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Introduction

Osteoporosis (OP) is a systemic bone disease characterized 
by decreased bone density and quality, destruction of the 
bone microstructure and increased bone fragility, resulting 
in fractures. As a complication of spinal cord injury (SCI), 
OP is mainly due to an imbalance in bone formation and 
resorption, resulting in rapid reduction in bone minerals 
and stiffness (1). However, the pathogenesis of SCI-induced 
OP is such an intricacy that we should not simply regard it 
as a type of disuse OP, associated with various risks such as 
hormones, neuron lesion itself, and unloading of the spinal 

cord (2,3). 
With the increase of age, hormone levels decrease 

gradually, the skeletal muscle system becomes aged, and 
substances required for bone formation such as vitamin 
D and calcium ions are also decreased, all of which may 
induce OP (4). Yet, SCI-induced OP is a unique form of 
neurogenic OP mainly due to the functional imbalance 
between osteoblasts and osteoclasts following SCI, which 
is also affected by the severity of injury, body mass index 
(BMI) and age (5). In addition, SCI has a deleterious 
effect on the entire skeleton, with the most severe bone 
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loss and structural deterioration in the lower extremities 
followed by the sub-lesional vertebrae (6). This bone loss 
is characterized by the large reduction in cancellous bone 
mass within the first few years after SCI with cortical bone 
loss persisting for more than 10 years (7).

A comprehensive understanding about the mechanism 
underlying SCI-induced OP is helpful to search for 
treatment strategies. However, traditional treatments 
cannot meet the increasing needs of OP patients partly 
because their therapeutic efficacy is not satisfactory 
enough. It is therefore to make the greatest efforts to 
mine the potential pharmacological intervention. In 
recent years, bisphosphonates have received widespread 
attention from clinicians, owing to their fantastic function 
of inhibiting bone resorption and bone loss, thus reducing 
the risk of osteoporotic fracture (8,9). But unfortunately, 
bisphosphonates have been shown to slow bone loss 
following SCI but cannot promote new bone formation (10).  
Similarly, parathyroid hormone (PTH) is considered 
unlikely to be involved in the pathogenesis of bone loss 
after SCI (2). Other than romosozumab, teriparatide and 
alendronate which are known to play important roles in OP 
therapy (11-13), many other potential drugs are waiting for 
discovery.

With the continuous progress and development of 
bioinformatical technology, the underlying mechanism of 
large numbers of diseases regulated by genes and molecules 
can be explored, suggesting that further understanding 
the process can provide a guideline for better treatment of 
OP. Luckily, a therapeutic target database that is further 
enriched with regulatory mechanisms or biochemical classes 
has been constructed for drug discovery (14). Meanwhile, 
the model of marginalized denoising has been applied 
for the drug-target interacting prediction marginalized 
denoising (15). A study that relied on bioinformatical 
analysis has disclosed the pharmacological target for 
treating COVID-19 (16). Although OP is known as a 
frequent occurrence in SCI patients, there is no effective 
treatment for preventing the progression of bone loss. It 
may be possible to use bioinformatical analysis to find new 
pharmaceuticals for the treatment of OP following SCI (17). 
Therefore, computer analysis technology is being regarded 
as a useful tool in drug selection for common diseases, even 
cancers and influenza. Luckily, text mining of biomedical 
literature acts as a catalyst to deeply analyze the interacting 
relationships between genes and possible mechanisms 
between diseases via pathways while combining with other 
bioinformatical methods, finally obtaining the candidate 

medical therapy. 
The aim of the present study was to explore the 

pathology and mechanism of SCI-induced OP, with the help 
of text mining, Gene functional analysis, protein-protein 
interaction (PPI) network construction, and drug discovery, 
ultimately mining the potential medicines targetable for 
core genes. First, a list of common genes was acquired via 
the intersection between the term ‘spinal cord injury’ and 
‘osteoporosis’. Secondly, the genes were imported into 
the DAVID and STRING online databases for further 
screening out hub symbols. Consequently, candidate drugs 
corresponding to the core genes originated from the results 
of drug-gene interaction analysis (Figure 1). We present the 
following article in accordance with the STREGA reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-21-6900/rc).

