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Abstract: Migraine is a common neurovascular disorder in the neurologic clinics whose mechanisms have been 

explored for several years. The aura has been considered to be attributed to cortical spreading depression (CSD) and 

dysfunction of the trigeminovascular system is the key factor that has been considered in the pathogenesis of migraine 

pain. Moreover, three genes (CACNA1A, ATP1A2, and SCN1A) have come from studies performed in individuals 

with familial hemiplegic migraine (FHM), a monogenic form of migraine with aura. Therapies targeting on the 

neuropeptids and genes may be helpful in the precision medicine of migraineurs. 5-hydroxytryptamine (5-HT)  

receptor agonists and calcitonin gene-related peptide (CGRP) receptor antagonists have demonstrated efficacy in 

the acute specific treatment of migraine attacks. Therefore, ongoing and future efforts to find new vulnerabilities 

of migraine, unravel the complexity of drug therapy, and perform biomarker-driven clinical trials are necessary to 

improve outcomes for patients with migraine.
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Introduction

Migraine is a common neurovascular disorder which is 
characterized by attacks of moderate to severe headaches 
lasting from 4 to 72 hours, often unilateral and pulsating, 
and associated with nausea, vomiting, photophobia and 
phonophobia (1). Migraine has been ranked as the 6th 
disabling condition by World Health Organization (WHO) (2),  
with a domestic prevalence of 9.3% (3) and the global 
prevalence of around 10% (4). Patients with migraine are 
generally aged from 25 to 50, and the risk of migraine 
in females is three times higher than that in males (5,6). 
Migraine has become a significant impact on the quality 
of people’s lives, as well as a major economic and societal 
burden (3,7,8).

The mechanisms of migraine have been explored for 

several years and the most accepted opinion is that a 
combination of both vascular and neural mechanisms is 
involved in the initiation and perpetuation of migraine 
(9,10). Primarily the generation of migraine pain is 
attributed to activation of the trigeminovascular system. 
The aura has been considered to be attributed to cortical 
spreading depression (CSD) (11). However, the pathogenesis 
of migraine is not clear enough. Therefore, recent studies 
have devoted the genetic susceptibility research which 
may also be a neurobiological factor in the etiology of this 
disorder (12-14). Familial hemiplegic migraine (FHM), an 
autosomal dominant migraine with special aura, has been 
identified mutations in three causal genes (15). Functional 
studies in cellular and animal models of mutant alleles 
provide direct evidence for neuronal hyperexcitability as 
one cellular mechanism underlying headache or aura in 
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FHM (16). While genome wide association studies (GWAS) 
have also shed new light on the types of genes involved 
in common migraine susceptibility, many candidate gene 
association studies have focused on neurotransmitter 
related pathways. Therefore, genes affecting synthesis 
and activity of neurotransmitters are potential candidates 
for involvement in migraine susceptibility. With the rapid 
development of genetics, the treatment of diseases has 
entered the era of precision medicine.

Precision medicine

As early as in 2004, the discovery of epidermal growth factor 
receptor (EGFR) provided a theoretical basis for targeted 
therapy of lung cancer (17). However, it did not get a further 
description until a paper occurrence in 2012 in The New 
England Journal of Medicine—coupling established clinical-
pathological indexes with state-of-the-art molecular profiling 
to create diagnostic, prognostic, and therapeutic strategies 
precisely tailored to each patient’s requirements (18).  
From then on, the term precision medicine was used to 
describe accurate medical treatments according to each 
patient’s molecular data, genomics, and systems biology. 
When we talk about the precision medicine, we have to 
mention the term “Personalized Medicine”. Precision 
medicine is similar to but always much more than 
personalized medicine. Personalized medicine refers to 
determining specific information about a patient and then 
prescribing a treatment that is specific for that patient. 
Personalized medicine involves defining disease subtypes 
and defining biomarkers that can identify which patients 
who are most likely to benefit from a specific treatment (19).  
It is just the addition of data mining to improved genomic 
analyses leading to the new term “precision medicine” (20). 

Therefore, a greater understanding of the pathogenesis 
of migraine will be helpful to leading to identification of 
clinically relevant biomarkers, possibly actionable genetic 
mutations, and then getting an ideal treatment.

