable OS in the training, test, and 
entire cohorts, respectively (Figure 3A-3C, upper). The 
time-dependent ROC curve indicated that the prognostic 
signature model could accurately predict prognosis in 3 
separate cohorts (training cohort 1-year AUC =0.811, 3-year 
AUC =0.773, 5-year AUC =0.753; test cohort 1-year AUC 
=0.757, 3-year AUC =0.72, 5-year AUC =0.671; entire 
cohort 1-year AUC =0.789, 3-year AUC =0.752, 5-year 
AUC =0.729; Figure 3A-3C, middle). AUC values higher 
than 0.5 indicate a better prognosis predictive ability. 

Figure 2 Construction of the risk score model in the training cohort. (A) Univariate Cox analysis of 34 hub metabolism-related lncRNAs. (B) 
LASSO coefficient profiles. The two dotted vertical lines indicate the optimal values using the minimum and 1-SE criteria. (C) Candidate 
metabolism-related lncRNAs from the univariate Cox regression analysis were filtered by the LASSO algorithm. Each colored line 
represents a lncRNA, and the axis above indicates the number of nonzero coefficients at the current lambda(λ). lncRNA, long non-coding 
RNA; LASSO, least absolute shrinkage and selection operator.
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Figure 3 Evaluation of the prognostic signature model in different cohorts. (A) Kaplan-Meier survival curve analysis showed the 
relationship of survival time of LIHC patients between high- and low-risk scores (upper). The time-dependent ROC curves for 12-, 36-, and 
60-month OS predictions by the prognostic signature model in the training cohort (middle). Cases were ranked according to the risk score, 
and the correlation between survival time and risk scores was demonstrated using scatter plots. Heatmap showed the correlation between 
characteristic lncRNAs and the prognostic signature model (bottom). The same approach was applied to the test cohort (B) and the entire 
cohort (C). lncRNA, long non-coding RNA; LIHC, liver hepatocellular carcinoma; ROC, Receiver Operating Characteristic; OS, overall 
survival; TPR, true positive rate; FPR, false positive rate.
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Survival status distributions and risk scores were plotted. 
In addition, the characteristic lncRNAs associated with the 
prognostic model in each cohort are presented in the form 
of heat maps (Figure 3A-3C, bottom).

Description and evaluation of the metabolism-related 
lncRNAs as a crucial prognostic factor

Univariable and multivariable Cox Regression analysis 

revealed that metabolism-related lncRNAs signatures and 
stage are independent predictors of HCC survival (P<0.001; 
Figure 4A). Next, a nomogram containing the prognostic 
signature and traditional clinicopathological features was 
used to assess further the accuracy and clinical applicability 
of the prognostic (Figure 4B). The calibration plots 
indicated that the observed versus predicted rates of 1-, 2-, 
and 3-year OS had an excellent concordance in the HCC 
patients (Figure 4C). Similarly, the DCA curves showed the 

Figure 4 Assess the accuracy and clinical applicability of the prognostic signature model in LIHC patients. (A) Univariate and multivariate 
Cox regression analysis showed the correlation between OS and various clinicopathological parameters such as age, gender, grade, 
stage, TP53, and characteristic lncRNAs prognostic signature risk group. The stage and prognostic signature risk group significantly 
correlated with prognosis (P<0.001). (B) The prognostic nomogram with characteristic lncRNAs prognostic signature risk group and 
clinicopathological features were constructed to predict the prognosis of LIHC patients. (C) Calibration curve for nomogram-predicting 1-, 
3-, and 5-year OS. The X-axis is nomogram-predicted survival probability, and the Y-axis is observed survival probability. (D) Decision curve 
analysis for nomogram and stage. (E) A net reduction in intervention per 100 patients results from the two risk prediction models. lncRNA, 
long non-coding RNA; LIHC, liver hepatocellular carcinoma; OS, overall survival; DCA, decision curve analysis.
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accuracy of the prognostic model (Figure 4D,4E). The above 
results indicated that the metabolism-related lncRNAs 
signature could be identified as a crucial prognostic factor 
for HCC patients. 

Stratified analysis of clinical parameters

Based on the optimal cut-off value of the training cohort 
calculated by “survminer” package, entire cohorts were 
classified into high- and low-risk groups. We aimed to 
ascertain whether the prognostic signature could be 
applied to different clinicopathologic subgroups (Figure 5). 
However, subgroup survival analyses found that whether 
age ≥60 or <60 years, gender male or female, tumour stage 
I/II or III/IV, and TP53 mutant or not, the patients in the 
high-risk group were significantly associated with a poor 
prognosis (all P<0.001). 

