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Background: Extubation is the process of removing tracheal tubes so that patients maintain oxygenation 
while they start to breathe spontaneously. However, hypoxemia after extubation is an important issue 
for critical care doctors and is associated with patients’ oxygenation, circulation, recovery, and incidence 
of postoperative complications. Accuracy and specificity of most related conventional models remain 
unsatisfactory. We conducted a predictive analysis based on a supervised machine-learning algorithm for the 
precise prediction of hypoxemia after extubation in intensive care units (ICUs).
Methods: Data were extracted from the Medical Information Mart for Intensive Care (MIMIC)-IV 
database for patients over age 18 who underwent mechanical ventilation in the ICU. The primary outcome 
was hypoxemia after extubation, and it was defined as a partial pressure of oxygen <60 mmHg after 
extubation. Variables and individuals with missing values greater than 20% were excluded, and the remaining 
missing values were filled in using multiple imputation. The dataset was split into a training set (80%) 
and final test set (20%). All related clinical and laboratory variables were extracted, and logistics stepwise 
regression was performed to screen out the key features. Six different advanced machine-learning models, 
including logistics regression (LOG), random forest (RF), K-nearest neighbors (KNN), support-vector 
machine (SVM), eXtreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM), 
were introduced for modelling. The best performance model in the first cross-validated dataset was further 
fine-tuned, and the final performance was assessed using the final test set.
Results: A total of 14,777 patients were included in the study, and 1,864 of the patients’ experienced 
hypoxemia after extubation. After training, the RF and LightGBM models were the strongest initial 
performers, and the area under the curve (AUC) using RF was 0.780 [95% confidence interval (CI), 0.755–
0.805] and using LightGBM was 0.779 (95% CI, 0.752–0.806). The final AUC using RF was 0.792 (95% CI, 
0.771–0.814) and using LightGBM was 0.792 (95% CI, 0.770–0.815).
Conclusions: Our machine learning models have considerable potential for predicting hypoxemia after 
extubation, which help to reduce ICU morbidity and mortality.
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Introduction

Many patients in intensive care units (ICUs) need 
mechanical ventilation for various reasons, including 
respiratory failure, coma, and postoperative airway 
management. Patients are extubated when their respiratory 
functions improve or airway risks are decreased. Extubation 
is the process of removing tracheal tubes so that patients 
maintain oxygenation while breathing spontaneously. 
However, hypoxemia after extubation is an important issue 
for critical care doctors. Although senior clinicians can make 
empirical predictions, hypoxemia after extubation is still 
inevitable and has a serious impact on patients’ oxygenation, 
circulation (1), recovery (2), and incidence of postoperative 
complications (3,4). Extubation in the ICU is associated with 
higher risks than extubation in the postanesthesia care unit 
(PACU). A clinician needs to balance the risks of extubation 
in the ICU against the risks of delaying extubation in a 
patient who requires it. At present, studies have explored 
prediction models and risk factor analysis of hypoxemia 
after extubation through various methods (5,6). However, 
because the number of patients included has been limited by 
objective factors, most of the studies related with hypoxemia 
after extubation had a small sample size. In the cases of few 
training samples (7,8), machine learning models generally 
cannot achieve good out-of-sample performance, and 
models trained with small samples are prone to overfitting to 
small samples and underfitting to the target task.

Databases such as the Medical Information Mart for 
Intensive Care (MIMIC) have been used to build models to 
predict mortality (9,10) and morbidity (11,12). A predictive 
model may provide an early warning to clinicians before the 
manifestation of clinical signs. By collecting and analyzing 
the clinical data of patients who have undergone mechanical 
ventilation in the intensive care unit through the MIMIC-
IV database, a more accurate and specific prediction model 
for extubation can be established.

Machine-learning (ML) models based on mathematical 
and statistical methods can be used to analyze and infer 
relationships between clinical variables and patient 
outcomes (13), and they are the core and foundation 
of artificial intelligence. Machine learning algorithms 
have some inherent advantages over other conventional 
algorithms (14). While conventional algorithms require the 
a priori selection of a model based on the available data, ML 
allows greater flexibility in model fitting (15). Furthermore, 
the variables included in traditional algorithms are limited 
by the sample size. Instead, by design, ML models are able 
to consider multiple variables at the same time, and as 

such, have the potential to detect underlying patterns that 
may otherwise be undetectable when data are examined 
effectively in individual silos. With the assistance of ML, 
more precise models can be used for clinical prediction, 
diagnosis, and decision-making.

The objective of this study was to develop a prediction 
model utilizing bedside clinical and laboratory parameters 
by machine learning to predict hypoxemia after extubation 
in the ICU. This will help ICU clinicians predict the risk of 
hypoxemia after extubation, thereby helping to reduce ICU 
morbidity and mortality. We present the following article in 
accordance with the TRIPOD reporting checklist (available 
at https://atm.amegroups.com/article/view/10.21037/atm-
22-2118/rc).

Methods

Data collection

The present study used data accessed from the MIMIC-
IV database (16), which is a publicly available database that 
contains real hospital stay data for patients admitted to a 
tertiary academic medical center in Boston, USA between 
2008 and 2019. A total of 524,520 medical records are 
available in the database. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). One author (CY J) obtained access to the database 
and was responsible for data extraction.