The pathogenesis of migraine

Migraine is viewed as a neurovascular disease caused by 
a primary brain dysfunction, leading to activation of the 
trigeminovascular system and the release of vasoactive 
neuropeptides. CSD originating in the occipital region is 
thought to represent the neurobiological underpinning of 
visual aura (21).

Cortical spreading depression (CSD)

CSD is a self-propagating wave of neuronal and glial 
depolarization (22), which is identified as the reason of 
the neurological aura symptoms (23). CSD is initiated 
by massive increases in extracellular potassium ion 
concentration and excitatory glutamate. The biochemical 
changes can trigger the activations of meningeal trigeminal 
endings and trigeminovascular system, causing the headache 
phase. CSD can also cause regional cerebral blood flow 
decreased in the cortex (24).

The trigeminovascular system

The activation of trigeminovascular system is the widely 
accepted theory of migraine headache. This system consists 
of pseudo-unipolar neurons in the trigeminal ganglion 
with primary afferents innervating the pial and dural 
meningeal vessels surrounding the brain and efferent 
projections synapsing with second order neurons in the 
trigeminal nucleus caudalis (TNC) (25) which is also called 
trigeminocervical complex (TCC) that extends from the 
dorsal medulla to the dorsal spinal horn of the first two 
cervical segments. The second-order neurons of the TCC 
project to the posterior thalamus (26).

The pain during a migraine attack is associated with 
the release of the CGRP which has a key role in migraine 
pathophysiology. CGRP is a 37 amino acid neuropeptide 
belongs in the calciton in gene peptide super family. 
Activation of trigeminal nociceptive terminals will stimulate 
the release of CGRP, which can increase the sensitivity 
of perivascular nociceptors and dilate cranial vessels. 
Clinical studies have fully established the importance of 
CGRP in migraine pathogenesis (27-29). CGRP levels 
have been reported to be elevated during spontaneous and 
nitroglycerine-induced migraine and reduced coincident 
with pain relief. Intravenous injection of CGRP caused 
delayed headaches, which for some subjects met the criteria 
for induced migraine (30,31). Notably, the delayed onset 
of migraine-like headaches was seen only in migraineurs. 
Nonmigraineurs experienced only an init ial  mild 
headache or fullness-of-head sensation. This suggests that 
migraineurs are unusually sensitive to CGRP actions.

Another neuronal messenger molecule that has 
been suggested to have an important role in migraine 
pathophysiology is pituitary adenylate cyclase-activating 
polypeptide (PACAP). PACAP is encoded by ADCYAP1 gene, 



Annals of Translational Medicine, Vol 4, No 6 March 2016 Page 3 of 10

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(6):105atm.amegroups.com

which expresses two forms containing either 27 or 38 amino  
acids with PACAP-38 representing 90% of PACAP forms 
in mammalian tissues (32). In the trigeminovascular 
system, PACAP is expressed in the spinal cord, trigeminal 
ganglia, and TNC (33). Intravenous injection of PACAP 
induces migraine-like symptoms and dilation of the middle 
meningeal artery (MMA) in both healthy and migraine 
patients. Migraineurs had elevated levels of PACAP peptide 
during the ictal phase relative to the interictal phase (34).

Genomic analyses for migraine

Identifying genes for multifactorial disorders like migraine 
is difficult because multiple genes are always with low 
penetrance, contributing to susceptibility of the disorder (35).  
Moreover, the resulting phenotype is influenced by both 
endogenous and exogenous non-genetic factors. Specifically, 
FHM is a rare monogenic migraine. Besides the FHM, 
genetics work also has been done to explore the mechanism 
of other migraine generation including exploring the 
fields of neuropeptides, hormonal related genes and so on. 
Although much effort has been done to explore the genetics 
of migraine, there are only few outcomes.

