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Background: Although the prevention and treatment of the cardiocerebrovascular complications (CCVCs) 
of diabetes have been clarified, their incidence is still high. This is largely due to the lack of predictive models 
to objectively assess the risk of CCVC in patients with type 2 diabetes mellitus (T2DM), reducing their 
treatment adherence. Despite the fact that the risk factors of CCVC in T2DM patients have been identified, 
no prediction model for identifying T2DM patients with the risk of CCVC is available. Therefore, the aim 
of this study is to establish a nomogram based on hospital information system data to quantitatively assess the 
risk of CCVCs in T2DM patients. This model is contributed to individualized therapeutic treatments and 
motivating T2DM patients to adhere to lifestyle interventions.
Methods: The medical records of 1,556 T2DM patients, comprising 1,145 cases in the training cohort 
and 411 in the validation cohort were retrospectively analyzed. CCVCs of diabetes, including coronary 
heart disease, cerebral ischemia, and intracerebral hemorrhage, were extracted from the medical records. 
Univariate and multivariate logistic regression analyses were performed to screen the independent correlates 
of CCVCs from the demographic information and laboratory test data, which were utilized to establish a 
nomogram for predicting the risk of CCVCs in these patients. We used internal and external validation 
based on the training and validation cohorts to evaluate the model performance. 
Results: The incidence of CCVCs in the training cohort (26.99%) was similar to the validation cohort 
(25.79%). Disease duration, body mass index (BMI), systolic blood pressure (SBP), glycosylated hemoglobin 
(HbA1c), and uric acid (UA) levels were finally included in the established nomogram. In both the internal 
and external validation, the nomogram showed good discrimination [area under the curve (AUC) =0.850 and 
0.825, respectively] and calibration (P=0.127 and P=0.096, respectively). Decision curve analysis showed that 
the nomogram produced a net benefit in both the training and validation cohorts. 
Conclusions: The nomogram developed for predicting the risk of CCVC in T2DM patients may help 
improve treatment adherence. Further multi-center prospective investigations are required to predict the 
timing of CVCC in T2DM patients. 
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Introduction

Diabetes mellitus is an independent risk factor for 
cardiocerebrovascular disease (CCVD): 50–80% of 
patients with type 2 DM (T2DM) are often complicated 
with macrovascular disease, and >70% of diabetic patients 
eventually die of cardiocerebrovascular complications 
(CCVCs) (1,2). Therefore, the prevention and treatment 
of CCVCs has generated much interest and researchers 
have identified risk factors such as obesity, hypertension, 
dyslipidemia, smoking, and family history (3). The guidelines 
for diabetes prevention and treatment formulated in China 
and those formulated by the American Diabetes Association 
(ADA) both recommend adopting a comprehensive plan 
to prevent and treat the CCVCs of T2DM based on 
lifestyle interventions, and comprehensive assessment and 
management of the multiple risk factors for these CCVCs. 
Lifestyle interventions for diabetic patients include self-
management education, nutritional therapy, exercise 
therapy, smoking cessation, and psychosocial interventions. 
Managing the clinical risk factors of T2DM includes 
managing blood pressure (BP) and blood lipids, antiplatelet 
therapy, and individualized treatment of cardiovascular 
disease (CVD) (4,5).

Although preventive and treatment measures for CCVCs 
of T2DM have been established, these complications still 
have a high incidence and low control rates (6). Diabetes 
is a lifelong chronic disease. As patients’ physical functions 
decline due to their increased age, the management of 
diabetes is challenging (7). In addition, as long-term 
lifestyle interventions in diabetic patients continue, patients’ 
perception of risk factors can decrease due to a lack of tools 
to objectively measure these factors, resulting in decreased 
motivation and compliance (8). These two problems interact 
synergistically, significantly affecting the management of 
CCVCs of T2DM.

Therefore, a tool that quantitatively evaluates the risk 
of the CCVCs of T2DM will dynamically assess changes 
in the risk of complications to guide clinical treatment, and 
improve patient compliance through intuitive and visual 
risk evaluation. Nomograms have been used to predict 
the risks of developing T2DM and the complications of 
diabetic nephropathy (9,10). Hochster and Niedzwiecki 
confirmed that big-data accumulation effectively improves 
the accuracy of nomograms (11). However, despite the 
large number of studies analyzing the influencing factors of 
CCVC of diabetes, only few studies have proposed models 
to predict CCVD risk in T2DM patients (12,13).