Methods

Text mining

The pubmed2ensemble (http://pubmed2ensembl.
ls.manchester.ac.uk/), an online database, was utilized for 
text mining, which could search for the genes associated 
with diseases or searching terms as far as possible. After 
inputting one concept of ‘spinal cord injury’ and another 
concept of ‘osteoporosis’, two queries were performed in 
gene lists. Then all of the unique genes were exported from 
the results of gene-disease. Subsequently, obtaining the 
intersecting genes was the origin of the study.

Gene ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis

Depending on the DAVID (http://www.david.com), a 
web-based tool, the intersection between SCI and OP 
was conducted by GO and KEGG pathways analysis, thus 
completing annotation and functional process of common 
genes through integrating multiple sources. Besides, the 
biological process, one of the most significant GO analyses, 
was selected as a screening criterion that false discovery rates 
(FDRs) were less than 0.05 to acquire a unique gene query. In 
the next step, we used the KEGG pathway analysis to further 
mine the core genes closely related to the pathology of SCI 
and OP, which was above the P value cutoff. 

PPI network

Through GO and KEGG analysis and filtration, all the 

https://atm.amegroups.com/article/view/10.21037/atm-21-6900/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-6900/rc
http://pubmed2ensembl.ls.manchester.ac.uk/
http://pubmed2ensembl.ls.manchester.ac.uk/
http://www.david.com
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SCI Osteoporosis

Figure 1 Summary of overall data mining result. (I) Obtaining common genes: 860 genes were obtained by using the searching term 
‘spinal cord injury’ and 1,107 genes were acquired via the term ‘osteoporosis’ in pubmed2ensemble, ultimately getting 371 common genes. 
(II) Gene set enrichment: DAVID functional enrichment analysis was performed using biological process, cellular component, molecular 
function, and signaling pathways analysis. Subsequently, 23 genes were screened out by using the STRING and Cytoscape software. (III) 
Drug-gene interaction and functional analysis; 23 genes were imported into the DGIdb and 13 drugs were regarded as the potential medical 
therapy, while 8 genes were selected as the final genes that completed the functional analysis. KEGG, Kyoto Encyclopedia of Genes and 
Genomes; SCI, spinal cord injury.

genes were inputted into the STRING (http://string-
db.org) online database for investigating the interaction 
between proteins and constructing their network. Among 
the high confidence (score 0.900), a ‘tsv’ file was extracted 
to obtain significant genes. Importing the file into the 
Cytoscape software to visualize the network was the 
first step of cluster analysis. The app of software named 
Molecular Complex Detection (MCODE) was applied 

to further build up gene modules and gain hub genes for 
drug-gene interaction analysis. The cutoff parameters were 
“degree cutoff =2”, “node score cutoff =0.2”, “k-core =2”, 
and “max depth =100”.

Drug-gene interaction and functional analysis

Hub genes coming from the PPI network and MCODE 

http://string-db.org
http://string-db.org
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modules were imported into the online database, drug-
gene interaction, to mine the potential drugs for SCI-
induced OP. Under the strict conditions that the drug-
gene interacting score was higher than 5 and the type was 
obvious, final core genes intersecting in SCI and OP were 
produced for the next functional analysis.

Statistical analysis

The moderate t-test was applied to identify differentially 
expressed genes (DEGs), and Fisher’s exact test was used to 
analyze GO and KEGG enrichment. All statistical analysis 
was executed in R version 4.0.1 software. 

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Results

Obtaining common genes of SCI and OP

After eliminating duplication, the consequences of text 
mining with conceptions of ‘spinal cord injury’ and 
‘osteoporosis’ were respectively 860 and 1,108 unique 
genes. A total of 371 symbols were intersecting between 
SCI and OP, which would be utilized for the next analysis. 