FHM related genes

There are three causative genes have been described in FHM: 
CACNA1A on chromosome19p13 (FHM1) (36), ATP1A2 
at 1q23 (FHM2) (37), and SCN1A at 2q24 (FHM3) (38).  
The CACNA1A gene encodes the α1A subunit of the  
P/Q type neuronal calcium channel (39) presenting with 
FHM1 (40). FHM1 mutations produce gain-of-function of 
the Ca (V) 2.1 channel and as a consequence, increased Ca 
(V) 2.1-dependent neurotransmitter release from cortical 
neurons and facilitation of in vivo induction and propagation 
of CSD (41). ATP1A2, encodes the α2 subunit of the Na+/K+  
ATPase, is expressed in astrocytes and involved in the 
clearance of extracellular K+ and production of a Na+ 
gradient used in the reuptake of glutamate. SCN1A encodes 
the α1 subunit of the neuronal voltage gated sodium 
channel Nav1.1. This channel is critical in the generation 
and propagation of action potentials (42). SCN1A gene 
mutation leads to accelerated channel recovery from fast 
inactivation which increases dendrite excitability and 
neuronal firing. Mutations in ion channels could have led 
towards the vasogenic path but the consequent elevated 
extracellular glutamate and K+ levels support neurogenic 
theory leading to reduced CSD threshold in migraine (43). 

In 2012, mutations in the proline-rich transmembrane 
protein 2 gene (PRRT2) have been shown to be associated 
with hemiplegic migraine (44). PRRT2  codes for a 
transmembrane protein, which has an unknown function 
that is capable to bind to synaptosomal-associated protein 
25 (SNAP25), suggesting a role in synaptic exocytosis (45). 
Mutations in the SLC4A4 gene (46) and SLC1A4 gene (47) 
have also been reported in the FHM, although these four 
mutations are relatively rare or even “private”.

Hormonal related genes

Clinical and epidemiological observations indicate a strong 
correlation between female gender, sex female hormones, 
and migraine susceptibility. For these years, some genes 
have been verified participate the menstrual migraine (MM) 
generation.

The polymorphic estrogen receptor 1 (ESR1) gene at 
human chromosome 6q25.1 has eight exons and seven 
introns and spans about 300 kb in length (48). A meta-
analysis in 2015 get a conclusion that exon 4 325C>G 
and exon 8 594G>A polymorphisms of the ESR1 gene 
conferred increased susceptibility to migraine, basing on 
data from molecular and epidemiological studies (49). 
At the same time ESR1is expressed in many areas of the 
brain regulating many functions including regulating gene 
expression through cell signaling affecting glutamate and 
serotonin synthesis and CGRP and can regulate vascular 
tone by stimulating release of nitric oxide (NO) (50,51). 
Progesterone receptor gene (PGR), located on chromosome 
11q22 (OMIM# 607311), encodes a steroid receptor that 
principally mediates the effect of progesterone on the 
establishment and maintenance of reproductive events 
(UniProt# P06401). PROGINS PGR polymorphism does 
not directly predispose to migraine but significantly delays 
migraine onset probably via a reduction in brain neuronal 
excitability (52).

Migraine related neurologic syndrome 

Migraine has been reported as clinical manifestations 
in several genetic vasculopathies. Cerebral autosomal 
dominant arteriopathy with subcortical infarcts and 
leukoencephalopathy (CADASIL) is a monogenic-inherited 
form systemic vasculopathy linked to mutations in the 
Notch3 gene (located on chromosome 19p13.2-p13.1), 
which encodes a cell surface receptor (53). The incidence 
of migraine with aura in CADASIL is five times greater 
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compared with the general population (54,55).
The other one is retinal vasculopathy with cerebral 

leukodystrophy (RVCL) which is a neurovascular syndrome 
characterized by vascular retinopathy, cognitive impairment, 
depression, migraine (mainly without aura), focal neurologic 
symptoms and intracerebral mass lesions. The TREX1 gene 
has just been reported independently, and it is still unclear 
how the carboxyl truncating mutations in TREX1 lead to 
the phenotype or pathogenesis of RVCL (56).

COL4A1 related-syndromes is caused by COL4A1 
mutations which will cause neurological symptoms 
including hemiparesis, seizures, visual loss, dystonia, stroke, 
mental retardation, cognitive impairment and dementia. 
The association of COLA4A1 mutations with migraine is 
not entirely certain. To date, migraine with aura has been 
described only in one family with COLA4A1 mutation (57).