The present study was based on a cohort generated from 
the existing database. The following inclusion criteria were 
applied: (I) patients aged above 18 years, and (II) patients 
who had undergone mechanical ventilation in the ICU. If 
patients underwent multiple intubations and mechanical 
ventilation, we only used data from the first mechanical 
ventilation. Data with low quality, such as cases with missing 
values greater than 20%, were excluded.

Related clinical and laboratory variables were extracted 
from the MIMIC-IV database, including baseline patient 
characteristics, vital signs, the results of laboratory 
examinations, and mechanical ventilation parameters. 
Comorbidities were assessed based on the International 
Classification of Disease (ICD) codes ICD-9-clinical 
modification (CM) and ICD-10 (17). Some repeatedly 
recorded variables were extracted as the maximum, 
minimum, and final values (the final value was defined as 
the final recorded data before extubation). Urine output 
and Sequential Organ Failure Assessment (SOFA) scores 
were recorded and extracted 24 hours before extubation. 
The time window for extracting the clinical and laboratory 
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variables was from ICU admission to extubation. All 
variables are shown in Table S1.

To include as much data as possible, for the values that 
were missing and excluded from the analysis, we estimated 
the relationship between the feature numbers and missing 
data threshold and yielded 80% as the threshold, which was 
consistent with the 1:20 principle to avoid overfitting (18). 
The primary outcome was hypoxemia after extubation, and it 
was defined as a partial pressure of oxygen (PaO2) <60 mmHg 
after extubation.

Multivariate imputation

Multivariate imputation was conducted through an iterative 
imputer using the R package Multivariate Imputation by 
Chained Equations (MICE). The multivariate imputation 
procedure can be split into following steps (19): Step 1: a 
simple imputation is performed for each missing value in 
the dataset as “place holders”; Step 2: the mean imputations 
of “place holder” for variable (“var”) are inserted back to 
missing value; Step 3: the values from “var” are regressed 
on the other variables in the imputation model; Step 4: the 
missing data for “var” is altered by predictions according to 
the regression model; Step 5: repeat steps 2–4.

Model selection

Baseline characteristics were compared between the 
nonhypoxemia group and the hypoxemia group. Six 
different advanced machine-learning models were 
introduced, including K-nearest neighbors (KNN), 
support-vector machine (SVM), logistic regression (LOG), 
random forest (RF), eXtreme Gradient Boosting (XGBoost), 
and Light Gradient Boosting Machine (LightGBM) for 
the modelling. The dataset was first randomly split into 
a training set (80%) and a testing set (20%). Logistics 
stepwise regression with the forward method was performed 
to screen out the key features. The features in the final 
stepwise model of each 5 multivariate impute databases were 
screened, and the features included in all 5 screen results 
were selected for further study. Furthermore, we calculated 
the threshold-dependent measures of the sensitivity, 
specificity, and accuracy at the “best” thresholds for all 
the models. The “best” threshold was the threshold that 
maximizes both sensitivity and specificity. A 5-fold cross-
validation in the 80% training set was conducted in order 
to reduce the bias caused by the randomly splitted dataset. 
The model on each dataset was trained and evaluated, and 

the area under the curve (AUC) was calculated. 

Data expansion

We corrected for the bias in the number of cases between 
the 2 groups by performing data expansion. The data used 
for training were matched with 6,000 cases (3,000 positive 
and 3,000 negative cases). For the test data, we determined 
whether they would be used for the validation set or final 
test set, and none of the data were expanded. Data expansion 
was performed using the “ROSE” package in R software.

Parameter tuning

All the models were simply tuned with a small range grid 
search according to the package default. Parameter tuning 
refers to optimizing the algorithm for optimal performance 
by modifying parameters. The best models were tuned for 
the parameters specific to the method, since modifiable 
parameters were different for each machine learning 
algorithm. Tuning parameters were evaluated by extended 
manual grid search or using functions in the R package, 
where each tuning parameter gave a large but realistic 
range of values. The variable importance of the final 
optimal model was determined by a ML algorithm that was 
amenable to computing this value. The package used for 
each ML model and the tuning parameters for each model 
are shown in Table S2.

Sensitivity analyses

Different definition of hypoxemia after extubation
The definition of severe hypoxemia after extubation was 
PaO2 <30 mmHg, which is the value that is associated 
with more serious complications. We conducted sensitivity 
analysis in which PaO2 <30 mmHg was considered severe 
hypoxemia after extubation and trained the best performing 
algorithm on this new definition to generate a new model.

Dataset without multiple imputation
Since multiple imputation is based on the assumption of 
random missing, it is often impossible to verify whether 
the assumption of random missing is correct in practical 
applications. Therefore, a sensitivity analysis method is 
needed to verify the reliability of the results of multiple 
imputation analysis under the assumption of missing 
random. We conducted sensitivity analysis in which 
the missing data was not filling by multiple imputation 

https://cdn.amegroups.cn/static/public/ATM-22-2118-Supplementary.pdf
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and trained the best performing algorithm on this new 
definition to generate a new model.