GO and KEGG pathway analysis

GO analysis consists of biological process, cellular 
component, and molecular function, and the biological 
process therein is most meaningful. The five most 
significantly enriched biological process annotations were 
(I) cell proliferation (FDR =2.86E−55); (II) regulation of 
cell proliferation (FDR =2.82E−54); (III) positive regulation 
of multicellular organismal process (FDR =7.42E−53); 
(IV) response to an organic substance (FDR =4.53E−52); 
and (V) response to external stimulus (FDR =7.34E−52), 
containing 354 non-duplicating genes altogether. When 
it comes to cellular component: (I) extracellular space 
(FDR =3.86E−38); (II) extracellular region part (FDR 
=5.50E−28); (III) extracellular region (FDR =3.08E−27); 
(IV) cell surface (FDR =6.81E−23); and (V) vesicle lumen 
(FDR =1.43E−18) were the top five of cellular component 
annotations. As for the molecular function: (I) receptor 
binding (FDR =2.81E−43); (II) cytokine receptor binding 

(FDR =9.60E−19); (III) cytokine activity (FDR =2.23E−18); 
(IV) growth factor activity (FDR =7.33E−16); and (V) 
hormone activity (FDR =3.70E−15) play an important role 
in the development of SCI and OP.

KEGG pathway analysis, a method to further identify the 
significant genes, was including 207 genes common to that 
of biological process. The results of the ten most enriched 
KEGG pathway analysis were (I) cytokine-cytokine 
receptor interaction (FDR =7.01E−15); (II) tumour necrosis 
factor (TNF) signaling pathway (FDR =7.19E−13); (III) 
hypoxia-inducible factor-1 (HIF-1) signaling pathway (FDR 
=1.51E−11); (IV) phosphatidylinositol 3-kinase (PI3K)-Akt 
signaling pathway (FDR =7.02E−10), and (V) osteoclast 
differentiation (FDR =6.86E−09), implying the potential 
mechanism of SCI-induced OP (Figure 2).

Module screening of PPI network 

In total, 207 genes were imported into the STRING online 
database and then exported into a file, ultimately analyzed 
by the Cytoscape. Under the strict controls of condition 
(high medium confidence, score >0.9), a sum of 188 genes 
was participating in the construction of the PPI network. 
Subsequently, the network was uploaded into Cytoscape 
for cluster analysis by the MCODE app. There are two 
most significant modules produced by the app. The first 
module consisted of 15 genes/nodes and 105 edges, while 
the second module was constructed by 8 genes/nodes and 
28 edges (Figure 3). In order to mine the candidate drugs 
for SCI-induced OP, a list of 23 hub genes via adding up 
the number of genes in the two models was input into the 
DGIdb online database for drug-gene interaction.

Potential therapeutics and functional analysis

Meeting the screening criteria that the interacting 
score should be higher than 5 and the type was definite 
was necessary to investigate the medical therapy. 
Consequently, 13 drugs (BAN2401, TB-402, drotrecogin 
alfa, rilotumumab, ficlatuzumab, dusigitumab, siltuximab, 
olokizumab, clazakizumab, lerdelimumab, fresolimumab, 
ranibizumab, caplacizumab) corresponding to 8 core genes 
[amyloid beta precursor protein (APP), coagulation factor 
VIII (F8), hepatocyte growth factor (HGF), insulin like 
growth factor 1 (IGF1), interleukin 6 (IL-6), transforming 
growth factor beta 2 (TGFB2), von Willebrand factor 
(VWF), vascular endothelial growth factor A (VEGFA)] 
were discovered to affect OP (Table 1 and Figure 4). Finally, 
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Figure 2 Gene ontology and KEGG pathway analysis. Biological processes, cellular components, and molecular functions consisted of GO 
analysis. Green bar charts represented the biological process, blue bar charts represented the cellular component, red bar charts represented 
the molecular function, purple bar charts represented the signaling pathways, and orange line chart represents −log10 (FDR). FDR, false 
discovery rate; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

