
Page 1 of 19

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(13):737 | https://dx.doi.org/10.21037/atm-22-845

Original Article

Transcriptomic analysis and laboratory experiments reveal 
potential critical genes and regulatory mechanisms in  
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Background: Sepsis-associated acute kidney injury (SA-AKI) is one of the most frequent and serious 
complications of sepsis. However, the transcriptional regulatory network of the pathophysiological 
mechanism of the kidney has not been revealed. This study identified new mechanisms in SA-AKI using 
bioinformatics analyses and laboratory-based experiments.
Methods: We performed transcriptomic profiling of mouse kidneys after cecal ligation and puncture 
(CLP) to mimic clinical sepsis. RNA from kidney samples from the CLP and control groups was isolated 
and analyzed using bulk messenger RNA (mRNA)-seq. Differentially expressed genes (DEGs) between 
the two groups were identified, and GO, KEGG and GSEA pathway enrichment analyses were performed. 
The protein-protein interaction (PPI) network of DEGs and hub genes was analyzed. The hub genes 
were verified using quantitative real-time polymerase chain reaction (qPCR) or Western blotting. The 
interaction network, targeted microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) of hub genes 
were predicted, and the critical miRNA-hub gene regulatory axis was verified using qPCR, Western 
blotting, malondialdehyde (MDA) determination and flow cytometry. Correlation analyses of N6-adenosine 
methylation (m6A) RNA methylation regulators and hub genes and m6A modification analysis were 
performed.
Results: A total of 4,754 DEGs were identified between the two groups using high-throughput sequencing. 
The pathways in which DEGs were enriched included ferroptosis (the highest enrichment score), apoptosis, 
and the PI3K-Akt, NF-kappa B and IL-17 signaling pathways. Seven (Hmox1, Spp1, Socs3, Mapk14, Lcn2, 
Cxcl1 and Cxcl12) of the 15 hub genes were involved in the KEGG pathway. mmu-miR-7212-5p-Hmox1 was 
a key RNA regulatory axis in ferroptosis. m6A RNA methylation modifications were involved in SA-AKI. 
The correlation analyses showed the close interactions among the m6A RNA methylation regulators and 
important hub genes.
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Introduction

Sepsis is defined as a life-threatening organ dysfunction that 
results from the host’s dysregulated response to infection (1). 
The kidney is one of the most common organs affected by 
sepsis, and it results in sepsis-associated acute kidney injury 
(SA-AKI), which poses a great challenge for clinicians (2,3). 
In critically ill patients with sepsis,  acute kidney injury (AKI) 
is one of the most frequent and serious complications. It 
occurs in approximately 35–50% of patients with sepsis, 
and the mortality rate is as high as 35% (4,5). AKI increases 
the potential risk of chronic kidney disease, and surviving 
patients inevitably develop end-stage renal disease, which 
threatens the life and health of all humans (6,7). Therefore, 
it is vital to determine the pathophysiological mechanism of 
SA-AKI, and research on clinical therapeutic strategies for 
the treatment of SA-AKI is beneficial.

Transcriptomic sequencing analyses have been widely 
applied in a variety of diseases, including cancer, immune 
system diseases and infectious diseases, to seek novel 
pathways to improve diagnosis and treatment (8-10). 
Competitive endogenous RNA (ceRNA) networks are 
widely used to clarify new binding mechanisms between 
messenger RNAs (mRNAs), microRNAs (miRNAs), 
circular RNAs (circRNAs) and long noncoding RNAs 
(lncRNAs) to promote disease development at the 
transcriptome level (11,12). Bioinformatics analyses and 
related experimental verification using molecular biology 
analyses may help reveal potential key genes and critical 
pathways that contribute to the occurrence and progression 
of diseases (13). However, few studies focused on the 
bioinformatic analysis of SA-AKI. Tang (14) identified 
seven co-differentially expressed genes (DEGs) of septic 
shock and AKI, including VMP1, SLPI, PTX3, TIMP1, 
OLFM4, LCN2 and S100A9, based on gene expression 

datasets of the Gene Expression Omnibus (GEO), but their 
gene expression datasets were obtained from peripheral 
blood samples of humans, not directly from kidney samples 
of sepsis. Yang et al. (15) revealed the gene expression 
profile of SA-AKI by identifying prognosis-related genes, 
transcription factors, miRNAs and pathways. However, the 
hub genes among the DEGs were not identified using PPIs.

N6-adenosine methylation (m6A) is the most common 
posttranscriptional dynamic and reversible modification 
in eukaryotic mRNAs, and it constitutes approximately 
0.4% of all adenosine nucleotides in RNAs (16). Three 
types of factors regulate m6A mRNA methylation: 
methyltransferases (writers, such as METTL3, METTL14 
and WTAP), which install the methyl group on adenosine; 
demethylases (erasers, such as FTO and ALKHB5), which 
remove the methyl group; and binding proteins (readers, 
such as YTHDF, IGF2BPs and eIF3), which decode and 
interact with m6A modification (17).

m6A RNA methylation-related regulators influence 
mRNA fate decisions because they change local structure, 
affect the exportation of m6A-modified mRNA transcripts, 
facilitate mRNA translation and protein synthesis, 
and trigger the de-adenylation and degradation of  
transcripts (18). Moreover, m6A modifications are found 
in noncoding RNAs, such as lncRNAs, miRNAs and 
snRNAs, affect RNA-protein and RNA-RNA interactions 
or chromatin remodeling (19). LncRNAs also interact 
with m6A regulators to affect their function. It has been 
demonstrated that m6A RNA methylation plays important 
roles in a variety of biological processes, including cell 
differentiation, embryonic development, cell cycle 
regulation, circadian cycle, and stress responses (20,21). 
Growing evidence from in vivo and in vitro experiments 
and bioinformatic studies suggest that m6A RNA 

Conclusions: The findings of this study provide new insights into the mechanism regulating the 
occurrence and progression of SA-AKI. The mmu-miR-7212-5p-Hmox1 axis in ferroptosis and m6A 
RNA methylation regulators may have potential clinical significance for the future treatment of SA-AKI. 
The datasets generated for this study can be found in the repository of the GEO database (Series number: 
GSE186822).
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methylation regulators are closely related to the occurrence, 
developmental pathogenesis, progression and clinical 
prognosis of various cancers and cardiovascular diseases 
(22,23). However, the role of m6A RNA methylation 
regulators in SA-AKI and their associations with SA-AKI 
genes were rarely studied.