Statistical analysis

The merging and screening of the initial data were 
performed by Stata (Stata/MP 16.0 for Windows, 
StataCorp LLC, College Station, TX, USA). Continuous 
variables with a normal distribution are reported as the 
mean ± standard deviation. Nonnormally distributed 
continuous variables are reported as medians (interquartile 
ranges). Categorical variables are reported as frequencies 
(percentages). The hypothesis was tested using one-way 
analysis of variance (ANOVA), the Mann-Whitney U test, 
and Fisher’s exact probability method. Stepwise logistic 
models were constructed with R. The median of the AUCs 
was used to evaluate the effectiveness of the model, and the 
receiver operating characteristic (ROC) curve was shown 
as the result for each model. An AUC between 0.6–0.7, 
0.7–0.8, 0.8–0.9, and 0.9–1.0, was considered to have poor, 
acceptable, good, and excellent discrimination performance, 
respectively. DeLong test was used to calculate statistical 

differences in AUC of different models under the same test 
set. P<0.05 was considered statistically significant. Multiple 
imputation was performed using the “mice” package in R. 
ROC curves were drawn using the pROC package in R 4.0.4. 
The confidence interval (CI) of the AUC was obtained by 
applying the bootstrap method. 

Results

Baseline patient characteristics and variable details

After excluding data with low quality, data with over 20% 
missing values, and nonfirst-time mechanical ventilation 
data, 14,777 patients remained, 1,852 (12.5%) of whom 
experienced hypoxemia after extubation. Ultimately, 
the training set contained 11,749 cases, and the test set 
contained 3,028 cases. There were 1,476 (12.6%) cases of 
hypoxemia after extubation within the training set, and there 
were 376 (12.4%) cases of hypoxemia after extubation within 
the test set. The study process is shown in Figure 1. Baseline 
patient characteristics and variable details are shown in 
Tables 1,2, respectively.

Data collection Data preprocessing Training and testing Parameters tuning

Extract data from 
MIMIC database

Consolidation

Cleaning

Conversion

Data expansion

Training machine  
learning algorithms  

(5-folds cross validation)

Training set

Test set

80%

20%

KNN

SVM

LOG

RF

XGBoost

LightGBM

Simple tuning

Best performer

Fine-tuning

Tune best 
performer

ICU admission Extubation Hypoxemia ICU discharge

Time window for 
extracting variables

Time window for 
predicting

A

B

Figure 1 Flow diagram of the study. (A) The study process; (B) the time window for extracting the variables and the predictions. KNN, 
K-nearest neighbors; SVM, support-vector machine; LOG, logistic regression; RF, random forest; XGBoost, eXtreme Gradient Boosting; 
LightGBM, Light Gradient Boosting Machine; ICU, intensive care unit.
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Area under the curve

After training, the AUC using LOG was 0.776 (95% CI, 
0.750–0.803); using SVM, it was 0.737 (95% CI, 0.709–
0.766); using KNN, it was 0.765 (95% CI, 0.739–0.791); 
using RF, it was 0.780 (95% CI, 0.755–0.805); using 
XGBoost, it was 0.704 (95% CI, 0.676–0.732); and using 
LightGBM, it was 0.779 (95% CI, 0.752–0.806). The ROC, 
sensitivity, specificity, and accuracy at the best thresholds for 
each machine-learning method are displayed in Table 3 and 
Figure 2. The final feature selection after recursive feature 
elimination is shown in Figure 3.

Based on the model selection process, it appeared that 
the RF and LightGBM models were the strongest initial 
performers to be candidates for continued tuning and 
further testing. The other parameters that were tuned 
specific to the RF and LightGBM methods are shown in 
Table S2. The final AUC using RF was 0.792 (95% CI, 
0.771–0.814) and using LightGBM was 0.792 (95% CI, 
0.770–0.815). The final variable importance is shown in 
Figure 4. The specificity was 0.672 (95% CI, 0.584–0.734) 
in the LightGBM model and 0.669 (95% CI, 0.584–0.737) 
in the RF model. The sensitivity was 0.801 (95% CI, 
0.718–0.883) in the LightGBM model and 0.814 (95% CI, 
0.737–0.888) in the RF model. The accuracy was 0.687 (95% 
CI, 0.618–0.736) in the LightGBM model and 0.686 (95% 
CI, 0.621–0.734) in the RF model. The ROC, sensitivity, 
specificity, and accuracy at the best thresholds for each 
machine-learning method are shown in Table 4 and Figure 4.

The best final AUC using RF and LightGBM was 
both 0.792. For the final AUC using RF, there was no 
statistical difference when compared to the AUC using 
LightGBM (P=0.725), but there were statistical differences 
when compared to the AUC using KNN (P<0.001), LOG 
(P=0.033), SVM (P<0.001) and XGBoost (P<0.001). For 
the final AUC using LightGBM, there was no statistical 
difference when compared to the AUC using RF (P=0.725) 
and LOG (P=0.505), but there were statistical differences 
when compared to the AUC using KNN (P=0.07), SVM 
(P<0.001) and XGBoost (P<0.001).