functional analysis of the 8 core genes completed in the 
Genecodis showed that the top five biological processes 
were platelet degranulation (FDR =4.25E−16), positive 
regulation of peptidyl-tyrosine phosphorylation (FDR 
=8.32E−11), positive regulation of PI3K signaling (FDR 
=5.43E−08), positive regulation of mitogen-activated 
protein kinase (MAPK) cascade (FDR =1.24E−07), and 
positive chemotaxis (FDR =1.78E−06), while the top five 
KEGG pathways were PI3K-Akt signaling pathway (FDR 
=3.07E−09), MAPK signaling pathway (FDR =1.03E−07), 
HIF-1 signaling pathway (FDR =7.57E−07), FoxO signaling 
pathway (FDR =1.44E−06), and Ras signaling pathway (FDR 
=5.11E−06), could be seen in Table 2. 

Discussion

OP is a major clinical problem associated with many 
risk factors and etiologies. Surprisingly, SCI is actually 
numbered among the causes of OP. It is therefore of great 
clinical significance to clarify the underlying, mine the 

medical target and select candidate drugs for the sake of the 
prevention and treatment of SCI-induced OP. The study 
aimed to realize the drug discovery for SCI-induced OP and 
ultimately decrease the risk and incidence of OP following 
SCI. We first obtained common genes between SCI and OP 
coming from the pubmed2ensemble, and then conducted 
GO and KEGG pathways analysis to screen out core genes 
that participated in the construction of the PPI network to 
further screen out hub genes combined with the MCODE 
analysis. Finally, these hub genes were imported into the 
online database DGIdb to acquire related drugs.

According to the criteria, the final 8 genes were screened 
out, which were associated with 13 drugs and 5 pathways. 
APP was reported as a potential biomarker of OP for 
drug targets (18), and may also be a promising agent 
for osteoporotic therapy owing to its role in enhancing 
receptor activator of NF-κB ligand (RANKL)-induced 
osteoclast activation (19,20). Besides, alendronate, which 
is known as an APP-targeted medicine with anti-OP and 
neuroprotection activities, is also applied for OP treatment 
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A B

C

Figure 3 PPI analysis and MCODE clusters. (A) Cluster 1: the first significant module was made up of 15 nodes and 105 edges. (B) Cluster 
2: the second significant module contained 8 nodes and 28 edges. (C) The PPI network constructed by the STRING consisted of 188 genes 
and 1,058 edges, which was under the maximum interaction score >0.9 (high confidence). PPI, protein-protein interaction.

and Alzheimer’s disease.
Being the significant part of circulatory system, F8, 

VWF, and VEGFA, may play a key role in the mechanism 
of SCI-induced OP. F8 deficiency may participate in bone 
homeostasis by inducing acute bone loss (21), increasing 
bone resorption (22,23), and complexing with VWF via 
RANKL-OPG (24), resulting in OP. Some studies reported 
that VEGFA was an important target for OP treatment 
(25,26). Within the bone, VEGFA was regulated by HIF-1  
to promote bone formation, whereas decreasing the 
expression of VEGFA could inhibit bone formation thereby 

leading to OP (27), which is consistent with the finding of 
another study (28).

HGF was reported to be involved in the process of OP 
and osteoproliferation and may therefore prove to be a 
potential biomarker, though the pathogenic mechanism 
remains unclear (29). In addition, transplantation of dental 
pulp stem cells modified by HGF was found as an effective 
way for the prevention of early bone loss (30). IGF1 has 
been identified to act on skeletal growth and may also 
function as one metabolic factor that results in fragility 
fracture (31). On the one hand, a high level of IGF1 could 
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Table 1 Potential drugs targeting genes with SCI and osteoporosis association

