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Introduction

Axillary lymph node metastasis (LNM) is the most common 
method of breast cancer invasion (1). Previously, extensive 
surgical excisions of axillary lymph nodes (ALNs) were 

a component of modified radical mastectomy for breast 

cancer. However, this approach is not beneficial to patients 

whose dissected ALNs are pathologically nonmetastatic 

(2,3). Excessive ALN dissection might cause unnecessary 
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postoperative complications, such as lymphedema, local 
pain, paresthesia, and shoulder stiffness (4-6). Currently, an 
increasing number of breast cancer patients are diagnosed 
at an early stage, and more than half of them do not have 
axillary LNM. Sentinel lymph node biopsy (SLNB) has 
become the standard surgical approach for invasive breast 
cancer patients with clinically negative axilla (7). ALNs 
were exempted from surgical excision if the intraoperative 
pathological assessment of SLNB was negative. However, 
SLNB still causes pain to patients and has risks for 
complications. Therefore, some clinical trials have tried to 
investigate the exempt surgical excision of SLNB in patients 
through ultrasound and imaging examinations (8). However, 
the sensitivity and specificity of these methods could not 
ensure the accuracy of each case. Therefore, tools are 
needed to help estimate the risk of LNM more accurately.

Many clinical researchers and clinicians have made 
unremitting efforts in predicting lymph node (LN) 
status. Currently, there are several LNM prediction 
models of breast cancer, and most of them are based on 
clinicopathology (9). However, compared with other 
subtypes, these models have poor predictive performance 
for triple-negative breast cancer (TNBC). Some studies 
tried to predict LN status utilizing messenger RNA (mRNA) 
sequencing data, but these models still cannot predict 
axillary LNM accurately in TNBC (10,11). Therefore, it is 
urgent to develop a tool for predicting the ALN status of 
TNBC specifically.

In our research, based on the established multi-omics 
TNBC cohort in Fudan University Shanghai Cancer 
Center (FUSCC) (12), we compared differences between 
LN positive and LN negative cases and found potential 
LN related markers in multi-omics data, including 
clinicopathological information, mutation data, somatic 
copy number alteration (SCNA) data and transcriptomic 
data. Based on these omics data, we attempted to establish 
an integrated multi-omics model to predict ALN status in 
TNBC. We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-277/rc).

Methods

Patient cohort

In this study, the cohort was based on our previously 
published Fudan University Shanghai Cancer Center 
Tr ip le  Negat ive  Breas t  Cancer  (FUSCCTNBC)  

project (12). A total of 445 patients who underwent 
surgeries at the Department of Breast Surgery, Fudan 
University, Shanghai Cancer Center (FUSCC; Shanghai, 
China), from January 29, 2007, to December 17, 2014, were 
enrolled in the research.

The inclusion criteria for patients in the research 
study were as follows: (I) each patient did not have any 
neoadjuvant therapy before surgery; (II) all patients 
underwent surgical excision of ALNs; (III) all tumor 
tissues were confirmed to have invasive breast cancer by 
histopathological diagnosis; (IV) TNBC was diagnosed 
with negative immunohistochemical tests showing ER, PR 
and HER2; and (V) most clinicopathological characteristics 
were available, including age, tumor type, tumor size, 
histologic grade, and ALN status.

All data above is available to the public, so the approval of 
the medical ethics committee board was not necessary. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Data availability

All data used in the study can be viewed and accessed in The 
National Omics Data Encyclopedia (NODE: OEP000155). 
All sequence data and microarray data can also be 
downloaded from the Sequence Read Archive (WES and 
RNA-seq; SRA: SRP157974) and NCBI Gene Expression 
Omnibus (OncoScan array; GEO: GSE118527).

Generation of DNA-sequencing data

DNA extracted from 265 tumor tissues and matched white 
blood cells underwent whole exome sequencing (WES). 
DNA was fragmented on a Bioruptor Plus sonication 
system and sequenced on an Illumina HiSeq X TEN 
platform (Illumina Inc., San Diego, CA, USA). To generate 
the mutational profile, BWA-mem, Sentieon tools, FastQC, 
Samtools, VarScan2, TNseq and TNscope were performed 
in turn. To improve specificity, a panel of normal (PON) 
samples filtering, processSomatic and somaticFilter tools 
were used. In addition, mutations in at least two out of three 
callers (TNseq, TNscope and VarScan2) were included to 
construct the final somatic mutation compendium.

Generation of somatic copy number variation (SCNV) 
data

Genome-wide somatic copy number analysis of 385 samples 

https://atm.amegroups.com/article/view/10.21037/atm-22-277/rc
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analysis was performed based on the protocol of the 
OncoScan CNV Assay Kit (Affymetrix, Santa Clara, CA, 
USA). Cluster intensity values were automatically calculated 
in an algorithm from DAT files using GeneChip Command 
Console software (Affymetrix, Inc.). OncoScan Console 
1.3 software (Affymetrix, Inc.) and GISTIC2.0 (v2.0.22) 
were performed to generate peak level and gene level copy 
number values. The Advanced Scatterometer (ASCAT) 
algorithm was utilized to adjust copy numbers of genes 
based on ploidy and purity.

Construction of the expression profile

RNA sequencing was performed on 346 breast cancer 
tissues and 88 paired normal breast tissues. The RNA 
library was prepared in the Illumina TruSeq Stranded Total 
RNA LT sample preparation kit. Then the libraries were 
sequenced on the Illumina HiSeq X TEN platform (Illumina 
Inc., San Diego, CA, USA). The TopHat-Cufflinks pipeline 
(hg19) was used to generate fragments per kilobase of 
exon per million reads mapped (FPKM) data. To construct 
the expression profile with relatively accurate values, we 
removed genes whose FPKMs were not 0 in more than 
30% samples before Combat.