Sensitivity analyses

Different definition of hypoxemia after extubation
The AUC using LOG was 0.778 (95% CI, 0.748–0.808); 
using SVM, it was 0.729 (95% CI, 0.692–0.764); using 
KNN, it was 0.760 (95% CI, 0.728–0.793); using RF, it was 
0.780 (95% CI, 0.748–0.812); using XGBoost, it was 0.707 
(95% CI, 0.672–0.741); and using LightGBM, it was 0.777 

Table 1 Baseline patient characteristics

Characteristics Nonhypoxemia Hypoxemia P

Number 12,925 1,852

Age (years) 65.13±14.88 66.44±15.02 <0.001

Gender <0.001

Male 4,609 (35.7) 816 (44.1)

Female 8,316 (64.3) 1,036 (55.9)

Weight (kg) 83.06±21.82 82.68±26.11 0.492

Height (cm) 169.95±11.64 168.27±11.70 <0.001

Coronary heart disease <0.001

No 6,865 (53.1) 1,160 (62.6)

Yes 6,060 (46.9) 692 (37.4)

Hypertension <0.001

No 6,557 (50.7) 1,136 (61.3)

Yes 6,368 (49.3) 716 (38.7)

Pneumonia <0.001

No 10,610 (82.1) 1,049 (56.6)

Yes 2,315 (17.9) 803 (43.4)

Respiratory failure <0.001

No 8,989 (69.5) 633 (34.2)

Yes 3,936 (30.5) 1,219 (65.8)

Diabetes mellitus <0.001

No 8,864 (68.6) 1,193 (64.4)

Yes 4,061 (31.4) 659 (35.6)

Heart failure <0.001

No 9,719 (75.2) 1,078 (58.2)

Yes 3,206 (24.8) 774 (41.8)

Cerebrovascular disease 0.823

No 11,270 (87.2) 1,619 (87.4)

Yes 1,655 (12.8) 233 (12.6)

Renal disease <0.001

No 10,680 (82.6) 1,422 (76.8)

Yes 2245 (17.4) 430 (23.2)

Liver disease <0.001

No 11,653 (90.2) 1,587 (85.7)

Yes 1,272 (9.8) 265 (14.3)

Cancer 0.001

No 11,723 (90.7) 1,625 (87.7)

Yes 1,202 (9.3) 227 (12.3)

Data are shown as mean ± standard deviation or number (%).

https://cdn.amegroups.cn/static/public/ATM-22-2118-Supplementary.pdf
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Table 2 Details of the variables used in the model

Variables Nonhypoxemia Hypoxemia P

Number 12,925 1,852

Gender <0.001

Male 4,609 (35.7) 816 (44.1)

Female 8,316 (64.3) 1,036 (55.9)

Heart failure <0.001

No 9,719 (75.2) 1,078 (58.2)

Yes 3,206 (24.8) 774 (41.8)

Pneumonia <0.001

No 10,610 (82.1) 1,049 (56.6)

Yes 2,315 (17.9) 803 (43.4)

Respiratory failure <0.001

No 8,989 (69.5) 633 (34.2)

Yes 3,936 (30.5) 1,219 (65.8)

SpO2 (final) 97.16±5.53 97.02±2.97 0.293

SpO2 (min) 92.32±9.34 89.68±8.90 <0.001

Respiratory rate (final) 
(min−1)

19.24±5.62 20.43±5.90 <0.001

Respiratory rate (max) 
(min−1)

27.69±8.13 31.95±8.78 <0.001

Heart rate (final) (bpm) 85.46±16.77 88.34±17.23 <0.001

Heart rate (min) (bpm) 66.53±12.98 65.06±14.10 <0.001

RBC (max) (k/μL) 3.73±0.60 3.73±0.69 0.934

RBC (min) (k/μL) 3.10±0.65 2.95±0.68 <0.001

WBC (min) (k/μL) 9.08±5.14 9.14±6.28 0.669

Blood glucose (final)  
(mg/dL)

134.34±48.64 142.70±54.81 <0.001

Blood glucose (max) 
(mg/dL)

182.32±112.66 206.59±116.19 <0.001

Lactate (final) (mmol/L) 1.86±1.42 1.57±0.89 <0.001

Lactate (max) (mmol/L) 3.10±2.30 3.43±2.69 <0.001

pH (final) 7.39±0.06 7.40±0.06 <0.001

PaO2 (final) (mmHg) 121.83±50.92 94.78±48.87 <0.001

PaO2 (max) (mmHg) 316.02±132.24 244.48±135.95 <0.001

PaO2 (min) (mmHg) 94.39±50.77 64.79±42.45 <0.001

PaCO2 (final) (mmHg) 40.53±7.20 43.17±10.05 <0.001

Airway pressure (min) 
(cmH2O)

6.06±2.95 5.00±2.88 <0.001

Table 2 (continued)

Table 2 (continued)

Variables Nonhypoxemia Hypoxemia P

PEEP (final) (cmH2O) 4.91±2.11 4.58±1.92 <0.001

PSV level (final) (cmH2O) 5.57±2.20 5.63±1.98 0.333

Ventilation time (h) 54.79±82.28 89.15±94.60 <0.001

SOFA (24 h) 5.19±2.97 5.95±3.14 <0.001

SOFA CNS (24 h) 0.66±1.16 0.60±1.00 0.035

Vasopressor 0.003

No 12,868 (99.6) 1,833 (99.0)

Yes 57 (0.4) 19 (1.0)

Data are shown as mean ± SD or number (%). RBC, red blood 
cell; WBC, white blood cell; PEEP, positive end expiratory 
pressure; PSV, pressure support ventilation; SOFA, Sequential 
Organ Failure Assessment; SD, standard deviation.

(95% CI, 0.745–0.808). The ROC, sensitivity, specificity, 
and accuracy at the best thresholds for each machine-
learning method are displayed in Table 5.