The current study sequenced the RNAs of kidneys from 
a sepsis model group and control group mice, identified the 
DEGs and hub genes, and constructed co-expression and 
ceRNA networks. We verified the predicted results using 
laboratory-based experiments. We studied and validated key 
m6A RNA methylation regulators in sepsis and revealed 
a significant correlation between m6A RNA methylation 
regulators and DEGs. This study provides a novel 
perspective and lays the foundation to clarify the underlying 
pathophysiological mechanisms of SA-AKI. We present the 
following article in accordance with the ARRIVE reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-845/rc).

Methods

Animals and groups

C57BL/6 mice (male, 6–8 weeks old) were purchased from 
Guangdong Yaokang Biotechnology Co., Ltd. (China). 
We housed all mice in a standard environment, with a 
12-h/12-h light-dark cycle, and the mice were free to eat 
and drink. According to a common sepsis protocol, we 
used the cecal ligation and puncture (CLP) method to 
construct a model of sepsis (24,25). For RNA sequencing, 
5 mice were randomly divided into 2 groups: the CLP 
group (n=3) and the sham group (n=2). We anesthetized 
mice in the CLP group with 2–4% isoflurane. Under 
aseptic conditions, a 2-cm midline laparotomy was created 
below the diaphragm to expose the cecum. Two-thirds of 
the cecum was ligated with a 5-0 silk suture and punctured 
twice using a 22-gauge needle. The cecum was gently 
squeezed to extrude a small amount of feces through the 
perforation site. Animals were resuscitated with 1 mL of 
subcutaneous saline after CLP. The procedures of the sham 
group (controls) were the same as the CLP group, except 
for the ligation and perforation. The mice were sacrificed 
via neck fracture 6 hours after CLP, and the kidneys were 
taken for subsequent RNA sequencing. Six to eight weeks 
mice were used for quantitative real-time polymerase chain 
reaction (qPCR) (3 mice per group) and Western blotting 
(3 mice per group) verification, as described above, and the 

only difference was that the kidneys for Western blotting 
analysis were taken 24 hours after CLP/sham surgery. To 
minimize variability across experiments, the same researcher 
performed all of the CLP/sham surgeries, and the other 
researchers who collected specimens and performed the 
subsequent experiments and data analyses were blinded to 
the group allocation. Experiments were performed under a 
project license (No. AMUWEC20201509) granted by the 
Laboratory Animal Welfare and Ethics Committee of Third 
Military Medical University, in compliance with the Third 
Military Medical University institutional guidelines for the 
care and use of animals.

RNA isolation and library preparation

Total RNA from kidney samples [CLP group (n=3) and 
sham group (n=2)] was extracted using TRIzol (Thermo 
Scientific, USA) reagent according to the manufacturer’s 
protocol. RNA purity and quantification were evaluated 
using a NanoDrop 2000 spectrophotometer (Thermo 
Scientific, USA). RNA integrity was assessed using an 
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa 
Clara, CA, USA). A total of 1 μg of RNA per sample was 
used as initial material for the RNA sample preparations. 
Ribosomal RNA was removed using a Ribo-off™ rRNA 
Depletion Kit (Human/Mouse/Rat) (Vazyme, China). 
The sequencing libraries were generated following the 
manufacturer’s recommendations with varied index labels 
using the NEBNext® Ultra™ Directional RNA Library 
Prep Kit for Illumina (NEB, USA).

RNA sequencing and differentially expressed gene analysis

The libraries were sequenced on an Illumina NovaSeq 
6000 platform, and 150-bp paired-end reads were 
generated. Raw data (raw reads) in FASTQ format were 
processed using fastp (version 0.20.0) (26) software with 
default parameters in paired end mode. Clean data were 
obtained for downstream analyses by removing reads 
containing adapters, reads containing poly-N and low-
quality reads from the raw data. The clean reads were 
mapped to references (GRCm38) of mouse mRNAs and 
lncRNAs using bowtie2 (version 2.3.1) (27) with the 
parameters −k30 −t −p20. FPKM values and read counts 
of each transcript were obtained by eXpress (version 1.5.1) 
with the parameters—no-update-check—rf-stranded. 
Differential expression analysis was performed using the 
DESeq R package (27). The functions estimateSizeFactors 

https://atm.amegroups.com/article/view/10.21037/atm-22-845/rc
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and nbinomTest were used to normalize the data and to 
calculate differential P values, respectively. A P value <0.05 
and log2(fold change) >1 or <−1 were set as the thresholds 
for significantly differential expression. Hierarchical cluster 
analysis of DEGs was performed to explore gene expression 
patterns.

Heatmap and volcano plot analyses

To better visualize these DEGs, the R packages pheatmap 
and ggplot2 were used to draw heatmaps and volcano  
plots (28).

Enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment 
analyses of DEGs were performed using R based on the 
hypergeometric distribution. To determine whether a gene 
set correlated with some phenotypic class distinction and 
assess the distribution trend of the genes of a predefined 
set, gene set enrichment analysis (GSEA) (29) software was 
used to analyze the gene expression profile at an overall 
level, and C5 (ontology gene sets) was chosen for functional 
enrichment analyses.

Construction of the PPI network

The protein-protein interaction (PPI) network was 
constructed based on DEGs using the online tool STRING 
(v11.5) (30). Considering the large number of DEGs, 
we further restricted the number of significant DEGs 
using stricter filter conditions: adjusted P value <0.01 and 
log2FoldChange >3 or <−3. Ultimately, 814 DEGs were 
included to construct the PPI network.

For better analysis and visualization, we downloaded 
the interaction data and optimized the PPI network using 
Cytoscape software (v3.8.2). The Minimal Common 
Oncology Data Elements (MCODE) plugin was used 
to identify significant gene clusters (parameter: Degree 
Cutoff =2; Node Score Cutoff =0.2; K-Core =2; Max. 
Depth =100). The CytoHubba plugin was used to identify 
hub genes in the significant gene clusters. We used two 
different algorithms, degree and maximal clique centrality 
(MCC), to calculate the top 30 hub genes. All of the results 
of MCODE and CytoHubba (degree and MCC) were 
intersected to obtain the final hub genes.

Prediction of target miRNAs

We used three online miRNA databases [TargetScan (31), 
miRWalk (32), miRDB (33)] to predict the target miRNAs 
of hub genes involved in KEGG pathways. The target 
miRNAs were selected by taking the intersections of the  
3 databases. The mRNA-miRNA co-expression network 
was constructed using Cytoscape software (v3.8.2).