Enrichment and pathway analyses

In this study, the differentially expressed mRNAs (DEMs) 
were analyzed by the package “limma” in R and met 
the standard of false discovery fate (FDR) <0.05. Gene 
Ontology (GO) (13) was used to investigate the biological 
processes of these DEMs. The metabolic pathways were 
analyzed with Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (14). GO and KEGG pathway analyses were both 
performed utilizing the R package “clusterProfiler” (15)

.

Statistical analysis

We used Student’s t-test and the Wilcoxon test for 
the comparison of continuous variables and ordered 
categorical variables, while Pearson’s chi-square test or 
Fisher’s exact test was employed to compare unordered 
categorical variables. The methods used for the analyses 
involving genomic and transcriptomic data were similar 
to our previous publications. Copy number amplification 
was defined as a log2 ratio greater than log2(2.5/2), and 
copy number deletion was defined as a log2 ratio less 
than log2(1.5/2) (16). All analyses were performed with R 

software (R version 3.6.2, Vienna, Austria) and IBM SPSS 
Statistics (R23.0.0.0). Receiver operating characteristic 
(ROC) curves were generated to distinguish TNBC patients 
with and without axillary LNM. Predictive accuracy was 
determined by measuring the area under the ROC curve 
(AUROC). The least absolute shrinkage and selection 
operator (LASSO) regression model and stepwise forward 
regression were used for marker selection. All tests were two 
sided, and P<0.05 was considered statistically significant.

Results

Patient cohort and study design

A tota l  of  445 TNBC pat ients  der ived from the 
FUSCCTNBC cohort with available information on lymph 
node status were included in this study. Some of these 
patients had genomic (WES: n=265, 59.6%; OncoScan: 
n=385, 86.5%) and transcriptomic (RNA-seq: n=346, 
77.8%) data. Among them, 169 patients had positive lymph 
node metastasis (LNM) (38.0%) and 276 patients had 
negative LNM (62.0%). These two groups of patients were 
similar in terms of the distribution and completeness of omics 
data (Pearson’s chi-square test, P>0.05) and were comparable 
in terms of clinical characteristics such as age at diagnosis 
(P=0.341) and histological type (P=0.689) (Figure 1A).

We performed our research mainly in four steps. First, 
we collected and collated the multi-omics data, and divided 
the whole cohort into a training set and a validation set. 
The training set included 305 TNBC patients (68.5%) who 
underwent surgery before 1 September 2013 at FUSCC, 
while remaining 140 patients (31.5%) after 1 September 
2013 were included in the validation set (Figure 1B). Then, 
by comparing the clinical information, mutation, copy 
number and transcriptomic data in the training set, we 
observed different signatures between LN positive and LN 
negative cases. In addition, based on these signatures, we 
developed models to predict lymph node status in TNBC. 
Finally, by selecting key markers of each omics model, we 
established a multi-omics prediction model with better 
performance than models based on individual omics data.

Clinical characteristics of the study population

In total, the study included 445 TNBC patients who 
underwent axillary surgery, and the clinicopathologic 
characteristics of the patients in both the training and 
validation cohorts are shown in Table 1. The baseline clinical 
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and pathological characteristics were generally well balanced 
between the training and validation cohorts (Pearson’s chi-
square test or Fisher’s exact test or Student’s t-test, P>0.05), 
except for Ki-67 (Fisher’s exact test, P=0.026).

Different molecular characteristics between LN positive 
and LN negative samples

We compared the mutational events in LN positive cases 
with those in LN negative cases. We found that mutations 
in TP53 and PIK3CA were the two most frequent in both 
LN positive and LN negative cases (Figure 2A). It is worth 
mentioning that WDR63, COL5A1, ATG2B, C17orf104, 
DDX41, F5 and LOXHD1 showed higher mutation 
frequencies in LN positive cases (Figure 2B). Most of them 
have been found playing important roles in the process 
of cancer metastasis, such as COL5A1 helping promoting 

gastric cancer metastasis (17) and the mutation of C17orf104 
being found in the metastatic and recurrent head and neck 
squamous cell carcinoma (18). In addition, there were 
slightly more mutation events in LN positive cases (median 
=54) than that in LN negative cases (median =49), although 
there was no significant difference between them (Wilcoxon 
test, P>0.05) (Figure S1A,S1B).

Next, we compared the SCNAs in LN positive cases with 
those in LN negative cases. We found that the frequencies 
of both amplification (68.9%) and deletion (82.3%) in 
SCNAs were higher in LN negative cases (Figure 2C,2D). 