Two families with migraine with aura and familial 
anticipated sleep phase syndrome (FASPS) have been 
screened with a mutation in the circadian Period2 (PER2) 
gene, within the casein kinase 1 (CK1)-binding domain of 
the Per2 protein. Mice carrying the CK1δ T44 mutation 
have a reduced threshold for CSD after exposure of the 
cortical surface to 1 uM potassium chloride and increased 
spontaneous and evoked calcium activity in astrocytes (58).

Neuropeptides related genes

Receptor activity modifying protein 1 (RAMP1) is known to 
be a key receptor subunit of CGRP, which functions as an 
important neural transmitter in migraine (59). The changes 
in the expression of RAMP1 can affect the sensitivity of cell 
to CGRP (60). The over-expressed human RAMP1Nestin/
RAMP1 transgenic mice, can mimic photophobia and 
allodynia just like migraine, when intracerebral ventricular 
administration of CGRP (61,62). However, genetic 
polymorphism studies failed to link migraine with variations 
in RAMP1 gene (63,64). A few attempts are to investigate the 
relationship between deoxyribonucleic acid (DNA) methylation 
of RAMP1 gene and migraine. Recently a study provides 
that DNA methylation at RAMP1 promoter might play a 
role in migraine. A lower methlytion level at (+89, +94, +96)  
CpG unit may be a risk of migraine in females (65).

As a potent vasodilator implicated in migraine, NO has 
a strong correlation with CGRP. NO synthase 3 (NOS3) by 
expressing enzyme NOS regulates endothelial derived NO. 
The NOS3 gene is located on chromosome 7 and consists of 
26 exons. The NOS3 gene has numerous poly-morphisms 
which among them the Glu298Asp at exon 7 is the only 

single nucleotide polymorphism (SNP) (guanine to thymine 
at position 894) which leads to amino acid substitution 
(from glutamic acid to aspartic acid at position 298).  
Study has verified that migraine attacks after use of tricyclic 
antidepressants (TCAs) was significantly decreased in 
all genotypes of NOS3. Use of TCAs had no significant 
effect in intensity of headache in migraine patients, but by 
decreasing frequency of migraine attacks had an inhibitory 
role in migraine generation, particularly in patients with 
TT genotype (66).

Others

Recent studies have highlighted the role that the potassium 
channel, subfamily K, TWIK-related spinal cord K+ 
channel (TRESK) gene may play in migraine with aura.  
A main physiological function of TRESK is the modulation 
of nociception. Down-regulation of TRESK expression 
by siRNA increased the sensitivity to painful stimuli (67). 
Overexpression of TRESK in DRG neurons attenuates 
nerve injury-induced mechanical allodynia (68). The 
TRESK channel presents perhaps the best opportunity 
for development of antimigraine therapeutics, given its 
predicted role in controlling neuronal excitability (69).

The methylenetetrahydrofolate reductase (MTHFR) 
gene has been verified to increase the risk of ischemic stroke 
in migraine with aura (70). The gene encodes MTHFR 
enzyme that converts 5, 10-methylenetetrahydrofolate 
into 5-methylenetetrahydrofolate, which is the circulating 
form of folate in plasma. Folate is needed for conversion 
of homocysteine to methionine (71). In the presence of 
either homozygous or heterozygous C677T or A1298C 
variants of the MTHFR gene, the activity of the enzyme 
is downregulated, therefore homocysteine level in blood 
plasma increases (72). The decreased activity of the MTHFR 
enzyme is considered an important risk factor for migraine.

Transient receptor potential (TRP) channels are 
expressed in dural afferents including those containing 
CGRP. Activation of TRP channels promotes excitation of 
nociceptive afferent fibers and potentially leads to pain. In 
addition to pain, allodynia to mechanical and cold stimuli 
can result from sensitization of both peripheral afferents 
and of central pain pathways. In the TRP family, TRPV1 is 
highly expressed on peripheral nociceptors (73). 