Construction of the ceRNA network

Predicted target lncRNAs were obtained from the DIANA 
tools (LncBase Predicted v.2), LNCediting (34) and 
lncRNASNP2 databases, and the first three predicted 
lncRNAs of each database were selected based on the 
score. A ceRNA network was constructed based on the 
interactions among mRNAs, miRNAs, and lncRNAs using 
Cytoscape software (v3.8.2).

Correlation analysis of m6A RNA methylation-related 
regulators and hub genes

We selected 26 m6A RNA methylation-related regulators 
based on published reviews (35,36), and we restricted the 
regulators to 23 genes that were detected in these high-
throughput sequencing data.

The PPI network of 23 m6A RNA methylation-related 
regulators was analyzed using STRING (v11.5) (30). The 
correlation of m6A RNA methylation-related regulators 
and hub genes was analyzed using the “Corrplot” package 
of R software (confidence level =0.95).

The m6A modifications analysis

The m6A modif icat ion s i tes  were obtained from 
the RMBase (v2.0) database (37), which was based 
on the reanalysis of m6A-seq and methylated RNA 
immunoprecipitation sequencing (MeRIP-Seq) raw data.

Cell culture

Mouse kidney tubular epithelium cells (TCMK-1) were 
obtained from BeNa Culture Collection (Henan, China). 
The cells were maintained in a cell incubator at 37 ℃ in a 5% 
CO2 humidified atmosphere in DMEM/F12 medium (Gibco; 
Thermo Fisher Scientific, Inc., MA, USA) supplemented 
with 10% fetal bovine serum (Gibco; Thermo Fisher 

http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2%2Findex-predicted
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Scientific, Inc., CA, USA) and 1% penicillin/streptomycin.

Cell treatments and transfection

TCMK-1 cells were stimulated with lipopolysaccharide (LPS, 
L2630, Sigma-Aldrich, Darmstadt, Germany) to mimic 
sepsis in vitro. The mimics and inhibitors of miR-7212-5p 
were synthesized by RiboBio (Guangzhou, China). The cells 
were divided into six groups: (I) control; (II) miR-7212-5p 
mimic; (III) miR-7212-5p inhibitor; (IV) Control + LPS; (V) 
miR-7212-5p mimic + LPS; and (VI) miR-7212-5p inhibitor 
+ LPS. Before transfection, TCMK-1 cells were plated in a 
6-well plate at 1×106 cells/well, antibiotic-free medium was 
added, and the cells were 50–60% confluent after 24 h. The 
cell culture medium was changed to serum-free DMEM/
F12 medium to prepare for transfection. The transfection 
process was performed according to the instructions of the 
riboFECTTMCP Transfection Kit (RiboBio, China). The 
cells in the miR-7212-5p mimic and miR-7212-5p mimic 
+ LPS groups were transfected with 50 nM of a miR-7212-
5p mimic using a riboFECTTMCP Transfection Kit and 
cultured for 48 h. The cells in the miR-7212-5p inhibitor and 
miR-7212-5p inhibitor + LPS groups were transfected with 
100 nM of miR-7212-5p inhibitor using a riboFECTTMCP 
Transfection Kit and cultured for 48 h, following the 
manufacturer’s instructions. After transfection for 48 h, the 
cells in the Control + LPS, miR-7212-5p mimic + LPS and 
miR-7212-5p inhibitor + LPS groups were stimulated with 
100 μg/mL LPS for 6 h (qPCR) or 24 h (Western blotting).

RNA extraction and qPCR

Total RNA was extracted from the kidney specimens, and the 
cells were collected using TRIzol reagent (Thermo Fisher 
Scientific, USA) following the manufacturer’s instructions. 
The purity and quality of the total RNA were determined 
using a Nano Drop 1000 spectrophotometer (Thermo Fisher 
Scientific, USA). Briefly, 1,000 ng RNA derived from kidney 
tissues or TCMK-1 cells was reverse transcribed into cDNA 
using a PrimeScript TM RT reagent Kit (Takara, Japan) 
according to the manufacturer’s protocol. The qRT-PCR was 
performed using the CFX96 real-time PCR system (Bio-Rad, 
CA, USA) with SYBR Premix Ex Taq TM II (Takara, Japan). 
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
served as an internal control for real-time PCR. PCR 
primers were designed and synthesized by Tsingke Biological 
Technology (Beijing, China). The relative expression of the 
genes in each experimental group was analyzed using the 

2−∆∆Ct method. The sequences of the primers used in the 
qPCR experiments are listed in Table 1. All experiments were 
performed in triplicate.

Western blotting analysis

Frozen kidney tissue specimens from 6 mice (3 CLP mice, 
3 sham mice) were weighed and cut into small pieces. 
Kidney single-cell suspensions were obtained by grinding 
followed by filtration through a 70-μm cell strainer. The 
pellets were treated with red blood cell lysis buffer (Beyotime 
Biotechnology Co., Ltd., Jiangsu, China) and washed twice 
with phosphate-buffered saline (PBS, HyClone Laboratories 
Inc., UT, USA) to remove red blood cells. The kidney 
tissue pellets or the TCMK-1 cell samples were added to 
protein lysis buffer with protease inhibitors. The samples 
were centrifuged at 12,000 ×g for 30 minutes at 4 ℃, and 
the supernatant was collected. The protein concentrations 
were measured using a BCA Protein Assay Kit (Beyotime 
Biotechnology Co., Ltd., Jiangsu, China). Equal amounts 
of total protein were separated using 10% Tris-Glycine 
extended stain-free polyacrylamide gels (Bio-Rad, CA, 
USA), and the proteins were transferred to polyvinylidene 
difluoride (PVDF) membranes (Roche, USA) using a wet 
blotting apparatus (Bio-Rad, CA, USA). The cells were 
blocked with 5% fat-free milk for 2 h at room temperature. 
The membranes were incubated with the following 
primary antibodies overnight at 4 ℃: anti-METTL3 
antibody (1:2,000, Arigobio, ARG56406), anti-ACSL4 
(1:20,000, Abcam, ab155282), anti-ALKBH5 antibody 
(1:2,000, Abcam, ab69325), and anti-Hmox1 (1:1,000, 
Proteintech, 10701-1-AP). The cells were incubated 
with secondary antibodies (anti-rabbit IgG, 1:3,000, 
Cell Signaling Technology, 7074S; goat anti-mouse IgG, 
1:10,000, ZSGB-BIO, 117228) at room temperature for 
1 h. The blots were washed with TBST and visualized by 
enhanced chemiluminescence using a luminescent imaging 
workstation. The amount of protein was proportional to the 
optical density (OD) intensity, which was measured using 
ImageJ software (National Institutes of Health, MD, USA). 
Total protein was measured using a ChemiDoc Touch 
Imaging System (Bio-Rad, CA, USA) and used as a loading 
control. All the reactions were repeated 3 times.