Finally, by analyzing the expression profile, genes (10.9%) 
were distinctly expressed between LN positive and LN 
negative cases (P<0.05). Among them, the expression levels 
of 1,954 genes were upregulated, and those of 1,466 genes 
were downregulated in LN positive cases (Figure 3A). 
To further investigate the features of these differentially 

Figure 1 Components and partition of the cohort. (A) All data were divided into axillary LN positive and LN negative groups: (I) a total of 445 
patients were included, and 169 patients were axillary LN positive, while 276 patients were axillary LN negative; (II) whole exome sequencing 
(WES, n=265); (III) SCNA (n=385); (IV) transcriptome (n=346) and (V) all patients in the cohort had clinicopathological information. (B) 
Definition of training and validation sets. The whole cohort was divided into a training set (n=305, 68.5%) and a validation set (n=140, 31.5%) 
according to the time of surgery. LN, lymph node; SCNA, somatic copy number alteration; TNBC, triple-negative breast cancer. 
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Table 1 Characteristics of the training and validation sets

Variable All patients (n=445), n (%) Training set (n=305), n (%) Validation set (n=140), n (%) P

Age, year 0.386*

Median 54 54 54

Range 25–84 25–83 27–84

Tumor type 0.725

IDC 407 (91.5) 277 (90.8) 130 (92.9)

ILC 6 (1.3) 4 (1.3) 2 (1.4)

Others 32 (7.2) 24 (7.9) 8 (5.7)

Tumor size, cm – – – 0.0893*

Median 2.5 2.5 2.3 –

Median ± SD [1.4, 3.6] [1.3, 3.7] [1.4, 3.2] –

Lymph node metastasis – – – 0.439

0 276 (62.0) 186 (61.0) 90 (64.3) –

1–3 106 (23.8) 73 (23.9) 33 (23.6) –

4–9 35 (7.9) 23 (7.5) 12 (8.6) –

≥10 28 (6.3) 23 (7.5) 5 (3.6) –

Ki-67 – – – 0.038

<20 45 (10.1) 37 (12.1) 8 (5.7) –

≥20 384 (86.3) 252 (82.6) 132 (94.3) –

NA 16 (3.6) 16 (5.2) 0 (0.0) –

Lehmann subtype – – – 0.008

BL1 58 (13.0) 40 (13.1) 18 (12.9) –

BL2 19 (4.3) 12 (3.9) 7 (5.0) –

IM 68 (15.3) 34 (11.1) 34 (24.3) –

LAR 58 (13.0) 37 (12.1) 21 (15.0) –

M 51 (11.5) 39 (12.8) 12 (8.6) –

MSL 25 (5.6) 16 (5.2) 9 (6.4) –

UNS 42 (9.4) 30 (9.8) 12 (8.6) –

NA 124 (27.9) 97 (31.8) 27 (19.3) –

FUSCCTNBC subtype – – – 0.019

BLIS 134 (30.1) 95 (31.1) 39 (27.9) –

IM 83 (18.7) 48 (15.7) 35 (25.0) –

LAR 79 (17.8) 50 (16.4) 29 (20.7) –

MES 50 (11.2) 33 (10.8) 17 (12.1) –

NA 99 (22.2) 79 (25.9) 20 (14.3) –

Table 1 (continued)
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Table 1 (continued)

Variable All patients (n=445), n (%) Training set (n=305), n (%) Validation set (n=140), n (%) P

RFS status at last follow-up – – – 0.286

Event-free 373 (83.8) 260 (85.2) 113 (80.7) –

Event 72 (16.2) 45 (14.8) 27 (19.3) –

Family history – – – 0.181

BC or OC 49 (11.0) 33 (10.8) 16 (11.4) –

Other cancer 95 (21.3) 58 (19.0) 37 (26.4) –

No 301 (67.6) 214 (70.2) 87 (62.1) –

*, Student’s t-test [after Shapiro-Wilk test and analysis of variance (ANOVA)] was used to calculate P values. The other P values were 
calculated utilizing Pearson’s chi-square test or Fisher’s exact test. NA was not included in any calculation. IDC, invasive ductal carcinoma; 
ILC, invasive lobular carcinoma; SD, standard deviation; FUSCCTNBC, Fudan University Shanghai Cancer Center Triple-negative Breast 
Cancer; RFS, relapse free survival; BC, breast cancer; OC, ovarian cancer.

expressed genes, we analyzed their enrichment pathways 
utilizing GO and KEGG gene sets. The results of GO 
enrichment analysis demonstrated that genes highly 
expressed in LN positive cases were mainly enriched in 
immunity and neutrophil-related pathways (Figure 3B). 
It has been proved that neutrophils and some special T 
cells conspired to promote breast cancer metastasis (19). 
In addition, we found that genes highly expressed in LN 
positive cases were enriched in cytokine-related pathways 
using KEGG enrichment analysis (Figure 3C).

Prediction models of axillary LNM developed by each omics

We tried to construct LNM prediction models based on the 
specific characteristics of each omics approach. All models 
were developed in the training set and were tested in the 
validation set. ROC curve analyses were utilized to evaluate 
the performance of each model (Figure 4A,4B).

Clinical model

Various clinical and pathological characteristics, including 
age at surgery, tumor size, histological grade, and HER2 
and Ki-67 levels, were included to build a clinical model 
based on multivariable logistic regression analysis. The 
AUC was 0.624 (95% CI: 0.557–0.691) in the training 
set and 0.602 (95% CI: 0.502–0.702) in the validation set 
(Figure S2A,S2B).

Mutation model

We first selected 116 genes with a high frequency of 
mutation events (the number of mutations in each gene was 
greater than or equal to 3 in our cohort). We then used the 
LASSO regression model to select genes and established a 
panel of 12 genes (Figure S3A,S3B). Based on these results, 
we performed a multivariable logistic regression model with 
an area under the curve (AUC) of 0.591 (95% CI: 0.547–
0.634) in the training set and 0.501 (95% CI: 0.444–0.558) 
in the validation set (Figure S3C,S3D).