In this study, we conducted a retrospective analysis 
based on data accumulated in a hospital information system 
with the aim of constructing a nomogram to quantitatively 
assess the risk of CCVCs in patients with T2DM. This 
quantitative prediction model will provide a reference for 
individualized clinical treatment and mobilize patients with 
T2DM to adhere to lifestyle interventions. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-2439/rc).

Methods

Data source 

We obtained data for 1,864 inpatients diagnosed with 
T2DM in Minhang Hospital, Fudan University (Shanghai, 
China). The data were collected from January 2014 to 
December 2018 from the hospital’s information system 
database and were used as the training cohort. In addition, 
we obtained data from the same database for 727 inpatients 
diagnosed with diabetes at the same hospital, from January 
2019 to December 2020, to be used as the validation 
cohort. Diagnostic criteria for T2DM were in accordance 
with the Chinese guidelines for the diagnosis of T2DM (4). 
Structured Query Language was used to exclude data with 
missing information.

CCVCs of diabetes include coronary heart disease, 
cerebral ischemia, and intracerebral hemorrhage (14). The 
CCVCs of the study patients with T2DM were extracted 
based on medical history and clinical diagnoses in the 
medical records. Inclusion criteria were patients who: 
(I) received treatment according to the guideline criteria 
and (II) were >18 years of age. Exclusion criteria were 
patients with: (I) information missing from physician’s 
orders, missing clinical data, or unclear medical history in 
the records; (II) gestational diabetes; (III) severe liver and 
renal insufficiency; (IV) history of malignancies; and (V) 
other endocrine disorders. A total of 1,145 patients were 
included in the training cohort and were further divided 
into subgroups with and without CCVCs according to their 
medical records: 309 patients with T2DM plus CCVCs 
(case group) and 836 as the control group. We included 411 
patients in the validation cohort, 106 of whom had CCVCs 
(Figure 1). This retrospective cross-sectional study was 
approved by the Ethics Committee of Minhang Hospital, 
Fudan University (No. 2021-14). Informed consent was 
given by all participants. The study was conducted in 

https://atm.amegroups.com/article/view/10.21037/atm-22-2439/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-2439/rc
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accordance with the Declaration of Helsinki (as revised  
in 2013).

Research methods

After importing patient data from the hospital information 
system into the study database, we classified and analyzed 
demographic information and laboratory test data. The 
demographic information of the patients included age, sex, 
duration of T2DM, body mass index (BMI; weight/height2), 
BP, heart rate (HR), hypertension history, and smoking 
history. The other indicators collected from patient’s fasting 
blood test in the morning on admission included glycated 
hemoglobin A1c (HbA1c), fasting plasma glucose (FPG), 2-h 
postprandial plasma glucose (2hPG; venous-blood glucose 
2 h after oral administration of 75 g glucose), triglycerides 
(TG), total cholesterol (TC), high-density lipoprotein 
cholesterol (HDL-C), low-density lipoprotein cholesterol 
(LDL-C), uric acid (UA), blood urea nitrogen (BUN), 
serum creatinine (sCr), alanine aminotransferase (ALT), 
aspartate aminotransferase (AST), and gamma-glutamyl 
transferase (GGT).

Construction of the nomogram

In the training cohort, we used univariate and multivariate 
logistic-regression analyses to screen the independent risk 
factors of CCVCs in patients with T2DM. A nomogram 

was constructed based on each independent factor to predict 
the risk of CCVCs, after which we tested the prediction 
performance of the nomogram in the training and validation 
cohorts.

Statistical analysis

We used the Kolmogorov-Smirnov test to confirm the 
normality of the measurement data. The Mann-Whitney 
U test was utilized to compare differences in non-normally 
distributed data. Count data were compared using the 
chi-square (χ2) test. In the training cohort, univariate and 
multivariate logistic-regression analyses were used to 
screen independent risk factors of CCVCs in patients with 
T2DM and to calculate the odds ratios (ORs) and 95% 
confidence intervals (CIs). We constructed a nomogram 
to predict the risk of CCVCs in T2DM patients based on 
each independent factor that was statistically significant 
in multivariate Logistic regression. The nomogram was 
validated internally and externally based on data from the 
training and validation cohorts. For internal validation, 
we used bootstrap resampling (×1,000) to evaluate the 
discrimination of the nomogram by the area under the 
curve (AUC) of the receiver operating characteristic 
(ROC) curve. The calibration of nomogram was evaluated 
using the calibration curve combined with the Hosmer-
Lemeshow (HL) test. Decision curve analysis (DCA) was 
used to evaluate the clinical applicability of the nomogram. 