Dataset without multiple imputation
The AUC using LOG was 0.742 (95% CI, 0.707–0.777); 
using SVM, it was 0.693 (95% CI, 0.655–0.731); using 
KNN, it was 0.717 (95% CI, 0.679–0.754); using RF, it was 
0.751 (95% CI, 0.716–0.787); using XGBoost, it was 0.683 
(95% CI, 0.647–0.719); and using LightGBM, it was 0.743 
(95% CI, 0.709–0.778). The ROC, sensitivity, specificity, 
and accuracy at the best thresholds for each machine-
learning method are displayed in Table 6.

Discussion

In this study, we examined the use of machine-learning 
methods based on data from the MIMIC-IV database 
for postoperative predictive analytics, specifically, the 
prediction of hypoxemia after extubation. The best models 
that demonstrated better discrimination were the RF and 
LightGBM models. The AUC using RF was 0.780 (95% 
CI, 0.755–0.805) in the training set and 0.792 (95% CI, 
0.771–0.814) in the test set. The AUC using LightGBM 
was 0.779 (95% CI, 0.752–0.806) in the training set and 
0.792 (95% CI, 0.770–0.815) in the test set. This study 
developed a prediction model utilizing bedside clinical 
and laboratory parameters by machine learning to predict 
hypoxemia after extubation in the ICU.

Many machine-learning algorithms have been utilized 
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in the fields of anesthesia, perioperative care, and pain 
medicine, including for the prediction of difficult 
laryngoscopy views (20), hypotension (21), morbidity 
(22,23), and the risk of weaning from ventilation (24). The 
model developed and validated in this study was based on 
the MIMIC-IV database, which consists of comprehensive 
and high-quality data. There is currently no analysis based 
on the MIMIC-IV database for predicting hypoxemia after 
extubation. A recent study developed a CatBoost model 
to predict extubation failure in ICUs (25). The definition 
adopted in that study included the need for noninvasive 
ventilation (NIV), reintubation, or death within 48 h 
following extubation. However, that definition of extubation 
failure included patients without oxygenation problems. 

In addition, the composition ratio of extubation failure 
cases between the internal dataset and external dataset was 
significantly different because of the loose definition of 
extubation failure.

Supervised machine learning is a suitable and useful 
learning algorithm type for event and risk prediction. 
Supervised learning is a task-driven procedure, and it 
uses 1 or more training algorithms for the prediction 
of prespecified events. For example, Kendale et al. (26) 
conducted supervised machine-learning predictive analytics 
for the prediction of postinduction hypotension based on 
electronic health record data. Although current research has 
hypothesized that artificial intelligence algorithms have so 
far not surpassed human performance, artificial intelligence 
has the ability to quickly and accurately screen large 
amounts of data and to discover correlations and patterns 
that cannot be detected by human cognition, making it a 
valuable tool for clinicians. Based on the characteristics of 
the data, different algorithms have different advantages. 
The best algorithms in this research were the LightGBM 
and RF models.

Gradient boosting is an ensemble machine-learning 
model that combines weak ‘learners’ into a strong single 
learner in an iterative fashion (27). LightGBM is a recent 
modification to the gradient boosting algorithm. It improves 
the efficiency and scalability of the algorithm without 
sacrificing its inherited effective performance. LightGBM 
has the advantages of having high efficiency, support for 
parallel training, low random access memory usage, high 
accuracy, large-scale data processing capabilities, and 
support for categorical features. RF is a classic and powerful 
supervised algorithm that is highly flexible and integrates 
multiple unrelated decision trees to construct a forest in a 
random way for regression or classification (28). The larger 

Table 3 ROC, sensitivity, specificity, and accuracy at the best thresholds in the K-fold set

Variables AUC (95% CI) Specificity (95% CI) Sensitivity (95% CI) Accuracy (95% CI)

RF 0.780 (0.755–0.805) 0.627 (0.554–0.702) 0.821 (0.731–0.891) 0.653 (0.596–0.710)

KNN 0.765 (0.739–0.791) 0.641 (0.565–0.684) 0.792 (0.728–0.862) 0.661 (0.602–0.694)

LOG 0.776 (0.750–0.803) 0.589 (0.536–0.780) 0.848 (0.647–0.907) 0.621 (0.578–0.767)

SVM 0.737 (0.709–0.766) 0.648 (0.536–0.758) 0.745 (0.614–0.853) 0.659 (0.570–0.743)

XGB 0.704 (0.676–0.732) 0.716 (0.697–0.736) 0.691 (0.638–0.742) 0.713 (0.696–0.731)

GBM 0.779 (0.752–0.806) 0.597 (0.561–0.734) 0.849 (0.712–0.898) 0.628 (0.597–0.732)

ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval; RF, random forest; KNN, K-nearest neighbors; 
LOG, logistics regression; SVM, support-vector machines; XGB, eXtreme Gradient Boosting; GBM, Gradient Boosting Machine.

ROC curves of different models (K-fold set)
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Figure 2 ROC curve for each machine-learning method in the 
K-fold set. KNN, K-nearest neighbors; SVM, support-vector 
machine; LOG, logistic regression; RF, random forest; XGB, 
eXtreme Gradient Boosting; GBM, Gradient Boosting Machine; 
AUC, area under the curve; CI, confidence interval; ROC, receiver 
operating characteristic.
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the number of decision trees, the stronger the robustness 
and the higher the accuracy of the RF algorithm. However, 
this algorithm is more prone to overfitting effects, and its 
efficiency is lower than that of LightGBM.