SCNA model

To identify genes with differences in SCNA between LN 
positive and LN negative cases, Fisher’s exact test was 
utilized, and 1,008 genes (P<0.01) were selected. A LASSO 
regression model was used to further screen significant 
genes (Figure S4A,S4B), and 78 genes were finally selected 
to construct a multivariable logistic regression model. The 
AUC of the SCNA model was 0.805 (95% CI: 0.753–0.857) 
in the training set and only 0.558 (95% CI: 0.451–0.664) in 
the validation set (Figure S4C,S4D).

Expression model

At the transcriptomic level, we first selected 11 genes 
meeting two requirements: first, the expression was 

https://cdn.amegroups.cn/static/public/ATM-22-277-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-277-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-277-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-277-Supplementary.pdf
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Figure 2 Differences in genome between LN positive and LN negative patients. (A) Mutation signatures of LN positive and LN negative 
patients. Each column represents an individual patient. The upper bars show the TMB. The number on the right indicates the mutation 
frequency of each gene. (B) Significant differences in mutation between LN positive and LN negative patients. The number of mutation 
events and the exact P values (Fisher’s exact test) are shown in the graph. (C) SCNAs in LN positive and LN negative patients. Each vertical 
bar represents the frequency of amplification (dark red), gain (light red), deletion (dark blue) and loss (light blue) in a gene. (D) Comparison 
of SCNAs between LN positive and LN negative patients in the amplification-centric (yellow) or deletion-centric (green) calculations (Fisher’s 
exact test). LN, lymph node; TMB, tumor mutational burden; SCNAs, somatic copy number alterations.
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significantly distinct between LN positive and LN negative 
cases [|log2(fold change)| >0.3 and P<0.05]; second, the 
expression of genes in tumor tissues was different from that 
in normal tissues [|log2(fold change)| >2 & P<0.01]. Then, 
we performed a LASSO regression model, after which 10 
genes (Figure S5A,S5B) were selected for the multivariable 
logistic regression model. The AUC of the model was 0.777 
(95% CI: 0.718–0.837) in the training set and 0.656 (95% 
CI: 0.557–0.755) in the validation set (Figure S5C,S5D).

Molecular subtype model

In Lehmann’s research, TNBC could be divided into 
7 subtypes (BL1, BL2, IM, LAR, M, MSL and UNS) 
according to RNA expression (Table 1) (20). Based on the 
Lehmann subtype, we established a model to predict LN 
status. The AUC of the model was 0.656 (95% CI: 0.582–
0.730) in the training set and 0.650 (95% CI: 0.548–0.752) 
in the validation set (Figure S6A,S6B).

In our previous study, through RNA-sequencing, TNBC was 
also divided into 4 subtypes (BLIS, IM, LAR and MES) (12).  
We then built a model based on FUSCCTNBC subtypes, 
with an AUC of 0.623 (95% CI: 0.549–0.697) in the 

training set and 0.627 (95% CI: 0.527–0.726) in the 
validation set (Figure S6C,S6D).

Construction and performance of the multi-omics 
prediction model

To obtain a model with a better predictive performance, we 
combined all predictive markers identified above, including 
5 clinicopathologic characteristics, 12 gene mutations, 78 
SCNA features, the RNA expression of 10 selected genes 
and two kinds of TNBC subtypes. From all 107 predictive 
markers, we built a LASSO regression model to establish 
a signature with a panel of 17 features (Figure 4C,4D). To 
further screen these features, forward-stepwise selection 
was employed by utilizing IBM SPSS Statistics (R23.0.0.0), 
and 5 predictive markers, including tumor size, SCNAs 
of ZBTB6 and MTHFD1, and mRNA expression levels of 
GLP1R and NPY5R, were finally confirmed and used to 
construct the multi-omics prediction model. Univariate 
logistic regression was used to evaluate the risk of the 5 
markers (Table 2). Then, we performed multivariable logistic 
regression to build an integrated multi-omics model.

The AUC of the multi-omics prediction model was 

Figure 3 Differences in the transcriptome between LN positive and LN negative patients. (A) The difference in RNA expression between 
LN positive and LN negative patients. Red, LN positive patient lengthening; blue, LN positive patient shortening; gray, no significant 
change. The horizontal line represents P=0.05. (B) GO enrichment analysis of genes upregulated in LN positive patients. The size of 
dots represents the number of genes in the pathway, and colors represent the adjusted P value. (C) KEGG enrichment analysis of genes 
upregulated in LN positive patients. The size of dots represents the number of genes in the pathway, and colors represent the adjusted P 
value. LN, lymph node; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 4 Performance of the four single-omics prediction models and a multi-omics model. (A) Performance of the six single omics models in 
predicting LNM presented as the AUC in the training set. (B) The AUC of the six single omics models in predicting LNM in the validation set. 
(C) The LASSO coefficient profiles of the 105 ALN-status-related markers based on the training set. (D) LASSO algorithms were utilized to 
identify ALN-status-related markers and 25 optimal markers were selected in the training set. (E) The AUC was used to show the performance 
of the multi-omics model in the training set, and the 95% CI was added. (F) The AUC was utilized to show the performance of the multi-
omics model in the validation set, and the 95% CI was added. AUC, area under the receiver operating characteristic curve; SCNA, somatic 
copy number alterations; FUSCCTNBC, Fudan University Shanghai Cancer Center Triple-negative Breast Cancer; LASSO, least absolute 
shrinkage and selection operator; LNM, lymph node metastasis; ALN, axillary lymph node.
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0.790 (95% CI: 0.711–0.869) in the training set and 0.807 
(95% CI: 0.709–0.905) in the validation set (Figure 4E,4F). 
The corresponding calibration curves were plotted to 
assess the calibration of the multi-omics model in both the 
training and validation sets, and the Hosmer-Lemeshow 
test indicated that there was no significant departure 
from excellent fit (P>0.05) (Figure S7A,S7B). In addition, 
the decision curve analysis (DCA) results for the multi-
omics model were also plotted to show its net benefit  
(Figure S7C,S7D).