ROS assay

TCMK-1 cells were divided into six groups: (I) Control; 
(II) miR-NC; (III) miR-7212-5p inhibitor; (IV) Control + 
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Table 1 Primers Sequences for qPCR and oligonucleotides 
sequences for miRNA mimic or inhibitor

Resource Gene Sequence (5'→3')

Mouse Gaphd

Forward TGGAAAGCTGTGGCGTGAT

Reverse TGCTTCACCACCTTCTTGAT

Mouse Hmox1

Forward CGCCTTCCTGCTCAACAT

Reverse ACGAAGTGACGCCATCTG

Mouse Socs3

Forward TGCGCCTCAAGACCTTCAG

Reverse GCTCCAGTAGAATCCGCTCTC

Mouse Cxcl12

Forward GCTCTGCATCAGTGACGGTA

Reverse TAATTTCGGGTCAATGCACA

Mouse Cxcl1

Forward ACCGAAGTCATAGCCACACTC

Reverse CTCCGTTACTTGGGGACACC

Mouse Mapk14

Forward GGACTGTGAGCTGAAGATCCTA

Reverse CGCATCCAATTCAAGATGACCT

Mouse Spp1

Forward AAGAGCGGTGAGTCTAAGGAGTCC

Reverse TGGCTGCCCTTTCCGTTGTTG

Mouse Lcn2

Forward ACCACGGACTACAACCAGTTCGCC

Reverse ACTTGGCAAAGCGGGTGAAACG

Mouse Acsl4

Forward CTCACCATTATATTGCTGCCTGT

Reverse TCTCTTTGCCATAGCGTTTTTCT

Mouse iNOS

Forward TTGACGCTCGGAACTGTA

Reverse ACCTGATGTTGCCATTGTT

Mouse IL-6

Forward TAGTCCTTCCTACCCCAATTTCC

Reverse TTGGTCCTTAGCCACTCCTTC

Table 1 (continued)

Table 1 (continued)

Resource Gene Sequence (5’→3’)

Mouse mmu-miR-
7212-5p mimic

Sense UCUGGGGGCUUGUGUGGUAGG

Mouse mmu-miR-
7212-5p 
inhibitor

Antisense CCUACCACACAAGCCCCCAGA

Sense CCUACCACACAAGCCCCCAGA

Mouse mmu-miR-NC

Sense CAGUACUUUUGUGUAGUACAAA

qPCR, quantitative real-time polymerase chain reaction; miRNA, 
microRNA.

LPS; (V) miR-NC + LPS; and (VI) miR-7212-5p inhibitor 
+ LPS. After transfection for 48 h, the cells in the Control 
+ LPS, miR-NC + LPS and miR-7212-5p inhibitor + 
LPS groups were stimulated with 100 μg/mL LPS for 
24 h. Intracellular ROS levels were estimated using flow 
cytometry and an ROS assay kit (S0033S, Beyotime 
Biotechnology Co., Ltd., Jiangsu, China) according to 
the manufacturer’s protocol. Briefly, TCMK-1 cells were 
incubated with the fluorescent probe DCFH-DA. The 
cells were analyzed using flow cytometry with an excitation 
wavelength of 488 nm and an emission wavelength 
of 525 nm. The ROS levels were measured using the 
mean fluorescence intensity with FlowJo software (version 
10.7, BD Biosciences, NJ, USA).

Determination of malondialdehyde (MDA) level

Grouping and treatment were the same as the ROS assay. 
The level of MDA was determined using a colorimetric 
method and an MDA content assay kit (Solarbio Life 
Sciences, BC0025, Beijing, China) according to the 
manufacturer’s instructions.

Statistical analysis

SPSS 25.0 software (IBM Corp., Armonk, NY, USA) 
was used for statistical analyses. Normally distributed 
variables were assessed using Student’s t-test to compare 
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Figure 1 Identification of DEGs for enrichment analysis. (A) Experimental flow chart. (B) Heatmap of DEGs between the CLP and sham 
samples. Red areas represent high expression, and green areas represent low expression. (C) Volcano plot of DEGs between the CLP and 
sham samples. The red plots represent upregulated genes, the green plots represent downregulated genes, and the gray plots represent 
nonsignificant genes. (D) GO pathway enrichment analyses of DEGs. The bar graph shows the top 10 (red for biological processes and blue 
for molecular function) and  the top 9 (green for cellular component) enriched GO pathways. (E) KEGG pathway enrichment analyses of 
DEGs. The bubble plot shows the most enriched KEGG pathways. The closer the color of a dot is to red, the smaller its P value is, and 
the closer the color is to green, the larger the P value is. CLP, cecal ligation and puncture; GSEA, gene set enrichment analysis; DEGs, 
differentially expressed genes; m6A, N6-adenosine methylation; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology.

the differences between the two groups, and nonnormally 
distributed variables were detected using the nonparametric 
Mann-Whitney U test. Statistical significance was set at a P 
value of <0.05.

Results

Identification of DEGs for enrichment analysis

As shown in the experimental flow chart (Figure 1A), five 
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Figure 2 GSEA plot showing the top 9 enriched immune-related gene sets in the CLP and sham groups based on the NES. ES, enrichment 
score; NES, normalized enrichment score; GSEA, gene set enrichment analysis; FDR, false discovery rate; CLP, cecal ligation and puncture.
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kidney RNA samples [CLP group (n=3), sham group 
(n=2)] were successfully sequenced. We identified a total of  
4,754 DEGs in the CLP samples, including 2,322 
upregulated genes and 2,432 downregulated genes. 
Heatmap and volcano plot analyses were used to visualize 
these DEGs, which are shown in Figure 1B,1C.