Correlation between metabolism-related lncRNAs and 
status of TIICs

The TIICs influence tumorigenesis by affecting the 
immune microenvironment.  The TIICs influence 
tumorigenesis by affecting the immune microenvironment. 
We inferred the absolute level of immune infiltrate within 
each sample in the high- and low-risk groups using the 
CIBERSORT algorithm (Figure 6A). The ssGSEA showed 
the differences between the 28 TIICs in the high- and low-
risk groups more clearly (Figure 6B). It could be seen that 
immune-activated cell infiltration was significantly reduced 
in the high-risk group, such as activated B cells, activated 
CD8+T cells, Th1 cells, and NK cells.

Molecular characteristics of patients in the high- and low-
risk groups

We performed GSEA to determine the gene sets enriched 
between the high- and low-risk group. In the low-risk 
group, the enriched gene sets included BILE ACID 
METABOLISM and CHOLESTEROL HOMEOSTASIS 
(Figure 7A), where KRAS SIGNALING DN was enriched 
in the high-risk group (Figure 7B). We predict the drug 
sensitivity of cisplatin and sorafenib using the pRRophetic 
algorithm in the high- and low-risk groups, and the results 
suggested that the high-risk group was less sensitive to both 
drugs (Figure 7C). 

Next, gene variations were detected to more clearly 

elucidate these characteristic lncRNAs' biology. The top 
10 mutated genes shared in the 2 groups were ranked 
by mutation rate (Figure 7D). We found that only TP53 
mutation frequency exceeded 20% in both groups. The 
gene variations in both groups were predominantly deletion 
mutations.

Discussion

Abnormal cancer metabolism, such as increased glycolytic 
and glutamine metabolic pathways, has an important role in 
tumor development, metastasis, drug resistance, and cancer 
stem cells (19-21). Tumor neovascularization causes cancer 
cells to grow in an environment of hypoxia and nutrient 
deficiency (22). To adapt to these harsh environments, 
cancer cells constantly alter their metabolic pathways to 
obtain external metabolites and maximize the maintenance 
of high metabolic enzyme activity (6). Classical cancer-
related signaling pathways, such as the PI3K/AKT and myc 
pathways, can mediate aberrant metabolic gene expression 
and increase key metabolic enzyme activities (23,24). 
Cancer-associated metabolism is based on a differential 
metabolic stress response between cancer and normal cells; 
targeting cancer-associated metabolism is expected to 
selectively inhibit cancer progression with less cytotoxicity 
to normal cells.

In this study, we explored the role of metabolism-related 
prognostic signature lncRNAs in HCC. A prognostic 
model containing 9 metabolism-related lncRNAs was first 
constructed and validated in the HCC training set. In 
addition, immunoassays using various bioinformatics tools 
showed significant differences in TIME and TIICs between 
high- and low-risk groups. Functional analysis revealed 
that the signature lncRNAs were associated with many 
cancer-related metabolic pathways. These findings strongly 
suggested a huge potential for cancer-related metabolic 
reprogramming in HCC.

A total  of  9  hub metabol ism-related lncRNAs 
(AC124798.1, TMCC1.AS1, AC145343.1, AC125437.1, 
SNHG4, AC004816.1, AL117336.2, POLH.AS1, and 
AC107959.3) were identified in our prognostic model. The 
lncRNA TMCC1-AS1 promotes epithelial mesenchymal 
transition for tumor metastasis in HCC (25). The 
lncRNA SNHG4 can promote cancer development as a 
competing endogenous RNA (ceRNA) (26,27). In addition, 
AC124798.1 (28), AC145343.1 (29), AC004816.1 (30), 
and AC107959.3 (31) were found to be strongly associated 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467376/figure/f4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467376/figure/f4/
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Figure 5 Stratification analysis based on clinical parameters. Kaplan-Meier analysis demonstrated the survival of LIHC patients according 
to different ages, gender, stage, and TP53 status based on different prognostic signature risk groups. The respective P values are displayed 
under the survival curves. LIHC, liver hepatocellular carcinoma.
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Figure 6 Association between prognostic signature risk score and TIICs. (A) Heatmap for metabolism-related lncRNAs prognostic 
signature risk score, MUC4, TMB, and clinicopathological features based on CIBERSORT. TP53, status, time, stage, grade, gender, and 
age are patient annotations. (B) ssGSEA for the association between TIICs and related functions in different risk groups. Adjusted P values 
were showed as: ns, not significant; *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. TIICs, tumor-infiltrating immune cells; TMB, tumor 
mutational burden; ssGSEA, single-sample gene set enrichment analysis; CIBERSORT, Cell-type Identification by Estimating Relative 
Subsets of RNA Transcripts.

with poor prognosis of cancer by bioinformatics analysis. 
Although only a few lncRNAs have been experimentally 
reported as associated with cancer development, it is still 
possible to hypothesize that our prognostic model was 

negatively associated with prognosis of HCC based on the 
results of previous bioinformatic analysis and our results.