Finally, in the fully integrated approach, we took all 
multi-omics factors into the integrated model to apply 
integration methods. Through LASSO regression  
(Figure S8A,S8B) and forward-stepwise selection, potential 
predictors were selected, and a logistic regression model 
was built. The model had a good performance as well (AUC 
of 0.83 in the training set, AUC of 0.73 in the validation 
set) (Figure S8C,S8D), which further proved that predicting 
LNM using multi-omics was practicable.

Discussion

Currently, according to preoperative evaluation by various 
methods, some breast cancer patients are exempt from 
SLNB. This reduces the pain resulting from invasive 
procedures, while retaining the risk of underestimation 
of axillary LNM. Therefore, more tools are needed 
to accurately assess the risk of ALN metastasis and 
select the proper patient eligible for SLNB exemption. 
The LN status of TNBC is difficult to predict using 
clinical factors only. We aim to provide more evidence 
for TNBC patients regarding whether they could be 
exempted from LN surgical excision. In this study, we 
included clinicopathological information and genomic and 
transcriptomic data. Through analysis and comparison, we 
found that there were distinctive characteristics between 

LN positive and LN negative cases in the four omics 
datasets. We then selected the most pivotal characteristics of 
each omics dataset further to construct an integrated multi-
omics model, which performed better than single omics-
based models. 

Moreover, we found that different omics techniques 
showed distinct impacts on LNM. The predictive power of 
the clinical model was not satisfactory in the training set or 
validation set. In contrast to other subtypes of breast cancer, 
TNBC is a group of diseases with significant inter-tumor 
heterogeneity (12) and a high degree of malignancy (21), 
and its LNM is hard to predict using clinical factors only. 
Compared with LN negative cases, LN positive cases had 
more mutational events. However, among all models in the 
study, the performance of the mutation-based model was the 
worst, and its AUC was low in neither the training set nor 
the validation set. This might be caused by the low mutation 
frequency of each gene. The majority of the genes were 
mutated in less than 5% of TNBCs, while a large fraction 
of them might be “passenger” events without specific 
biological impact (22). Taken together, somatic mutations 
in TNBC cannot reflect the differences well between LN 
positive and LN negative cases. In our previous studies, we 
found that TNBC is a kind of cancer significantly driven 
by SCNA (12,16,23). Therefore, we analyzed the SCNA of 
each gene in the study cohort, and we found that there was 
a great difference between LN positive and LN negative 
cases. In the SCNA-based model, the performance was 
excellent in the training set but mediocre in the validation 
set, which may be due to the overfitting of the model with 
an excessive number of included genes. Among the four 
omics approaches, transcriptomic data showed the most 
significant differences. There were 1954 upregulated genes 
and 1,466 downregulated genes in LN positive cases. At 
the same time, the transcriptomic model also showed the 
best predictive performance, the AUC of which was 0.777 

Table 2 Univariate association of the five predictors with axillary lymph node status in triple-negative breast cancer

Variable
Training set (n=318) Validation set (n=145)

OR (95% CI) P value OR (95% CI) P value

Tumor size (cm) 1.38 (0.98–1.95) 0.064 3.27 (1.62–6.61) 0.001

ZBTB6 (copy number) 4.9 (1.41–16.95) 0.012 2.67 (0.69–10.23) 0.153

MTHFD1 (copy number) 5.6 (1.86–16.85) 0.002 2.42 (0.81–7.27) 0.114

GLP1R (expression) 0.15 (0.04–0.5) 0.002 0.11 (0.02–0.74) 0.023

NPY5R (expression) 0.27 (0.12–0.6) 0.001 0.5 (0.21–1.2) 0.121
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in the training set and 0.656 in the validation set, indicating 
that the transcriptome could better distinguish the internal 
differences between LN positive and LN negative cases. 
Then, we found that it was also difficult to predict LN 
status using only the information of TNBC Lehmann or 
FUSCC subtypes. 

In this study, a total of 5 predictive factors were finally 
included for the construction of the multi-omics model, 
including tumor size, SCNA of ZBTB6 and MTHFD1, and 
the RNA expression levels of GLP1R and NPY5R. Among 
them, tumor size and SCNA of ZBTB6 and MTHFD1 
are positively correlated with the risk of LNM. Both 
tumor size and lymph node status are important factors 
for evaluating the tumor malignancy. Many studies have 
already demonstrated that tumor sizes are directly related 
to LNM in breast cancer, especially in hormone receptor-
positive breast cancers (10,24-26). In our research, we 
found that tumor size was associated with LNM in TNBC. 
However, it was demonstrated that tumor size along with 
other clinicopathological factors were not sufficient to 
predict LNM, and the AUC of its model was just 0.624 in 
the training set and 0.602 in the validation set. Hence, we 
hoped to seek more predictive factors in more dimensions. 
In this study, we found that the amplification of ZBTB6 
was related to a high risk of LNM. There have been few 
studies of ZBTB6, a gene related to energy metabolism, 
and it has only been reported to be a prognostic indicator 
in esophageal cancer (27). Here, we found that the 
amplification of ZBTB6 was related to a high risk of LNM 
in TNBC, but the mechanism is still unknown. MTHFD1, 
as a well-known gene related to folic acid metabolism, has 
been found to interact with BRD4, participate in folic acid 
metabolism and transcriptional regulation (28), and play an 
important role in many cancers, such as melanoma, lung 
cancer and colorectal cancer (28-35). MTHFD1 was also 
found to promote the progression of breast cancer (29). 
Consistent with our study, the amplification of MTHFD1 
was related to a high risk of LNM in TNBC. 