The DEGs were subjected to GO and KEGG pathway 
enrichment analyses, and C5 gene sets were used for GSEA 
to analyze the gene expression profile at an overall level. 
As shown in Figure 1D, GO enrichment analysis of DEGs 
revealed that the immune response in CLP samples was 
stronger than the sham samples. For example, biological 
processes were significantly enriched in neutrophil 

aggregation and T-helper 1-cell activation. For the 
molecular function enrichment, we noted that ferrous 
iron transmembrane transporter activity was enriched. As 
shown in Figure 1E, KEGG pathway enrichment analysis 
revealed that DEGs were enriched in ferroptosis (the 
highest enrichment score), the IL-17 signaling pathway, 
apoptosis, the PI3K-Akt signaling pathway, and the NF-
kappa B signaling pathway. The GSEA results showed that 
189 gene sets were significant at a false discovery rate (FDR) 
<25%, and most of the enriched gene sets were related 
to various immune responses. Figure 2 shows the 9 most 
enriched immune-related gene sets based on the normalized 
enrichment score (NES). In summary, GSEA revealed 
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Figure 3 Correlations among DEGs and co-expression networks. (A) The PPI network of DEGs. Each node represents one protein, 
and each edge represents one protein-protein association. The red nodes represent upregulated genes, and the blue nodes represent 
downregulated genes. (B) Fifteen hub genes identified by the plugin of MCODE and CytoHubba from the DEGs. (C) A co-expression 
network of mRNAs and target miRNAs. mRNAs (red nodes) was restricted to the 7 hub genes involved in the KEGG pathway, and 
miRNAs (blue nodes) were the predicted targets of 7 mRNAs based on the online databases. (D) Expression level of transcripts per million 
(TPM) between the CLP and sham groups. Left: mmu-miR-7212-5p; right: mmu-miR-134-5p. *P<0.05; **P<0.01. (E) A ceRNA network 
of Hmox1. The red nodes represent the hub gene Hmox1, the blue nodes represent differentially expressed miRNAs, and the green nodes 
represent target lncRNAs. DEGs, differentially expressed genes; PPI, protein-protein interaction; MCODE, minimal Common Oncology 
Data Elements; KEGG, Kyoto Encyclopedia of Genes and Genomes; ceRNA, competitive endogenous RNA; CLP, cecal ligation and 
puncture.
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that the enriched gene sets were related to the activation 
or regulation of immune cells, the cytoplasmic patterning 
recognition receptor signaling pathway, and the type I 
interferon signaling pathway, such as the gene sets of the 
positive regulation of mast cell activation, natural killer cell 
activation involved in the immune response, and the positive 
regulation of myeloid leukocyte-mediated immunity.

PPI network analysis for identifying hub genes and the 
prediction of target miRNAs for constructing the co-
expression network

As shown in Figure 3A, the PPI network based on DEGs 
consisted of 242 nodes and 413 edges. The MCODE 
plugin was used to identify gene cluster modules, and 
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Table 2 Fifteen hub genes

Gene symbol Description log2FC Adjusted P value Regulation

Hmox1 Heme oxygenase 1 4.761 2.753e-05 Up

Cxcl1 Chemokine (C-X-C motif) ligand 1 5.616 3.556e-04 Up

Cxcl12 Chemokine (C-X-C motif) ligand 12 −3.238 5.987e-08 Down

Igfbp5 Insulin-like growth factor binding protein 5 −3.481 2.121e-03 Down

Itgam Integrin alpha M 4.758 5.308e-05 Up

Klhl21 Kelch-like 21 4.311 1.141e-10 Up

F8 Coagulation factor VIII −3.626 7.876e-07 Down

Lcn2 Lipocalin 2 6.298 1.599e-10 Up

Mapk14 Mitogen-activated protein kinase 14 4.988 1.030e-06 Up

Nedd4l Neural precursor cell expressed, developmentally down-regulated gene 
4-like

3.150 5.767e-07 Up

Pnpla2 Patatin-like phospholipase domain containing 2 4.134 4.713e-04 Up

Serpina1a Serine (or cysteine) peptidase inhibitor 7.563 3.742e-25 Up

Serpina3n Serine (or cysteine) peptidase inhibitor, clade A, member 3N 4.963 9.239e-07 Up

Socs3 Suppressor of cytokine signaling 3 4.914 2.297e-09 Up

Spp1 Secreted phosphoprotein 1 3.503 6.272e-07 Up

FC, fold change.

the results were intersected using cytoHubba (degree 
and MCC algorithms) to identify hub genes. Fifteen hub 
genes were identified and are shown in Figure 3B. These  
15 genes are the key genes in the PPI network and may play 
important roles in the pathological process of sepsis (Table 2).  
We observed that 7 of the 15 hub genes were involved in 
the KEGG pathway, including Hmox1 in ferroptosis, Lcn2 
in the IL-17 signaling pathway, Cxcl1 and Cxcl12 in the NF-
kappa B signaling pathway, Mapk14 in the AGE-RAGE 
signaling pathway in diabetic complications, Socs3 in the 
TNF signaling pathway, and Spp1 in the PI3K-Akt signaling 
pathway. A total of 183 target miRNAs were predicted 
based on the 7 hub genes (Hmox1, Spp1, Socs3, Mapk14, 
Lcn2, Cxcl1 and Cxcl12), which were involved in the KEGG 
pathway. Based on the prediction results, a co-expression 
network of miRNAs and mRNAs was constructed with 190 
nodes and 201 edges, as shown in Figure 3C.

Because Hmox1 was the hub gene of ferroptosis, which 
showed the highest enrichment score from KEGG pathway 
enrichment analysis, 22 target miRNAs for Hmox1 were 
predicted, and the miRNA sequencing results further 
verified the expression difference between the CLP and 
sham groups. There were 2 miRNAs, mmu-miR-7212-

5p and mmu-miR-134-5p, which were detected using our 
miRNA sequencing, and the difference in transcripts per 
million (TPM) between these 2 groups was statistically 
significant (P<0.05) (Figure 3D).

Thirteen target lncRNAs were predicted based on the 
differentially expressed miRNAs (mmu-miR-7212-5p and 
mmu-miR-134-5p) and used to construct ceRNA networks 
of the Hmox1 gene (Figure 3E).

Verification of the 7 specifically expressed hub genes and 
the miRNA-Hmox1 regulatory axis

To verify the expression differences of the predicted 7 hub 
genes involved in the KEGG pathway, we performed qPCR 
analysis of mouse kidneys between the CLP and sham 
groups. We noticed that the mRNA expression levels of 
the 6 genes (Hmox1, Spp1, Socs3, Lcn2, Cxcl1 and Cxcl12) in 
the 7 expressed hub genes were consistent with the RNA 
sequencing results (Figure 4A).