Number Drug Gene Type Score* PMID

1 BAN2401 APP Inhibitor 6.17 None

2 TB-402 F8 Inhibitor 31.90 None

3 Drotrecogin alfa (activated) F8 Inhibitor 5.32 None

4 Rilotumumab HGF Antibody, inhibitor 11.39 None

5 Ficlatuzumab HGF Antibody, inhibitor 11.39 None

6 Dusigitumab IGF1 Inhibitor 31.90 None

7 Siltuximab IL-6 Inhibitor 10.21 8823310

8 Olokizumab IL-6 Inhibitor 10.21 24641941

9 Clazakizumab IL-6 Inhibitor 7.66 None

10 Lerdelimumab TGFB2 Inhibitor 31.90 None

11 Fresolimumab TGFB2 Antibody, inhibitor 10.63 None

12 Ranibizumab VEGFA Inhibitor 8.81 18046235

13 Caplacizumab VWF Inhibitor 13.67 None

Each drug-gene interaction ensured that the hypothetical drug had an expected effect on the condition, whose screening criteria was that 
the interacting score should be higher than 5. The link to the source was tracked to confirm the report and evaluate related metadata. 
Drugs that targeted the candidate genes through appropriate interactions were collected in the final list. *, the score is the combined 
number of database sources and PubMed references. APP, amyloid beta precursor protein; F8, coagulation factor VIII; HGF, hepatocyte 
growth factor; IGF1, insulin like growth factor 1; IL-6, interleukin 6; TGFB2, transforming growth factor beta 2; VWF, von Willebrand factor; 
VEGFA, vascular endothelial growth factor A; SCI, spinal cord injury.

Drug Gene Pathway

Figure 4 Sankey diagram of drug-gene interaction. The picture displayed the drug-gene and gene-pathway interaction, containing 13 drugs 
targeting 8 genes and 6 pathways. APP, amyloid beta precursor protein; F8, coagulation factor VIII; HGF, hepatocyte growth factor; IGF1, 
insulin like growth factor 1; IL-6, interleukin 6; TGFB2, transforming growth factor beta 2; VWF, von Willebrand factor; VEGFA, vascular 
endothelial growth factor A; FoxO, forkhead box protein O; MAPK, mitogen-activated protein kinase; PI3K, phosphatidylinositol 3-kinase; 
HIF-1, hypoxia-inducible factor-1.
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Table 2 Summary of BP and KEGG pathway gene set enrichment analysis

Category Term Count FDR* Genes

Biological process Platelet degranulation 7 4.25E−16 VWF, VEGFA, TGFB2, APP, IGF1, HGF, F8

Biological process Positive regulation of peptidyl-tyrosine 
phosphorylation

5 8.32E−11 VEGFA, APP, IL-6, IGF1, HGF

Biological process Positive regulation of MAPK cascade 4 5.43E−08 VEGFA, TGFB2, IGF1, HGF

Biological process Localization of cell 4 1.24E−07 VEGFA, APP, IL-6, IGF1

Biological process Positive chemotaxis 3 1.78E−06 VEGFA, APP, HGF

KEGG pathway PI3K-Akt signaling pathway 5 3.07E−09 VWF, VEGFA, IL-6, IGF1, HGF

KEGG pathway MAPK signaling pathway 4 1.03E−07 VEGFA, TGFB2, IGF1, HGF

KEGG pathway HIF-1 signaling pathway 3 7.57E−07 VEGFA, IL-6, IGF1

KEGG pathway FoxO signaling pathway 3 1.44E−06 TGFB2, IL-6, IGF1

KEGG pathway Ras signaling pathway 3 5.11E−06 VEGFA, IGF1, HGF

With a strict level, a P value cutoff was set. Among the most importantly enriched biological process and KEGG pathways above the 
cutoff, those most relevant to SCI and osteoporosis pathology were chosen from the researches and literature. *, FDR correction was 
performed to control for the false positive. APP, amyloid beta precursor protein; F8, coagulation factor VIII; HGF, hepatocyte growth factor; 
IGF1, insulin like growth factor 1; IL-6, interleukin 6; TGFB2, transforming growth factor beta 2; VWF, von Willebrand factor; VEGFA, 
vascular endothelial growth factor A; FoxO, forkhead box protein O; BP, biological process; FDR, fasle discovery rate; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; MAPK, mitogen-activated protein kinase; PI3K, phosphatidylinositol 3-kinase; HIF-1, hypoxia-
inducible factor-1.

promote bone formation and growth rate (32). On the 
other hand, it is positively correlated with low bone mineral 
density, suggesting that a low level of IGF1 is an indirect 
risk factor for fracture (33,34).