T2DM patients (n=2,592)

Training cohort (n=1,145)

Case group (n=309) Control group (n=836)

Validation cohort (n=411)

Exclusion (n=1,036)

(I) Incomplete clinical data (n=602)

(II) Gestational diabetes (n=91)

(III) Severe liver or renal dysfunction (n=115)

(IV) Malignancies (n=179)

(V) Other endocrinopathies (n=49)

Figure 1 Flowchart showing the inclusion of patients in this study. T2DM, type 2 diabetes mellitus.
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We performed these analyses using SPSS version 22.0 (IBM 
Corp., Armonk, NY, USA), MedCalc version 11.0 (MedCalc 
Software, Ostend, Belgium), and R language version 3.6.2 
(R Foundation for Statistical Computing, Vienna, Austria) 
software packages. P<0.05 (two-sided) was considered 
statistically significant.

Results

Clinical data of patients

This study included 309 T2DM patients with CCVCs 
in the training cohort (26.99%, 309/1,145) and 106 with 
CCVCs in the validation cohort (25.79%, 106/411). Table 1 

Table 1 Comparison of the clinical characteristics of T2DM patients in the training and validation cohorts

Factor Training cohort (n=1,145) Validation cohort (n=411) P

Age (years) 59.00 (45.00, 76.00) 60.00 (50.00, 69.00) 0.594#

Sex

Male [n (%)] 378 (33.01) 144 (35.04) 0.456*

Female [n (%)] 767 (66.99) 267 (64.96)

Disease duration (years) 7.00 (4.00, 11.00) 7.24 (3.37, 10.33) 0.239#

BMI (kg/m2) 25.12 (21.44, 28.86) 24.52 (21.05, 28.02) 0.007#

BP

Systolic (mmHg) 139.00 (117.00, 158.50) 135.00 (114.00, 153.00) 0.012#

Diastolic (mmHg) 76.93 (66.20, 88.64) 76.23 (67.79, 79.23) 0.435#

Heart rate (beats/min) 74.80 (65.89, 84.91) 73.62 (64.65, 84.48) 0.269#

Hypertension [cases (%)] 450 (39.30) 157 (38.20) 0.672*

Smoking [cases (%)] 299 (26.11) 111 (27.01) 0.724*

HbA1c (%) 7.51 (5.66, 9.45) 7.63 (5.70, 9.37) 0.952#

FBG (mmol) 7.94 (5.97, 9.90) 8.03 (5.85, 10.17) 0.854#

2hPG (mmol) 11.79 (9.81, 13.77) 11.61 (9.48, 13.64) 0.259#

TC (mmol) 5.48 (3.57, 7.75) 5.93 (3.76, 8.04) 0.081#

TG (mmol) 2.13 (1.23, 2.94) 2.06 (1.10, 2.96) 0.194#

HDL-C (mmol) 1.77 (0.98, 2.49) 1.64 (0.92, 2.39) 0.072#

LDL-C (mmol) 3.70 (2.40, 4.90) 3.54 (2.35, 4.89) 0.964#

UA (µmol) 295.55 (224.32, 367.46) 286.10 (214.84, 368.23) 0.132#

BUN (mmol) 5.20 (3.75, 6.70) 5.30 (3.80, 7.00) 0.291#

sCr (mmol) 71.92 (48.78, 93.31) 70.85 (48.61, 92.71) 0.664#

ALT (U/L) 12.98 (10.45, 15.72) 13.10 (10.15, 15.85) 0.583#

AST (U/L) 16.74 (12.31, 21.30) 16.88 (12.51, 21.24) 0.069#

GGT (U/L) 20.06 (13.53, 27.47) 20.25 (12.76, 28.24) 0.901#

Data are shown as mean (range). *, χ2 test; #, Mann-Whitney U test. 2hPG, 2-h postprandial plasma glucose; ALT, alanine aminotransferase; 
AST, aspartate aminotransferase; BMI, body mass index; BP, blood pressure; BUN, blood urea nitrogen; FPG, fasting plasma glucose; 
GGT, gamma-glutamyl transferase; HbA1c, glycated hemoglobin A1c; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density 
lipoprotein cholesterol; sCr, serum creatinine; T2DM, type 2 diabetes mellitus; TC, total cholesterol; TG, triglycerides; UA, uric acid.
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shows the clinical data, including age, sex, disease duration, 
HR, BP, hypertension history, smoking history, and 
biochemical indicators, of the patients in both cohorts. No 
significant differences in clinical data were found between 
them (all P>0.05).