To further verify the hub gene of Hmox1 in ferroptosis, 
we performed Western blotting (Figure 4B) to assess the 
protein expression levels between the CLP and sham 
groups. Consistent with the qPCR and RNA sequencing 
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Figure 4 Verification of the predicted hub genes and the miRNA-Hmox1 regulatory axis. (A) qPCR analysis. The mRNA expression levels 
of 6 hub genes (Hmox1, Spp1, Socs3, Lcn2, Cxcl1 and Cxcl12) in mouse kidney tissues (n=3) were consistent with the RNA sequencing results. 
GAPDH was used as a loading control. (B) Western blotting analysis of Hmox1 in mouse kidney tissues (n=3). Total protein was used as a 
loading control. (C) Representative densitometric analysis was used to semiquantitatively assess the protein expression levels of Hmox1. (D) 
qPCR analysis of Hmox1 in TCMK-1 cells treated with an mmu-miR-7212-5p mimic or inhibitor. (E) Western blotting analysis of Hmox1 
in TCMK-1 cells treated with an mmu-miR-7212-5p mimic or inhibitor. Total protein was used as a loading control. (F) Representative 
densitometric analysis was used to semiquantitatively assess the protein expression levels of Hmox1 in the mmu-miR-7212-5p-Hmox1 
regulatory axis. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001. ns, not significant; CLP, cecal ligation and puncture; miRNA, microRNA; 
qPCR, quantitative real-time polymerase chain reaction; mRNA, messenger RNA; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
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results, the expression of Hmox1 in CLP kidneys was 
higher than the sham kidneys (Figure 4C).

The mmu-miR-7212-5p-Hmox1 regulatory axis was 
also verified. We noted that in the mmu-miR-7212-5p-
Hmox1 regulatory axis, the mimic of mmu-miR-7212-
5p reduced the mRNA (Figure 4D) and protein expression  
(Figure 4E,4F) of Hmox1 in TCMK-1 cells stimulated with 
LPS, and its inhibitor increased the mRNA (Figure 4D) and 
protein expression (Figure 4E,4F) of Hmox1 in TCMK-
1 cells stimulated with or without LPS. These results 
suggest that mmu-miR-7212-5p-Hmox1 may be a key RNA 
regulatory axis that participates in the ferroptosis pathway 
attributed to the pathophysiological process of SA-AKI.

Inhibitor of mmu-miR-7212-5p attenuates ferroptosis and 
inflammatory factor release in TCMK-1 cells stimulated 
with LPS

A previous study demonstrated that Hmox1 played an anti-
ferroptotic role in renal epithelial cells. We wondered 
whether an inhibitor of mmu-miR-7212-5p would attenuate 
ferroptosis in TCMK-1 cells stimulated with LPS. Acsl4 is 
an enzyme that converts fatty acids to fatty acyl-CoA, and 
it is considered a ferroptosis marker (38). We found that 
the LPS-induced enhanced mRNA (Figure 5A) and protein 
expression (Figure 5B,5C) of Acsl4 in TCMK-1 cells 
would be attenuated by the mmu-miR-7212-5p inhibitor. 
Flow cytometry results showed that the enhanced ROS 
level (mean fluorescence intensity of DCFH-DA) in 
TCMK-1 cells induced by LPS was also attenuated by 
the mmu-miR-7212-5p inhibitor (Figure 5D). MDA is a 
lipid peroxidation byproduct that reflects the degree of 
ferroptosis in cells. The MDA content was reduced by 
the mmu-miR-7212-5p inhibitor after LPS challenge  
(Figure 5E). These data showed that the inhibitor of mmu-
miR-7212-5p reduced LPS-induced ferroptosis. The 
mmu-miR-7212-5p inhibitor significantly reduced the 
mRNA expression of iNOS and IL-6, which indicates that 
it inhibits the release of LPS-induced renal inflammatory 
factors (Figure 5F,5G).

m6A RNA Methylation and related regulators involved in 
SA-AKI

High-throughput sequencing showed that the expression 
levels of Alkbh5, Igf2bp2 and Eif3a were significantly 

increased in the CLP groups compared to the controls 
(P<0.05), and the expression levels of Hnrnpa2b1, Igf2bp1, 
Ythdf3, Wtap and Mettl16 were significantly decreased 
(P<0.05) (Figure 6A). Wtap and Mettl16 are m6A “writers” 
in the RNA methylation process, Alkbh5 is an m6A “eraser”, 
and Igf2bp1, Igf2bp2, Eif3a, Hnrnpa2b1 and Ythdf3 are 
m6A “readers”.

As methyltransferases, Mettl3 and demethylase Alkbh5 
play core roles in regulating m6A methylation levels. 
To further investigate whether Mettl3 and Alkbh5 were 
involved in SA-AKI, Western blotting was performed to 
identify the expression levels of these proteins. As shown 
in Figure 6B-6E, the results demonstrated that the protein 
expression of Mettl3 was decreased in SA-AKI, and the 
expression of Alkbh5 was increased. From the data above, 
we inferred that the total m6A RNA methylation level may 
be decreased in SA-AKI.

Interaction of m6A RNA methylation-related regulators 
and CLP hub genes

The interactions of m6A RNA methylation-related 
regulators were analyzed (Figure 7A), and they were 
highly connected among writers, erasers and readers. 
Mettl3, Hnrnpa2b1, Hnrnpc and Ythdc2 were hub genes 
in the RNA methylation process because they interacted 
with at least 18 m6A RNA methylation-related regulators  
(Figure 7B). The expression levels of Mettl3, Mettl14, 
Mettl16, Zc3h13, Rbm15b, Fto, Alkbh5, Ythdf1, Ythdf2, 
Ythdf3, Igf2bp1, Igf2bp2 and Igf2bp3 significantly correlated 
with the expression levels of other m6A RNA methylation-
related regulators (P<0.05) (Figure 7C).

To further study the interaction of the m6A RNA 
methylation-related regulators and 15 hub genes in CLP, 
we analyzed the correlations between these factors. The 
correlation analysis of expression revealed that 14 hub genes 
in CLP were significantly associated with m6A regulators 
(Figure 7C). The hub gene Hmox1 positively correlated with 
the expression of Ythdf2 and negatively correlated with the 
expression of Mettl14, Fto, and Zc3yh13 (P<0.05).