Among the 5 predictors, the RNA expression levels of 
GLP1R and NPY5R were negatively correlated with the 
risk of LNM. GLP1R is also a well-studied and powerful 
gene that has been found to activate cAMP and inhibit 
the proliferation of breast cancer (36). In our multi-omics 
model, the expression of GLP1R negatively contributed 
to the LNM risk score. There have been few studies on 
NPY5R, and no related mechanism has been studied in 
the tumor field. Similar to GLP1R, the high expression of 
NPY5R was a protective factor against LNM in the model. 

Overall, these molecules, which we selected as the most 
significant predictive markers of axillary LNM, are still 
lacking in mechanistic explorations of tumors and need 
further study.

Although the multi-omics model has robust predictive 
efficacy and is feasible in theory, it is difficult to implement 
in clinical practice. Neither genome nor transcriptome 
sequencing data can be obtained in a short time, and the 
financial cost is high. However, with the development 
of sequencing technology, it remains to be seen whether 
sequencing technology can achieve economic timeliness in 
the future. Based on this model, we also plan to evaluate 
the level of these genes through rapid methods, such 
as  quantitative polymerase chain reaction (qPCR) or 
immunohistochemistry (IHC).

Our study had several limitations. First, the models 
were hard to validate externally because of the lack of full 
clinicopathological information in public datasets and the 
batch effect of sequencing platforms. To note, we plan to 
validate the multi-omics model through a prospective study 
in the future. Second, although it is the largest TNBC 
multi-omics cohort analyzed in the study, the number of 
patients is limited, and the reliability of the model needs 
to be further improved by increasing the number of cases. 
Finally, the biological impact of the selected predictors 
needs further investigation.

Despite the limitations, to our knowledge, this is the first 
study to predict LN status in TNBC utilizing an integrated 
multi-omics model, which performed better than models 
based on each single omics.

Conclusions

To conclude, we compared the difference between LN 
positive and LN negative patients using the largest multi-
omics TNBC cohort and identified clinicopathological, 
genomic and transcriptomic characteristics potentially 
related to LNM. Based on these indicators, we established 
an integrated multi-omics model with robust performance, 
showing an AUC of 0.796 in the training set and 0.807 in 
the validation set, which proved that using multi-omics data 
could better predict LNM in TNBC. Importantly, this will 
help us achieve a more precise management of lymph node 
metastasis in TNBC patients.

Acknowledgments

Funding: This work was supported by grants from the 



Li et al. Multi-omics-based prediction of LNM in TNBCPage 12 of 13

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(11):623 | https://dx.doi.org/10.21037/atm-22-277

National Key Research and Development Project of 
China (No. 2020YFA0112304), the National Natural 
Science Foundation of China (Nos. 81874113, 82002802, 
91959207), the Shanghai Key Laboratory of Breast Cancer 
(No. ZDSYS2101), the Shanghai Key Clinical Specialty of 
Oncology (No. shslczdzk02001), the Clinical Research Plan 
of SHDC (No. SHDC2020CR5005) and Shanghai Sailing 
Program for Youth S&T Talents (No. 20YF1408700). 
The funders had no role in the design of the study and 
collection, analysis, interpretation of data or writing the 
manuscript.

Footnote

Reporting Checklist: The authors have completed the 
TRIPOD reporting checklist. Available at https://atm.
amegroups.com/article/view/10.21037/atm-22-277/rc

Peer Review File: Available at https://atm.amegroups.com/
article/view/10.21037/atm-22-277/prf

Conflicts of Interest: All authors have completed the 
ICMJE uniform disclosure form (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-277/coif). 
The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. All clinical 
information and sequencing data are available to the public, 
so the approval of the medical ethics committee board was 
not necessary. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013).

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 Clark GM. Prognostic and Predictive Factors for Breast 

Cancer. Breast Cancer 1995;2:79-89.
2.	 Galimberti V, Cole BF, Zurrida S, et al. Axillary dissection 

versus no axillary dissection in patients with sentinel-node 
micrometastases (IBCSG 23–01): a phase 3 randomised 
controlled trial. Lancet Oncol 2013;14:297-305.

3.	 Giuliano AE, Hunt KK, Ballman KV, et al. Axillary 
dissection vs no axillary dissection in women with invasive 
breast cancer and sentinel node metastasis: a randomized 
clinical trial. JAMA 2011;305:569-75.

4.	 Cawley J, Willage B, Frisvold D. Pass-Through of a 
Tax on Sugar-Sweetened Beverages at the Philadelphia 
International Airport. JAMA 2018;319:305-6.

5.	 Giuliano AE, Ballman KV, McCall L, et al. Effect of 
Axillary Dissection vs No Axillary Dissection on 10-Year 
Overall Survival Among Women With Invasive Breast 
Cancer and Sentinel Node Metastasis: The ACOSOG 
Z0011 (Alliance) Randomized Clinical Trial. JAMA 
2017;318:918-26.

6.	 Tadros AB, Yang WT, Krishnamurthy S, et al. 
Identification of Patients With Documented Pathologic 
Complete Response in the Breast After Neoadjuvant 
Chemotherapy for Omission of Axillary Surgery. JAMA 
Surg 2017;152:665-70.