IL-6 overexpression was found to be associated with 
SCI-induced OP. As an osteoclast differentiation modulator, 
IL-6 can cause excessive osteoclastic activity and osteolysis 
by encouraging osteoclastogenesis (35). A study showed that 
zoledronate could further enhance osteoclast differentiation 
via the IL-6/RANKL axis (36). Interestingly, TGFB2 was 
also identified as a biomarker of OP (37). The above-
mentioned core genes were involved in the development 
of SCI as well as OP, implying that gene upregulation or 
downregulation after SCI may participate in the occurrence 
and progress of OP via various pathways such as the PI3K-
Akt signaling pathway and MAPK signaling pathway, 
eventually causing imbalance between osteogenesis and 
osteoclasts and leading to OP.

Functional analysis suggested that the top five most 
enriched ‘biological process’  and KEGG pathway 
annotations may be the pathology of SCI-induced OP. For 
example, a study (38) reported that platelet degranulation 
participated in the occurrence and progress of OP after 
SCI by releasing some growth factors such as VWF and 

VEGFA to regulate cell proliferation, chemotaxis, and 
differentiation. Additionally, positive regulation of MAPK 
cascade and activation of Akt was reported to participate in 
OP by inducing bone loss (39). As mentioned previously, 
the PI3K-Akt signaling pathway plays a key role in the 
initiation and sustainment of SCI-induced OP. On the 
one hand, inhibition of the PI3K/Akt pathway is induced 
by endoplasmic reticulum stress after SCI (40), and on 
the other hand, PI3K/Akt signaling pathway also played a 
significant role in inhibiting OP by promoting osteoblast 
proliferation, differentiation, and bone formation (41). 
Therefore, based on its function, up-regulation of the 
PI3K/Akt signaling pathway may be a potential target for 
the treatment of SCI-induced OP. Experimental treatments 
have obtained some effective advancements in mediating 
PI3K/Akt signaling pathway via various methods (42). 
Similarly, inhibition of the MAPK signaling pathway can 
not only promote recovery of SCI but delay the progression 
of OP as well as other pathways (43-45). 

As mentioned above, the expressions of F8, HGF, IGF1, 
TGFB2, VWF and VEGFA were downregulated while the 
expression of APP and IL-6 was up-regulated during the 
progression of OP following SCI. According to the drug-
gene interaction, the potential drugs siltuximab (10.21, IL-6 
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inhibitor), olokizumab (10.21, IL-6 inhibitor), clazakizumab 
(7.66, IL-6 inhibitor) and BAN2401 (6.17, APP inhibitor) 
are likely to attenuate inflammation and prevent bone 
loss. Siltuximab is currently studied for the treatment 
of COVID-19 and idiopathic multicentric Castleman 
disease (46-48). olokizumab is used in clinical trials for 
the treatment of rheumatoid arthritis with a remarkable 
therapeutic effect (49,50). Clazakizumab is beneficial not 
only for antibody-mediated rejection (51), but for active 
psoriatic arthritis (52). BAN2401 is mainly utilized for 
Alzheimer’s disease due to its advantage of improving 
binding strength to soluble aggregates of amyloid-beta 
(53,54). Although these drugs have not yet been currently 
used in SCI-induced OP, the results of text mining and 
computational analysis demonstrated that hub genes 
are regulated after SCI involved in the OP occurrence, 
suggesting that drugs targetable key gene symbols have the 
potential to prevent the occurrence and development of 
SCI-induced OP.