The relation of angiotensin-converting enzyme (ACE) 
and migraine is not clear. Recent studies showed the 
ACE D/D genotype have a synergistic effect with the 
MTHFR T/T genotype toward developing migraine (74). 
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The dopaminergic system and glutamate also play major 
roles in migraine. Skorobogatykh et al. did a research 
about dopamine beta hydroxylase (DBH) polymorphisms 
rs1611115 and showed that the T-allele carriers (46.9%) 
as compared to the CC genotype patients (53.1%) have 
more severe migraine (75). TT genotype of rs2049046 in 
brain-derived neurotrophic factor (BDNF) gene appears 
to influence susceptibility to migraine chronification. This 
polymorphism could also be a link for comorbidity of 
chronic migraine and mood disorders (76).

Precision treatment for migraine 

Lots of studies have been done to explore the initiation, 
propagation, pathogenesis, and genetics of migraine. 
However, the ultimate aim is to get an excellent option 
to deal with migraine. We have reviewed the different 
pathogenesis of migraine including 5-HT, NO, CGRP, 
PACAP and other related neuropeptids. Hence, one strategy 
to abort migraine is to block the release of neuropeptides or 
their receptor activation. Abortive agents in acute migraine 
management exert a modulatory effect on the levels of 
circulating neuropeptides. Some of the material’s receptors, 
agonist have been researched even used in the treatment.

5-HT receptor agonist

5-HT1B/1D receptor agonists have a long history in the 
treatment of migraine. Ergot is the oldest medicine used 
as the antimigraine drug. Methysergide, a 5-HT2B receptor 
antagonist, and ergotamine, a 5-HT1A/1B/1D/1F/2A/2B agonist, 
in migraine treatment spurred the early research at a 
pharmacological level (77). However, the side effects such 
as gangrene of the limbs due to a potent and long lasting 
vasoconstriction limited its popularization. After that, the 
triptans were demonstrated can induce downregulation in 
TNC activity (78) and decreased the enhanced neuronal 
firing in the brain stem in animal models (79). Sumatriptan, 
the first triptan as an agonist at 5-HT1B/1D receptor (80), 
is verified effective and well-tolerated in patients (81). 
However, the agonist also has a peripheral vasoconstriction 
because of the presence of some 5-HT1B receptors on 
coronary arteries, so sumatriptan is contraindicated in 
patients with cardiovascular disease (82). But it still has 
been proven to be effective and well-tolerated when used 
properly. In addition, sumatriptan stimulates 5-HT1D 
receptors located in trigeminal fiber endings, which inhibits 
the release of neuropeptides (83). As the first generation 

of triptans, sumatriptan has a low oral bioavailability 
(14%), and a short half-life period of about 2 hours (84). 
The second generation triptans including zolmitriptan, 
naratriptan, rizatriptan, frovatriptan, almotriptan and 
eletriptan have a greater bioavailability, longer plasma half-
life, and higher lipophilicity (85). Evidence-based medicine 
has indicated that the triptans are of level A for the acute 
treatment of migraine headache (85). The use of pure 5-HT1F 
agonists is hypothesized could be effective as antimigraine 
abortive treatment due to higher receptor selectivity (26). 
However, recently clinical studies about 5-HT1F receptor 
agonist, lasmiditan, revealed a high rate of central nervous 
system side effects in clinical trials included dizziness (often 
classified as severe), paresthesia, fatigue and vertigo (86,87). 
Novel antimigraine drugs without peripheral vasoconstrictor 
side effects are still needed; compounds binding specifically 
to 5-HT1D, 5-HT1F and 5-HT7 receptors have been or are 
currently being investigated.