7.	 Latosinsky S, Dabbs K, Moffat F, et al. Canadian 
Association of General Surgeons and American College of 
Surgeons Evidence-Based Reviews in Surgery. 27. Quality-
of-life outcomes with sentinel node biopsy versus standard 
axillary treatment in patients with operable breast cancer. 
Randomized multicenter trial of sentinel node biopsy 
versus standard axillary treatment in operable breast 
cancer: the ALMANAC Trial. Can J Surg 2008;51:483-5.

8.	 Boone BA, Huynh C, Spangler ML, et al. Axillary Lymph 
Node Burden in Invasive Breast Cancer: A Comparison of 
the Predictive Value of Ultrasound-Guided Needle Biopsy 
and Sentinel Lymph Node Biopsy. Clin Breast Cancer 
2015;15:e243-8.

9.	 Cui X, Zhu H, Huang J. Nomogram for Predicting Lymph 
Node Involvement in Triple-Negative Breast Cancer. 
Front Oncol 2020;10:608334.

10.	 Dihge L, Vallon-Christersson J, Hegardt C, et al. 
Prediction of Lymph Node Metastasis in Breast Cancer 
by Gene Expression and Clinicopathological Models: 
Development and Validation within a Population-Based 
Cohort. Clin Cancer Res 2019;25:6368-81.

11.	 Tan W, Xie X, Huang Z, et al. Construction of an 
immune-related genes nomogram for the preoperative 
prediction of axillary lymph node metastasis in triple-
negative breast cancer. Artif Cells Nanomed Biotechnol 

https://atm.amegroups.com/article/view/10.21037/atm-22-277/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-277/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-277/prf
https://atm.amegroups.com/article/view/10.21037/atm-22-277/prf
https://atm.amegroups.com/article/view/10.21037/atm-22-277/coif
https://atm.amegroups.com/article/view/10.21037/atm-22-277/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Annals of Translational Medicine, Vol 10, No 11 June 2022 Page 13 of 13

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(11):623 | https://dx.doi.org/10.21037/atm-22-277

2020;48:288-97.
12.	 Jiang YZ, Ma D, Suo C, et al. Genomic and 

Transcriptomic Landscape of Triple-Negative Breast 
Cancers: Subtypes and Treatment Strategies. Cancer Cell 
2019;35:428-40.e5.

13.	 Gene Ontology C. The Gene Ontology project in 2008. 
Nucleic Acids Res 2008;36:D440-4.

14.	 Okuda S, Yamada T, Hamajima M, et al. KEGG Atlas 
mapping for global analysis of metabolic pathways. Nucleic 
Acids Res 2008;36:W423-6.

15.	 Yu G, Wang LG, Han Y, et al. clusterProfiler: an R 
package for comparing biological themes among gene 
clusters. OMICS 2012;16:284-7.

16.	 Xiao Y, Ma D, Zhao S, et al. Multi-Omics Profiling 
Reveals Distinct Microenvironment Characterization and 
Suggests Immune Escape Mechanisms of Triple-Negative 
Breast Cancer. Clin Cancer Res 2019;25:5002-14.

17.	 Zhang Y, Jing Y, Wang Y, et al. NAT10 promotes gastric 
cancer metastasis via N4-acetylated COL5A1. Signal 
Transduct Target Ther 2021;6:173.

18.	 Hedberg ML, Goh G, Chiosea SI, et al. Genetic landscape 
of metastatic and recurrent head and neck squamous cell 
carcinoma. Journal of Clinical Investigation 2015;126:169-80.

19.	 Coffelt SB, Kersten K, Doornebal CW, et al. IL-17-
producing gammadelta T cells and neutrophils conspire to 
promote breast cancer metastasis. Nature 2015;522:345-8.

20.	 Lehmann BD, Bauer JA, Chen X, et al. Identification 
of human triple-negative breast cancer subtypes and 
preclinical models for selection of targeted therapies. J 
Clin Invest 2011;121:2750-67.

21.	 Carey L, Winer E, Viale G, et al. Triple-negative breast 
cancer: disease entity or title of convenience? Nat Rev Clin 
Oncol 2010;7:683-92.

22.	 Vogelstein B, Papadopoulos N, Velculescu VE, et al. 
Cancer genome landscapes. Science 2013;339:1546-58.

23.	 Ma D, Chen SY, Ren JX, et al. Molecular Features and 
Functional Implications of Germline Variants in Triple-
Negative Breast Cancer. J Natl Cancer Inst 2021;113:884-92.

24.	 Bundred NJ. Prognostic and predictive factors in breast 
cancer. Cancer Treat Rev 2001;27:137-42.

25.	 Cianfrocca M, Goldstein LJ. Prognostic and predictive factors 
in early-stage breast cancer. Oncologist 2004;9:606-16.

26.	 Martin M, Gonzalez Palacios F, Cortes J, et al. Prognostic 
and predictive factors and genetic analysis of early breast 
cancer. Clin Transl Oncol 2009;11:634-42.

27.	 Zheng W, Chen C, Yu J, et al. An energy metabolism-
based eight-gene signature correlates with the clinical 
outcome of esophagus carcinoma. BMC Cancer 
2021;21:345.

28.	 Sdelci S, Rendeiro AF, Rathert P, et al. MTHFD1 
interaction with BRD4 links folate metabolism to 
transcriptional regulation. Nat Genet 2019;51:990-8.