Twenty-seven features were included in the feature 
importance of LightGBM. The most important features 
included PaO2 (minimum), respiratory failure, PaO2 (final), 
ventilation time, and the SOFA score (24 h). These results 
were consistent with other studies (29,30). Torrini et al. (30)  
conducted a meta-analysis, and the results indicated that 
history of respiratory disease, duration of mechanical 
ventilation, and a lower PaO2/fraction of inspired oxygen 

(FiO2) ratio had the strongest association with extubation 
outcome. Xie et al. (29) conducted a retrospective study, 
and the results showed that a lower PaO2/FiO2 ratio, long 
duration of mechanical ventilation, and high SOFA score 
had the strongest association with extubation outcome. 
Most research results show that a lower PaO2/FiO2 ratio 
before extubation is one of the most important risk factors 
for hypoxemia after extubation. However, PaO2 and FiO2 
are 2 independent variables in the MIMIC-IV database, 
and it is almost impossible to obtain the PaO2/FiO2 ratio. 
A low PaO2 level indicates poor oxygenation in patients. 
After weaning from mechanical ventilation and extubation, 
such patients may experience severe deoxygenation (31). 
Patients with a long mechanical time tend to have more 
severe disease. In addition, a long mechanical ventilation 
time is associated with complications, including ventilator-
associated pneumonia and ventilator-induced lung injury (32), 
which may increase the extubation risks. Other important 
features included red blood cells (RBCs) (minimum), 
PaO2 (maximum), blood glucose (final), heart failure, and 
pneumonia.

In the sensitivity analyses, all the models with different 
definition of hypoxemia after extubation, especially those 
using RF, LOG, and LightGBM, demonstrated acceptable 
discrimination. These models will further help patients 
by reducing the incidence of related complications after 
extubation. For patients, severe hypoxemia is fatal, and 
it is very helpful for clinicians to accurately predict the 
occurrence of hypoxemia. The models without multiple 
imputation, including those using RF, LOG, KNN, and 
LightGBM, also demonstrated acceptable discrimination. In 
addition, the results of the sensitivity analyses indicated the 
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Figure 3 Final feature selection after recursive feature elimination. (A) Feature importance of the random forest model; (B) feature 
importance of the LightGBM model. LightGBM, Light Gradient Boosting Machine.
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Figure 4 ROC curve for each machine-learning method in the test 
set. KNN, K-nearest neighbors; SVM, support-vector machine; 
LOG, logistic regression; RF, random forest; XGB, eXtreme 
Gradient Boosting; GBM, Gradient Boosting Machine; AUC, area 
under the curve; CI, confidence interval; ROC, receiver operating 
characteristic.
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robustness and flexibility of the machine-learning models.
Although the results are promising, there were some 

limitations in this study. First, despite the comprehensive 
and high-quality data of the MIMIC-IV database, this study 
had inherent limitations and potential interference factors 
due to the data integrity and homogeneity caused by its 

retrospective nature. Second, although an AUC of 0.792 
demonstrates that there is a reasonably better discrimination, 
there is still great potential for improvement in the model 
performance before these models are clinically applied. 
Many clinical features are not available in the database, and 
some clinical features are only present in a small number of 

Table 4 ROC, sensitivity, specificity, and accuracy at the best thresholds in the test set

Variables AUC (95% CI) Specificity (95% CI) Sensitivity (95% CI) Accuracy (95% CI) P

RF 0.792 (0.771–0.814) 0.669 (0.584–0.731) 0.814 (0.737–0.888) 0.686 (0.621–0.734) <0.001

KNN 0.763 (0.739–0.786) 0.601 (0.563–0.639) 0.838 (0.776–0.886) 0.630 (0.599–0.662) <0.001

LOG 0.775 (0.751–0.799) 0.606 (0.544–0.763) 0.824 (0.665–0.891) 0.635 (0.585–0.754) <0.001

SVM 0.737 (0.713–0.761) 0.568 (0.521–0.681) 0.803 (0.684–0.870) 0.599 (0.561–0.685) <0.001

XGB 0.717 (0.693–0.742) 0.736 (0.719–0.752) 0.699 (0.652–0.745) 0.731 (0.715–0.746) <0.001

GBM 0.792 (0.770–0.815) 0.672 (0.584–0.734) 0.801 (0.718–0.883) 0.687 (0.618–0.736) <0.001

AUC, area under the curve; CI, confidence interval; RF, random forest; KNN, K-Nearest neighbors; LOG, logistics regression; SVM, 
support-vector machines; XGB, eXtreme Gradient Boosting; GBM, Gradient Boosting Machine.

Table 5 ROC, sensitivity, specificity, and accuracy at the best thresholds in the sensitivity analyses (different definition of hypoxemia after 
extubation)

Variables AUC (95% CI) Specificity (95% CI) Sensitivity (95% CI) Accuracy (95% CI)

RF 0.780 (0.748–0.812) 0.726 (0.615–0.827) 0.704 (0.582–0.816) 0.724 (0.625–0.813)

KNN 0.760 (0.728–0.793) 0.565 (0.532–0.687) 0.852 (0.714–0.903) 0.584 (0.554–0.691)

LOG 0.778 (0.748–0.808) 0.629 (0.605–0.715) 0.832 (0.730–0.883) 0.642 (0.620–0.717)

SVM 0.729 (0.692–0.765) 0.653 (0.624–0.807) 0.704 (0.531–0.781) 0.658 (0.629–0.792)

XGB 0.707 (0.672–0.741) 0.770 (0.755–0.786) 0.648 (0.582–0.709) 0.762 (0.747–0.778)

GBM 0.777 (0.745–0.808) 0.682 (0.578–0.796) 0.760 (0.628–0.857) 0.687 (0.595–0.785)

ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval; RF, random forest; KNN, K-nearest neighbors; 
LOG, logistics regression; SVM, support-vector machines; XGB, eXtreme Gradient Boosting; GBM, Gradient Boosting Machine.