CGRP receptor and monoclonal antibodies

CGRP receptor antagonists have been developed as novel 
antimigraine drugs and found to be effective in the treatment 
of acute migraine attacks. Olcegepant (BIBN4096BS) is the 
first discovered selective CGRP-RAs (88). A multicenter, 
double blind, randomized (126 patients with migraine), 
clinical proof-of-concept study revealed the effectiveness of 
olcegepant for the treatment of acute migraine attacks (89).  
However, the intravenously administration limited its 
wide clinical use. Telcagepant was developed as an orally 
available medicine instead. It proved effective as a migraine 
abortive agent, with efficacy for 2-hour pain and 2-hour 
pain freedom, sustained pain freedom for 2–24 hours and 
2–48 hours (90-92) and toward the migraine accompanying 
symptoms (nausea, photo and phono-phobia). However, the 
study was abandoned (93-95) because of asymptomatic liver 
toxicity in some patients. Another orally CGRP receptor 
antagonist MK-3207, also showed hepatotoxicity in some 
cases and its development was thus discontinued (96). 
Monoclonal antibodies targeting CGRP (CGRP-mAbs) or 
its receptor appear more promising with no liver toxicity. 
Whereas the small-molecule CGRP-RAs were developed 
only for the acute treatment of episodic migraine, the anti-
CGRP mAbs were designed for the prophylaxis of frequent 
episodic and chronic migraine in severe cases. Because of the 
large size of the mAbs, they cannot be administered orally, 
but only subcutaneously or intravenously. The humanized 
mAbs LY2951742 (developed by Arteus Therapeutics), 
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ALD403 (developed by Alder Biopharmaceuticals) and 
LBR-101 (developed by Labrys Biologics—TEVA) have 
been investigated against episodic migraine. The studies are 
still in clinical trials. Currently, the only anti-CGRP-R mAb 
AMG 334 (a compound developed by Amgen) has been 
undergoing the Phase II clinical studies of episodic and 
chronic migraine. The results are still not yet available (97). 

Further, PACAP-induced MMA dilation was abolished 
by the ATP-Sensitive Potassium (KATP) channel blocker 
glibenclamide. These observations that PACAP dilates 
MMA via activation of vascular KATP channels may 
provide a potential therapeutic target of migraine (98). 

Genes targeting

Specifically, genetic analysis could contribute to better 
treatment choices. Collectively these data indicate that 
SNP analysis of candidate genes can assist in the diagnosis 
of migraine, as well as opening up the possibility of gene 
therapy for this disorder (99).

Though we have known CACNA1A, ATP1A2, SCN1A 
and PRRT2 genes play important roles in migraine, the gene 
targeting therapies related studies are very few. Loredana 
Leo et al had generated the first FHM2 knock-in mouse 
model carrying the human W887R mutation in the Atp1a2 
orthologous gene (100). However, there is still no FHM 
related knock-out models or other genetic therapies reported.

Parthenolide, a bioactive compound contained in the 
antimigraine preparations from Tanacetum parthenium (also 
known as feverfew), has been very recently shown to act as 
a partialagonist at TRPA1 channels (101). Although TRP 
channels appear a promising target for migraine treatment, 
there are no other products of this class in current 
development in clinical trials.

The MTHFR gene mutation has been verified if the 
MTHFR enzyme activity is down-regulated, homocysteine 
level  in  blood plasma wi l l  increases .  Therefore , 
supplementation with folic acid, vitamin B6, and vitamin B12 
for the people with MTHFR gene variant will be helpful. 
The T/T individuals should receive higher doses (102). 
However, the efficiency of ACE inhibitor lisinopril (103) 
and angiotensin 1 receptor blocker olmesartanin migraine 
prophylaxis suggests a potential relation between the renin-
angiotensin system (RAS) and migraine.

Conclusions

Migraine is a common, disabling, and undertreated 

worldwide problem. The activation of the trigeminovascular 
system and the genomic anomaly has been verified 
playing important roles in the migraine. The antimigraine 
drugs such as 5-HT receptors agonists, CGRP receptor 
and monoclonal antibodies even have been used in the 
clinical treatment. Though research efforts have been 
done but there are still not enough specific therapies to 
treat migraine. So more complete understanding of the 
molecular pathways involved and the relevant genomic 
profile of migraine will aid in the development of new 
anti-migraine drugs and treatments, and or enable those 
currently available to be better targeted to suit individuals. 
In the era of precision, the integration of genomic data, 
functional studies, and data from biomarker-driven 
clinical trials will shape molecular profiling of migraine 
in the near future. Ongoing and future efforts to find new 
vulnerabilities of migraine, unravel the complexity of drug 
therapy, and perform biomarker-driven clinical trials are 
necessary to improve outcomes for patients with migraine. 
The best way to move forward is with a multidisciplinary 
approach incorporating results from emerging biochemical, 
pharmacologic, genetic studies and imaging techniques 
in order to better understand and treat this debilitating 
disease.
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