Univariate analysis of risk factors for CCVCs in diabetic 
patients

In the training cohort, patients in the case group had 
longer disease duration and higher BMI, systolic BP (SBP), 
HbA1c, UA, and BUN than those in the control group. 
Univariate logistic-regression analysis showed that disease 
duration, BMI, SBP, HbA1c, UA, and BUN were the risk 
factors for CCVCs (all P<0.05). Multivariate logistic-
regression analysis further showed that disease duration (OR 
=1.051), BMI (OR =1.129), SBP (OR =1.015), HbA1c (OR 
=1.106), and UA (OR =1.003) were independent risk factors 
of CCVCs in T2DM patients (P<0.05; Table 2).

Nomogram for predicting CCVCs in patients with T2DM

Based on the five independent risk factors, we constructed a 
nomogram to predict the probability of CCVCs in patients 
with T2DM (Figure 2). Each predictor was proportionally 
assigned a score according to its OR in the multivariate 
logistic-regression analyses. We used the total score to 
determine the risk of CCVCs in patients with T2DM.

Validation of the nomogram

In the internal validation, the nomogram achieved an 

AUC of 0.85 (95% CI: 0.828–0.870) after 1,000 bootstrap 
resampling, indicating good discrimination (AUC >0.75; 
Figure 3). The calibration plot and HL test showed that 
the probability predicted by the nomogram did not deviate 
significantly from actual incidence (χ2=12.596, P=0.127), 
indicating good calibration (Figure 3B). In the external 
validation using the validation cohort, the nomogram also 
showed good discrimination (AUC =0.825; 95% CI: 0.795–
0.852; Figure 3D), and the calibration plot and HL test also 
showed good agreement (χ2=4.654, P=0.096; Figure 3E). 
DCA results indicated that the nomogram produced net 
benefits in both cohorts, indicating good application value 
in clinical decision making (Figure 3C,3F).

Discussion

CCVD is one of the most common complications of 
diabetes. Several studies have reported the risk factors of 
CCVCs of diabetes and corresponding preventive and 
therapeutic measures, but these complications are often not 
effectively controlled due to factors such as poor patient 
compliance (15-17). Because changes in objective indicators 
can effectively improve patients’ perception of disease 
risk, thereby improving compliance, having an objective 
evaluation of the risk factors for CCVCs of diabetes will 
boost patients’ enthusiasm for participating in long-term 
treatment (18,19). In this study, we analyzed the relevant 
data of T2DM patients from a hospital information system 
and constructed a nomogram for the quantitative assessment 
of CCVC risk based on the independent risk factors of 
T2DM patients with CCVCs. By analyzing individual 
situations and calculating the probability of CCVCs based 

Table 2 Univariate and multivariate logistic regression analyses of risk factors for CCVCs in patients with T2DM

Factor
Univariate logistic regression Multivariate logistic regression

P OR 95% CI P OR 95% CI

Age 0.080 1.010 1.003–1.017

Disease duration 0.011 1.043 1.010–1.077 0.005 1.051 1.015–1.088

BMI <0.001 1.129 1.093–1.166 <0.001 1.129 1.092–1.167

Systolic BP <0.001 1.015 1.010–1.021 <0.001 1.015 1.009–1.021

HbA1c 0.005 1.091 1.026–1.159 0.002 1.106 1.038–1.179

BUN <0.001 1.153 1.035–1.137 0.214 1.053 0.971–1.142

UA <0.001 1.009 1.007–1.010 <0.001 1.003 1.001–1.005

BMI, body mass index; BP, blood pressure; BUN, blood urea nitrogen; CCVC, cardiocerebrovascular complication; CI, confidence interval; 
HbA1c, glycated hemoglobin A1c; OR, odds ratio; T2DM, type 2 diabetes mellitus.
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Points

Duration

BMI

SBP

HbA1c

UA

Total points

Probability of complication

0          10         20         30         40         50         60         70        80         90        100

0          4          8        12        16

18          20           22          24          26          28           30          32           34          36

90             110           130           150            170           190

4          6          8         10        12

150            250            350            450

0.2                0.4    0.5   0.6                0.8

0      20     40     60      80             120             160            200            240             280