Table 6 ROC, sensitivity, specificity, and accuracy at the best thresholds in the sensitivity analyses (dataset without multiple imputation)

Variables AUC (95% CI) Specificity (95% CI) Sensitivity (95% CI) Accuracy (95% CI)

RF 0.751 (0.716–0.787) 0.698 (0.526–0.777) 0.709 (0.603–0.857) 0.699 (0.560–0.762)

KNN 0.717 (0.679–0.754) 0.682 (0.511–0.726) 0.698 (0.614–0.852) 0.682 (0.545–0.720)

LOG 0.742 (0.707–0.777) 0.755 (0.512–0.797) 0.656 (0.571–0.847) 0.743 (0.550–0.777)

SVM 0.693 (0.655–0.731) 0.744 (0.449–0.784) 0.593 (0.508–0.841) 0.726 (0.490–0.760)

XGB 0.683 (0.647–0.719) 0.752 (0.731–0.774) 0.614 (0.545–0.683) 0.738 (0.717–0.758)

GBM 0.743 (0.709–0.778) 0.663 (0.478–0.738) 0.730 (0.624–0.884) 0.669 (0.520–0.727)

ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval; RF, random forest; KNN, K-nearest neighbors; 
LOG, logistics regression; SVM, support-vector machines; XGB, eXtreme Gradient Boosting; GBM, Gradient Boosting Machine.
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cases. For example, some studies have shown that there is 
a correlation between diaphragmatic movement as assessed 
by ultrasound and extubation failure (33,34), but this feature 
was not available in the database. With the availability of 
other features, the predictive power of machine learning 
will be further improved. Third, this study was a predictive 
analysis without external validation, which limits the 
practicality of this precise model in another setting.

The present study showed that the RF and LightGBM 
model had better predictive power and efficiency than the 
other models, and we plan to conduct an external cohort for 
validation in our medical setting.

Conclusions

In conclusion, our machine learning models have 
considerable potential for predicting hypoxemia after 
extubation, which help to reduce ICU morbidity and 
mortality.
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Supplementary

Table S1 Clinical and laboratory variables extracted from database

Variable Unit Notes

Age Year Patient’s age

Gender Male/female Patient’s gender

Weight Kg Patient’s weight

Height Cm Patient’s height

Coronary heart disease Yes/no Whether the patient has coronary heart disease?

Heart failure Yes/no Whether the patient has heart failure?

HBP Yes/no Whether the patient has HBP (hypertension)?

Pneumonia Yes/no Whether the patient has pneumonia?

Respiratory failure Yes/no Whether the patient has respiratory failure?

Cerebrovascular disease Yes/no Whether the patient has cerebrovascular disease?

Renal disease Yes/no Whether the patient has renal disease?

Liver disease Yes/no Whether the patient has liver disease?

Cancer Yes/no Whether the patient has cancer?

DM Yes/no Whether the patient has DM (diabetes mellitus)?

WBC (max) k/μL Maximum value of white blood cell (from ICU admission to extubation)

WBC (min) k/μL Minimum value of white blood cell (from ICU admission to extubation)

WBC (final) k/μL Final value of white blood cell (from ICU admission to extubation)

RBC (max) k/μL Maximum value of red blood cell (from ICU admission to extubation)

RBC (min) k/μL Minimum value of red blood cell (from ICU admission to extubation)

RBC (final) k/μL Final value of red blood cell (from ICU admission to extubation)

Lactate (max) mmol/L Maximum value of lactate (from ICU admission to extubation)

Lactate (min) mmol/L Minimum value of lactate (from ICU admission to extubation)

Lactate (final) mmol/L Final value of lactate (from ICU admission to extubation)

Platelet count (max) k/μL Maximum value of platelet count (from ICU admission to extubation)

Platelet count (min) k/μL Minimum value of platelet count (from ICU admission to extubation)

Platelet count (final) k/μL Final value of platelet count (from ICU admission to extubation)

Blood glucose (max) mg/dL Maximum value of blood glucose (from ICU admission to extubation)

Blood Glucose (min) mg/dL Minimum value of blood glucose (from ICU admission to extubation)

Blood glucose (final) mg/dL Final value of blood glucose (from ICU admission to extubation)

PaO2 (max) mmHg Maximum value of PaO2 (from ICU admission to extubation)

PaO2 (min) mmHg Minimum value of PaO2 (from ICU admission to extubation)

PaO2 (final) mmHg Final value of PaO2 (from ICU admission to extubation)

PaCO2 (max) mmHg Maximum value of PaCO2 (from ICU admission to extubation)

PaCO2 (min) mmHg Minimum value of PaCO2 (from ICU admission to extubation)