There is growing evidence that cancer-associated 
metabolic reprogramming not only plays a crucial role 
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Figure 7 Molecular characteristics of patients in the high- and low-risk group. (A,B) GSEA analysis showed that the high-risk group was 
negatively associated with metabolic-related pathways and positively associated with tumor proliferation-related pathways. (C) IC50 values of 
cytotoxic chemotherapeutic agents between different risk groups based on the pRRophetic algorithm. The high-risk group had significantly 
lower IC50 values for cisplatin and sorafenib. (D) Significantly mutated genes in LIHC patients in the high- and low-risk group. The top 
10 mutated genes in 2 groups ranked by mutation rate are shown. The mutation rate is shown on the right, and the mutation counts are 
shown on the top. Adjusted P values are shown as: *, P<0.05; **, P<0.01; ****, P<0.0001. GSEA, gene set enrichment analysis; LIHC, liver 
hepatocellular carcinoma.

in cancer signaling, but also has broad implications in 
regulating antitumor immune responses through metabolite 
release and influencing the expression of immune molecules, 
such as lactate (32). Metabolic reprogramming is not unique 
to cancer cells; it is present in some immune cells, such as 
activated T cells, regulatory T cells (Tregs), and neutrophils 
(33) Like cancer cells, TIICs require certain nutrients 
from TME to maintain their own proliferation and 
differentiation. Previous study has shown that cancer cells 
limit glucose consumption by T cells through glycolysis, 
thereby inducing T cell failure and immune escape (34). 
In our study, immune infiltration analysis and enrichment 
analysis revealed a significant decrease in the percentage 
of immune activated cells in the high-risk group compared 
to the low-risk group. In Figure 1D and Figure 1E,  

we found that characteristic lncRNAs were significantly 
associated with glycolysis, oxidative phosphorylation, and 
amino acid metabolism. Glycolysis has been reported 
to be a major metabolic pathway for M1 macrophages, 
dendritic cells, naive T cells, and effector T cells (35). 
Tregs, M2 macrophages, and memory T cells rely mainly 
on OXPHOS, a source of fatty acid oxidation, for energy 
supply (36). Certain amino acids, such as glutamine, are 
essential for the maintenance and regulation of immune cell 
function (37). In addition, GSEA found that the high-risk 
group was significantly associated with the KRAS pathway. 
KRAS mutation aberrantly activates its downstream 
signaling pathways, including PI3K/AKT and MEK/ERK, 
thus contributing to the promotion and maintenance of 
cancer malignancy. Recently, KRAS has been reported to 
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mediate immune escape in TME, which is consistent with 
our findings (38).

In addition, we explored the differences in drug sensitivity 
between high and low risk groups. Cisplatin and sorafenib 
are the most classical HCC drugs, and our results suggest 
that the high-risk group is less sensitive to both drugs. Both 
cisplatin and sorafenib were reported to promote immune 
activation to maintain the anticancer effect (39,40). This 
suggests that we can improve drug sensitivity to cisplatin 
and sorafenib by improving the immunosuppressive status 
of HCC patients. We are looking forward to see if it is 
the same with the new antitumoral drugs for HCC, such 
as lenvatinib, cabozantinib, or regorafenib, as well as the 
antiangiogenic antibody ramucirumab.

With the rapid development of  bioinformatics 
technology, an array of models has been constructed to 
predict the prognosis of HCC based on lncRNA. However, 
in contrast to our study, these studies neglected the value 
of traditional clinical parameters. We combined clinical 
parameters with metabolism-related signature lncRNAs to 
predict the survival of HCC, which would provide great 
value to the clinic. In addition, we hypothesized a behind-
the-scenes reason why signature lncRNAs affect prognosis 
of HCC-immunosuppression, which will provide new 
insights for future experimental design. However, our 
study still had some limitations. First, it was conducted 
retrospectively and therefore needs further validation in 
prospective studies. Second, HCC is highly heterogeneous 
and has different biological behaviors, the information from 
TCGA database was limited and incomplete. Third, to define 
the prognostic clinical outcome of patients with HCC there 
are different variables that have not been considered such 
has the histopathology of the tumor, level of alfa-fetoprotein 
and type of treatment (systemic or surgery as resection or 
transplantation). Fourth, more experiments are needed 
to further reveal the potential mechanisms by which the 
characteristic lncRNAs affect the prognosis of HCC.

In conclusion, our study identified 9 characteristic lncRNAs’ 
prognostic features and validated the accurate type and 
reliability of the model by ROC, DCA, and nomogram. Our 
prognostic model can help clinicians to provide personalized 
treatment strategies, and the 9 signature lncRNAs also provide 
some insights into new prognostic markers and potential 
therapeutic targets for HCC.
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