29.	 Cao S, Zhu Z, Zhou J, et al. Associations of one-carbon 
metabolism-related gene polymorphisms with breast 
cancer risk are modulated by diet, being higher when 
adherence to the Mediterranean dietary pattern is low. 
Breast Cancer Res Treat 2021;187:793-804.

30.	 Chen K, Wu S, Ye S, et al. Dimethyl Fumarate Induces 
Metabolic Crisie to Suppress Pancreatic Carcinoma. Front 
Pharmacol 2021;12:617714.

31.	 Collin SM, Metcalfe C, Zuccolo L, et al. Association 
of folate-pathway gene polymorphisms with the risk of 
prostate cancer: a population-based nested case-control 
study, systematic review, and meta-analysis. Cancer 
Epidemiol Biomarkers Prev 2009;18:2528-39.

32.	 Levesque N, Christensen KE, Van Der Kraak L, et al. 
Murine MTHFD1-synthetase deficiency, a model for the 
human MTHFD1 R653Q polymorphism, decreases growth 
of colorectal tumors. Mol Carcinog 2017;56:1030-40.

33.	 Moussa C, Ross N, Jolette P, et al. Altered folate 
metabolism modifies cell proliferation and progesterone 
secretion in human placental choriocarcinoma JEG-3 cells. 
Br J Nutr 2015;114:844-52.

34.	 Yao S, Peng L, Elakad O, et al. One carbon metabolism 
in human lung cancer. Transl Lung Cancer Res 
2021;10:2523-38.

35.	 Piskounova E, Agathocleous M, Murphy MM, et al. 
Oxidative stress inhibits distant metastasis by human 
melanoma cells. Nature 2015;527:186-91.

36.	 Ligumsky H, Wolf I, Israeli S, et al. The peptide-hormone 
glucagon-like peptide-1 activates cAMP and inhibits 
growth of breast cancer cells. Breast Cancer Res Treat 
2012;132:449-61.

Cite this article as: Li SY, Li YW, Ma D, Shao ZM. Prediction 
of axillary lymph node metastasis in triple-negative breast 
cancer by multi-omics analysis and an integrated model. Ann 
Transl Med 2022;10(11):623. doi: 10.21037/atm-22-277



© Annals of Translational Medicine. All rights reserved. https://dx.doi.org/https://dx.doi.org/10.21037/atm-22-277

Figure S1 Mutation events in LN positive and LN negative patients. (A) The number of mutation events in each LN positive patient. Their 
median was 54. (B) The number of mutation events in each LN negative patient. Their median was 49. 

Figure S2 Details of the construction of the clinical model. (A) The area under the receiver operating characteristic (ROC) curve (AUC) of 
the clinical model in the training set. (B) The area under the curve (AUC) of the clinical model in the validation set. 
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Figure S3 Details of the construction of the mutation model. (A) The least absolute shrinkage and selection operator (LASSO) coefficient 
profiles of all mutation signatures based on the training set. (B) LASSO algorithms were used to select optimal mutation signatures. (C) The 
area under the curve (AUC) of the mutation model in the training set. (D) The AUC of the mutation model in the validation set. 
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Figure S4 Details of the SCNA model construction. (A) The least absolute shrinkage and selection operator (LASSO) coefficient profiles 
of 1008 selected somatic copy number alterations (SCNAs) in genes based on the training set. (B) LASSO algorithms were used to select 
optimal SCNAs. (C) The AUC of the SCNA model in the training set. (D) The AUC of the SCNA model in the validation set. 
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Figure S5 Details of the construction of the expression model. (A) The least absolute shrinkage and selection operator (LASSO) coefficient 
profiles of 11 selected expressions of genes based on the training set. (B) LASSO algorithms were used to select optimal gene expression 
levels. (C) The area under the curve (AUC) of the expression model in the training set. (D) The AUC of the expression model in the 
validation set. 
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Figure S6 Details of the construction of the Lehmann and FUSCCTNBC subtype models. (A) The area under the curve (AUC) of the 
Lehmann subtype model in the training set. (B) The AUC of the Lehmann subtype model in the validation set. (C) The AUC of the Fudan 
University Shanghai Cancer Center Triple-negative Breast Cancer (FUSCCTNBC) subtype model in the training set. (D) The AUC of the 
FUSCCTNBC subtype model in the validation set. 
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Figure S7 Evaluation of the multi-omics model. (A) The corresponding calibration curve of the multi-omics model in the training set. The 
45-degree dotted black line represents a perfect prediction. The blue solid line represents the predictive performance of the multi-omics 
model in the training set. The Hosmer-Lemeshow (HL) test was used to compare the multi-omics model with its calibration in the training 
set. (B) The corresponding calibration curve of the multi-omics model in the validation set. The HL test was used to compare the multi-
omics model with its calibration in the validation set. (C) The decision curve analysis (DCA) of the multi-omics model in the training set. 
The x-axis represents the threshold probability. The y-axis represents the standardized net benefit. The solid black line represents the net 
benefit when all patients are considered as not having axillary lymph node metastasis (LNM), while the gray line represents the net benefit 
when all patients are considered as having axillary LNM. The red line represents the net benefit when all patients are considered according 
to the multi-omics model in the training set. (D) The decision curve analysis (DCA) of the multi-omics model in the validation set. 
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Figure S8 Details of the construction of fully integrated model. (A) The least absolute shrinkage and selection operator (LASSO) coefficient 
profiles of all factors in multi-omics based on the training set. (B) LASSO algorithms were used to select potential predictive factors. (C) The area 
under the curve (AUC) of the fully integrated model in the training set. (D) The AUC of the fully integrated model in the validation set.
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