PaCO2 (final) mmHg Final value of PaCO2 (from ICU admission to extubation)

pH (max) / Maximum value of pH (from ICU admission to extubation)

Table S1 (continued)
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Table S1 (continued)

Variable Unit Notes

pH (min) / Minimum value of pH (from ICU admission to extubation)

pH (final) / Final value of pH (from ICU admission to extubation)

Heart rate (max) bpm Maximum value of heart rate (from ICU admission to extubation)

Heart rate (min) bpm Minimum value of heart rate (from ICU admission to extubation)

Heart rate (final) bpm Final value of heart rate (from ICU admission to extubation)

MBP (max) mmHg Maximum value of mean blood pressure (from ICU admission to extubation)

MBP (min) mmHg Minimum value of mean blood pressure (from ICU admission to extubation)

MBP (final) mmHg Final value of mean blood pressure (from ICU admission to extubation)

Respiratory rate (max) min−1 Maximum value of respiratory rate (from ICU admission to extubation)

Respiratory rate (min) min−1 Minimum value of respiratory rate (from ICU admission to extubation)

Respiratory rate (final) min−1 Final value of respiratory rate (from ICU admission to extubation)

Temperature (max) ℃ Maximum value of temperature (from ICU admission to extubation)

Temperature (min) ℃ Minimum value of temperature (from ICU admission to extubation)

Temperature (final) ℃ Final value of temperature (from ICU admission to extubation)

SpO2 (max) % Maximum value of SpO2 (from ICU admission to extubation)

SpO2 (min) % Minimum value of SpO2 (from ICU admission to extubation)

SpO2 (final) % Final value of SpO2 (from ICU admission to extubation)

Urine output (24 h) mL 24 h urine output before extubation

PSV level (max) cmH2O Maximum value of PSV level (from ICU admission to extubation)

PSV level (min) cmH2O Minimum value of PSV level (from ICU admission to extubation)

PSV level (final) cmH2O Final value of PSV level (from ICU admission to extubation)

Mean airway pressure (max) cmH2O Maximum value of mean airway pressure (from ICU admission to extubation)

Mean airway pressure (min) cmH2O Minimum value of mean airway pressure (from ICU admission to extubation)

Mean airway pressure (final) cmH2O Final value of mean airway pressure (from ICU admission to extubation)

PEEP (initial) cmH2O Initial value of positive end expiratory pressure (from ICU admission to extubation)

PEEP (final) cmH2O Final value of positive end expiratory pressure (from ICU admission to extubation)

FiO2 (initial) % Initial value of FiO2 (from ICU admission to extubation)

FiO2 (final) % Final value of FiO2 (from ICU admission to extubation)

Respiratory rate set (initial) min−1 Initial value of respiratory rate set (from ICU admission to extubation)

Respiratory rate set (final) min−1 Final value of respiratory rate set (from ICU admission to extubation)

Minute volume (initial) mL Initial value of minute volume (from ICU admission to extubation)

Minute volume (final) mL Final value of minute volume (from ICU admission to extubation)

Tidal volume set (initial) mL Initial value of tidal volume set (from ICU admission to extubation)

Tidal volume set (final) mL Final value of tidal volume set (from ICU admission to extubation)

Plateau pressure (initial) cmH2O Initial value of plateau pressure (from ICU admission to extubation)

Table S1 (continued)
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Table S1 (continued)

Variable Unit Notes

Plateau pressure (final) cmH2O Final value of plateau pressure (from ICU admission to extubation)

Vasopressor Yes/no Whether vasopressor was administered (from ICU admission to extubation)?

Vasopressor (24h) Yes/no Whether vasopressor was administered (24 h before extubation)?

SOFA respiration (24 h) / 24 h SOFA respiration score before extubation

SOFA coagulation (24 h) / 24 h SOFA coagulation score extubation

SOFA liver (24 h) / 24 h SOFA liver score extubation

SOFA cardiovascular (24 h) / 24 h SOFA cardiovascular score before extubation

SOFA CNS (24h) / 24 h SOFA CNS score before extubation

SOFA Renal (24h) / 24 h SOFA Renal score before extubation

GCS / GCS score before extubation

SIRS / SIRS score before extubation

HBP, hypertension; DM, diabetes mellitus; WBC, white blood cell; RBC, red blood cell; ICU, intensive care units; PaO2, partial pressure 
of oxygen; PaCO2, partial pressure of carbon dioxide; MBP: mean blood pressure; PSV, pressure support ventilation; PEEP, positive  
end-expiratory pressure; FiO2, fraction of inspired oxygen; SOFA, Sequential Organ Failure Assessment; GCS, Glasgow Coma Scale; 
SIRS, systemic inflammatory response syndrome.

Table S2 Package and tuning parameters in the study

Model Package
Tuning

Step1 Step 2

RF randomForest small range gird search for ntree (350) and mtry (7) large range gird search for ntree (500) and mtry (7)

LOG base None

XGB xgboost nround (75) and max.depth (1)

KNN kknn k (100)

SVM e1071
cost (1) gamma (0.19) and degree (1) with package 

function

GBM lightgbm num leaves (30) and learn rate (0.03) min data in leaf (9)

RF, random forest; LOG, logistics regression; XGB, eXtreme Gradient Boosting; KNN, K-nearest neighbors; SVM, support-vector 
machines; GBM, Light Gradient Boosting Machine.
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