SCI-induced OP is essentially a neurogenic bone loss 
process and the nerve system is found to be a necessary 
mediator in regulating bone cell functions, ultimately 
affecting bone homeostasis (55). There are three neural 
changes in the occurrence of the disease. Firstly, nerves 
are widely distributed in the bone, but the bone deprived 
of its innervation shows reduced bone deposition and 
mineralization as well as increased bone resorption (2). The 
other two factors are neuropeptides and denervation in SCI, 
which may result in a significant decrease in innervation 
density and neuropeptides in the bones, thus distorting the 
balance between bone formation and resorption.

It is common knowledge that RANKL, osteoprotegerin 
(OPG), sclerostin, and cathepsin K play a key role in 
the occurrence of OP. Experiments (56) demonstrated 
that the use of inhibitors of these targets could obviously 
delay the progression of SCI-induced OP. Osteoblasts 
could regulate the recruitment and activity of osteoclasts 
through the expression of RANKL and OPG, members of 
the TNF family (57). RANKL could promote osteoblast 
proliferation and activation via binding to its receptor 
RANK, while OPG acted as a receptor to bind with 
RANKL, thus preventing the activation of RANK. 
Following SCI, RANKL was upregulated by binding to 
the RANK receptor on osteoclastogenesis, thus leading to 
OP (58). These findings suggest that the RANK/RANKL/
OPG axis provides a means of coupling the activities of 
osteoblasts and osteoclasts and controlling the balance 
between bone formation and resorption (59). The Wnt 

signaling pathway and Sclerostin also play a key role in the 
development of SCI-induced OP. Sclerostin is a biomarker 
of SCI-induced OP, playing an important role in mediating 
bone loss in response to unloading (60). Canonical Wnt 
signaling promoted bone formation by stimulating 
osteoblast differentiation and osteoblast growth (61). For 
example, several proteins involved in Wnt signaling were 
repressed in the distal femur and proximal tibia after SCI, 
while the number of osteocytes stained for Sclerostin was  
increased (62), which contributed to the occurrence of 
OP. In addition, Qin et al. (63) found that the Sclerostin 
antibody retained the structure of osteocytes and blocked 
the skeletal deterioration following SCI. Therefore, the 
proteins and signaling pathways mentioned above may be 
important targets for the treatment of SCI-induced OP.

Although these OP-related core genes have been 
validated by other laboratories, they failed to identify 
them as hub genes of SCI-induced OP as we did in our 
computational analysis. It is also extremely familiar that 
many potential biomarkers were obtained by text mining 
and bioinformatical analysis with or without verification, 
finally guiding us to later experimental and mining 
candidate medicines (64,65), which offered us a new 
study project that hub genes screened out by text mining 
combining with known genes are likely to construct novel 
mechanisms.

There are some limitations to this study. First, we did 
not perform experimental verification to enhance the 
credibility of this article. In addition, the criteria that we 
selected for screening out hub genes are subjective and 
the databases utilized for the bioinformatical analysis are 
limited; for instance, the confidence score in constructing 
the PPI network was determined by the researchers, and 
the acquisition of key genes was also closely related to 
the algorithm selected by the researchers. To verify the 
reliability of the key genes obtained by the MCODE 
analysis, we also used another method-cytoHubba to 
analyze and found that the results were completely 
consistent.

Conclusions

In conclusion, the candidate drugs that target the core genes 
for the treatment of SCI-induced OP were investigated by 
text mining and computational methods. These analytic 
methods could be applied routinely in developing databases 
and analysis tools. Consequently, we obtained 13 potential 
drugs, including an APP inhibitor, 2 F8 inhibitors, 2 HGF 
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antibodies, an IGF1 inhibitor, 3 IL-6 inhibitors, 2 TGFB2 
inhibitors, a VEGFA inhibitor, and a VWF inhibitor. 
Among them, siltuximab, olokizumab, clazakizumab and 
BAN2401 have not been tested in SCI-induced OP, which 
provides a curing guideline and novel targeted therapies as a 
potential treatment for SCI-induced OP.
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