The possible m6A modification sites for Hmox1 were 
further analyzed. There were at least 21 m6A modification 
sites, which were supported by at least one m6A-seq or 
MeRIP-Seq dataset, in the gene sequence of Hmox1 based 
on the RMBase database. ‘Motif score’ is an alignment score 
to evaluate the accuracy of identified motif regions of m6A, 
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Figure 5 Inhibitor of mmu-miR-7212-5p attenuates ferroptosis and inflammatory factor release in TCMK-1 cells stimulated with LPS. 
(A) qPCR analysis of Acsl4 in TCMK-1 cells. (B) Western blotting analysis of Acsl4 in TCMK-1 cells. Total protein was used as a loading 
control. (C) Representative densitometric analysis was used to semiquantitatively assess the protein expression levels of Acsl4. (D) Flow 
cytometry analysis of DCFH-DA (2’,7’-dichlorodihydrofluorescein diacetate). (E) The intracellular MDA content. (F,G) qPCR analyses 
of iNOS and IL-6 in TCMK-1 cells. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001. ns, not significant; NC, negative control; LPS, 
lipopolysaccharide; MFI, mean fluorescence intensity; qPCR, quantitative real-time polymerase chain reaction; MDA, malondialdehyde.
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and the sites of the top 10 motif scores are listed in Table 3.

Discussion

Sepsis is a highly heterogeneous syndrome that is associated 
with a dysregulated systemic inflammatory host response 
to infection and results in organ dysfunction (39). AKI is 
a major and severe complication in septic patients, but no 
specific and effective therapeutic strategies are available 
to treat sepsis-related AKI (40). Therefore, exploring the 
mechanism of AKI in sepsis is critical for the prevention 
and treatment of sepsis.

The current study demonstrated that the biological 
process of GO enrichment analysis showed neutrophil 
aggregation and T-helper 1-cell activation, and GSEA 
indicated that most of the enriched gene sets were related to 
various immune responses, such as the positive regulation of 
mast cell activation, nature killer cell activation involved in 
the immune response and the positive regulation of myeloid 
leukocyte-mediated immunity. These results showed that 
AKI related to sepsis was accompanied by strong immune 
activation, which caused inflammation and injury of the 
renal corpuscle and renal tubule. The current study is 
the first SA-AKI study to show enriched immune-related 
pathways using GSEA instead of DEGs. GSEA, which 
focuses on gene sets, has some advantages compared to 
single-gene analysis methods (29). GSEA boosts the signal-
to-noise ratio, which makes it possible to detect modest 

changes in individual genes and effectively reveal important 
immune-related pathways.

A total of 15 hub genes in the PPI network were 
obtained by the intersection of two different algorithms, 
and we noted that 7 (Hmox1, Lcn2, Cxcl1, Cxcl12, Mapk14, 
Socs3 and Spp1) of these 15 hub genes were involved in 
KEGG pathways. The upregulated Lcn2 in the 7 hub genes 
was also reported as a hub gene in a previous bioinformatic 
analysis study of SA-AKI (14), but the other 6 hub genes in 
the current study had not been reported. To increase the 
credibility of our bioinformatic analysis, we verified the 
expression differences of the 7 hub genes in vivo. The qPCR 
results were very consistent with the RNA sequencing 
results. The upregulated or downregulated expression of the 
7 genes played key roles in different signaling pathways. We 
further constructed a co-expressed network of the 7 mRNAs 
and their target miRNAs. This network demonstrated the 
interaction mechanism by which the most key genes were 
regulated at the transcriptome level.

Our enrichment pathway results were generally 
consistent with a previous bioinformatics study (15), such 
as the apoptotic process and the responses to cytokine and 
immune system process pathways. However, we also noted 
that the ferroptosis pathway was enriched and had the 
highest enrichment score. The molecular function of GO 
enrichment analysis found that ferrous iron transmembrane 
transporter activity was enriched. Among these 7 hub 
genes, Hmox1 in the ferroptosis pathway was in the center 

Figure 6 Expression levels of m6A RNA methylation-related regulators. (A) Heatmap of the expression levels of 23 m6A RNA methylation 
regulators. Asterisks (*) represent significant differences between the two groups (P<0.05). (B-E) Western blotting analysis. Representative 
densitometric analysis was used to semiquantitatively assess the protein expression levels of the m6A-related enzymes Mettl3 (B,C) and 
Alkbh5 (D,E) in mouse kidney tissues. Total protein was used as a loading control. Asterisks (*) represent significant differences between the 
two groups (P<0.05), n=3 per group. m6A, N6-adenosine methylation; CLP, cecal ligation and puncture.
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Figure 7 Interactions of m6A RNA methylation-related regulators. (A) The protein-protein interactions among 23 m6A methylation 
regulators. (B) The rank of connection degrees (interaction counts) of 23 m6A RNA methylation regulators. (C) Spearman correlations 
between 23 m6A-related enzymes and 15 CLP hub genes. The red pie chart represents a negative correlation between the 2 genes (P<0.05), 
and the blue pie chart represents a positive correlation between the 2 genes (P<0.05). The area of the pie chart represents the absolute value 
of the correlation coefficient. m6A, N6-adenosine methylation; CLP, cecal ligation and puncture.

of the hub gene PPI network, with 6 edges connected with 
other hub genes. The mRNA and protein expression of 
Hmox1 was upregulated in the kidneys of the CLP group. 
These results indicate that the ferroptosis pathway plays 
an important role in the pathophysiological events of the 

kidney in sepsis.
Ferroptosis is a novel iron-dependent cell death pathway 

that is characterized by increases in reactive oxygen species 
(ROS) and lipid peroxidation caused by iron overloading (41).  
Ferroptosis is the key mechanism in the pathogenesis of 
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AKI, and the disruption of iron homeostasis is a significant 
contributor to tissue injury (42). Deferoxamine (DFO) 
inhibits lipid peroxidation and renal tubular epithelial cell 
necrosis to prevent renal failure (43).

Hmox1, namely, heme oxygenase-1 (HO-1), is a phase 
II enzyme that metabolizes heme into biliverdin/bilirubin 
and ferrous iron, and it triggers the generation of carbon 
monoxide and H-ferritin (42,44). To further elucidate 
the potential mechanism of Hmox1, the present study 
constructed a ceRNA network of the target lncRNAs and 
miRNAs for Hmox1. The Hmox1 gene was upregulated in 
the CLP group, and its target miRNA, mmu-miR-7212-
5p, was downregulated in the CLP group. According to 
the miRNA hypothesis, we hypothesized that mmu-miR-
7212-5p-Hmox1 was a key RNA regulatory pathway. To 
test this hypothesis, we verified the mmu-miR-7212-5p-
Hmox1 regulatory axis. LPS stimulation led to a distinct 
compensatory elevation of Hmox1 expression in TCMK-1-
cell lines, and a mmu-miR-7212-5p mimic attenuated LPS-
induced enhanced Hmox1 expression but further increased 
by the inhibitor. However, without LPS stimulation, this 
phenomenon was only observed in the mmu-miR-7212-
5p inhibitor, and the reduction in Hmox1 levels was not 
significant for the mimic. The reasons for this result may be 
that without LPS stimulation, the expression of Hmox1 is 
relatively low, and the expression of mmu-miR-7212-5p is 
relatively high. The expression level of Hmox1 could not be 
further decreased by exogenous additional mmu-miR-7212-
5p mimic.

Ferroptosis is a pro-inflammatory agent that recruits 
macrophages and causes inflammation in AKI (45). Recent 
studies revealed that Hmox1 played an anti-ferroptotic role 
during AKI against oxidative stress and inflammation (43). 
By upregulating the Hmox1 pathway, LPS-induced acute 
lung injury was reduced, and lung pathological changes 
were ameliorated (46). We found that an inhibitor of mmu-
miR-7212-5p increased the expression of Hmox1 and 
attenuated ferroptosis by reducing the expression of Acsl4. 
Acsl4 is a known promotor of ferroptosis that regulates lipid 
biosynthesis by converting fatty acids to fatty acyl-CoA 
esters. Ablation of the Acsl4 gene attenuates the pathological 
and functional injury of AKI mice (38). ROS formation 
is considered the executioner of ferroptosis. Excessive 
ROS cause oxidative stress and exacerbate mitochondrial 
dysfunction, which lead to renal injury directly (47). The 
increased ROS level activates the inflammatory response to 
remote organ injury (48). The LPS-induced ROS levels and 
inflammatory factor release in TCMK-1 cells were reduced 
as a result of attenuated ferroptosis. Taken together, our 
study indicates that the mmu-miR-7212-5p-Hmox1 axis 
participates in the pathophysiological process of sepsis-
induced AKI induced. The inhibitor of mmu-miR-7212-
5p may be a potential clinical therapeutic target for sepsis-
related AKI.

m6A is one of the most ubiquitous and abundant mRNA 
methylation modifications that occur in eukaryotes (49), 
and it is closely related to the heterogeneity and prognosis 
of sepsis (50). There were 21 m6A modification sites in 
the sequence of the hub gene Hmox1, which indicated 
that Hmox1 may be modified by m6A RNA methylation. 
Meanwhile, it has been reported that mmu-miR-7212-5p 
in the predicted regulatory pathway may also be regulated 
by Mettl3-mediated m6A modifications (51). These 
results suggested that SA-AKI may be regulated by m6A 
methylation.

To further verify this assumption, we first identified 8 
differentially expressed m6A RNA methylation-related 
regulators. As shown in the heatmap in Figure 6A, in 
addition to the 8 significantly differentially expressed m6A 
genes, the overall gene expression levels of 23 m6A RNA 
methylation-related regulators were obviously different 
between the CLP and control groups. The Western 
blotting results showed that the protein expression of 
Mettl3 (a core writer) was decreased in SA-AKI, and the 
expression of Alkbh5 (a core eraser) was increased. Notably, 
the mRNA expression levels of Mettl3 between sham 
and CLP in the heatmap were not significant due to the 

Table 3 The m6A modifications analysis of Hmox1

Sequence

CTCTCCTTAGCCCAGCTGGGACTTCTTTACTCTCCTCTTTG

AAGGGCTGCCCTGGAGCAGGACATGGCCTTCTGGTATGGGC

ATCGAGCAGAACCAGCCTGAACTAGCCCAGTCCGGTGATGG

GAATGCTGAGTTCATGAAGAACTTTCAGAAGGGTCAGGTGT

CTGGCCCCCAGGGGCTGTGAACTCTGTCCAATGTGGCCTTC

ACATCCAGCCAGTGGCCTGAACTTTGAAACCAGCAGCCCCA

GGCTTTTTTTACCTTCCCGAACATCGACAGCCCCACCAAGT

GCTCTATCGTGCTCGAATGAACACTCTGGAGATGACACCTG

CAGGTGATGCTGACAGAGGAACACAAAGACCAGAGTCCCTC

AAATCAGAAATAGGGTACAGACAAAAGCGCCCAGGGTAAGC

m6A, N6-adenosine methylation; Mod, modification; italic A, 
m6A modification site.
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individual differences of mice. The Mettl3 protein levels are 
more persuasive because of the methyltransferase function 
in the form of protein. These results suggested that RNA 
methylation modification played an important role in the 
pathophysiological process of AKI induced by sepsis, and 
the total abundance of m6A may be downregulated.

The PPI network and expression correlation analyses 
showed close interactions among m6A RNA methylation 
regulators .  We noted that  Hmox1,  with 21 m6A 
modification sites, showed numerous correlations with m6A 
methylation regulators, such as Mettl14 and Hnrnpa2b1. 
These results indicated that m6A “writers”, “erasers” and 
“readers” may interact with hub genes and play a synergistic 
role in RNA methylation modifications to influence the 
expression of hub genes, especially Hmox1. To the best of 
our knowledge, the present study is the first transcriptome-
wide study to propose the possible involvement of m6A 
RNA methylation in the pathophysiological process of AKI 
induced by sepsis and provide a possible mechanism.

The primary goal of this study was to provide as many 
novel directions as possible using bioinformatics analyses 
for further mechanistic research and potential clinical 
therapeutic strategies for SA-AKI. The association between 
m6A RNA methylation modifications and SA-AKI was 
exported in silicon. However, the limitations of this study 
were that the roles of m6A RNA methylation-related 
regulators in AKI induced by sepsis were primarily deduced 
from high-throughput sequencing analysis. Although we 
performed qPCR and Western blotting experiments in vivo 
and in vitro to verify the bioinformatic analysis results, the 
mechanisms underlying m6A RNA methylation regulation 
and the verification of signaling pathways must be 
demonstrated in further experiments, such as MeRIP-Seq. 
The sample size was relatively limited. Therefore, future 
studies should increase the sample size.

Conclusions

The present study identified 7 key genes (Hmox1, 
Spp1, Socs3, Mapk14, Lcn2, Cxcl1 and Cxcl12) that were 
significantly involved in signaling pathways. We found 
that mmu-miR-7212-5p-Hmox1 in ferroptosis was 
a key RNA regulatory pathway that participated in 
the pathophysiological process of SA-AKI. Our study 
demonstrated the expression profiles and potential functions 
of m6A RNA methylation regulators in SA-AKI, which 
significantly correlated with some hub genes and promoted 
the progression of AKI.
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