Figure 2 Nomogram predicting the risk of CCVCs in patients with type 2 diabetes mellitus. The score corresponding to each variable 
was calculated according to the clinical condition of individual patients, and the calculated total score corresponded to their probability 
of CCVCs. CCVCs, cardiocerebrovascular complications; BMI, body mass index; HbA1c, glycated hemoglobin A1c; SBP, systolic blood 
pressure; UA, uric acid.
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Nomogram-predicted probability of complication
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Nomogram-predicted probability of complication
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Threshold probability

0.0          0.2          0.4          0.6          0.8           1.0

Threshold probability

AUC =0.825
P<0.001

AUC =0.850
P<0.001

Apparent
Bias-corrected
Ideal

Apparent
Bias-corrected
Ideal

Validation
All
None

Validation
All
None

B=1000 repetitions, boot

B=1000 repetitions, boot

Mean absolute error =0.021 n=1,145

Mean absolute error =0.021 n=727

A B C

D E F

Figure 3 Internal and external validation of the nomogram. (A,B) Internal validation based on the training cohort. (D,E) External validation 
based on the validation cohort. The AUCs of the ROC curves were 0.850 (A) and 0.825 (D) in the training and validation cohorts, indicating 
good discrimination (>0.75). The calibration plots for both the training (B) and validation (E) cohorts indicated good agreement between 
the prediction probabilities of the nomogram and the actual results. (C,F) DCA curves of the nomogram, indicating that the nomogram 
obtained net benefit in both cohorts. AUC, area under the curve; DCA, decision curve analysis; ROC, receiver operating characteristic.
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on the nomogram, clinicians can adjust patients’ treatment 
plans according to the indicators and provide them with 
objective, easy-to-understand consultation indicators to 
encourage treatment adherence. Our nomogram generated 
net benefits in both the training and validation cohorts, 
suggesting it has a role in engaging patients’ adherence and 
motivation.

Diabetes is a chronic disease that requires lifelong 
treatment. As the disease persists, skeletal muscle mass 
gradually diminishes, and patients are prone to reduced 
insulin secretion (20). In addition, muscle mitochondrial 
function declines with age (21,22), challenging the control 
of blood glucose and increasing the risk of CCVCs. The 
basis of treating the CCVCs of diabetes is adherence to 
lifestyle interventions, so actively encouraging patients 
to adhere to these interventions is particularly important. 
Objective and visual risk assessment tools effectively 
improve patient compliance. Duan et al. (23) proposed 
that health management tools using goal-oriented designs 
improved self-management compliance in hypertensive 
patients, so to simply and quantitatively assess the risk of 
CCVCs in diabetic patients, we developed a nomogram to 
convert risk factors into quantifiable risk value indicators. 
Dynamic assessment of their own risk values in diabetic 
patients with CCVCs will help mobilize these patients’ 
enthusiasm for complying with long-term lifestyle 
interventions and medical treatment.

The components of the nomogram were the independent 
risk factors identified from the multivariate logistic-
regression analysis. This study identified disease duration, 
BMI, SBP, HbA1c, and UA as independent risk factors of 
CCVCs in diabetic patients, and all of them except UA are 
also common risk factors for CCVD. This result was similar 
to those of McGurnaghan et al. (24), Ilkun et al. (25), and Li 
et al. (26). As an independent risk factor for CCVD, UA has 
been receiving increasing attention. Studies have concluded 
that hyperuricemia affects lipid metabolism (27,28), and 
high levels of UA affect the secretory function of vascular 
endothelial cells (ECs) (29,30). Precipitation of UA salt 
on the walls of blood vessels causes local changes such as 
inflammation (31,32), triggering the onset and progression 
of atherosclerosis, and thereby causing cerebrovascular 
diseases. Hu et al. (33) proposed that elevated plasma UA 
was associated with an increased risk of insulin resistance. 
Keerman et al. (34) also reported that UA levels were 
significantly associated with an increased risk of diabetes. 
We also found that elevated UA was an independent risk 

factor for CCVCs.
Nomograms integrate multiple risk factors and quantify 

and visualize them by displaying the risk weight of each in 
a digital form (35-37). The strength of this study was using 
a nomogram to convert probabilities of CCVCs in diabetic 
patients into quantifiable risk factors. The nomogram can 
predict the risk of CCVCs and help clinicians communicate 
with patients using easy-to-understand indicators. The 
nomogram in this study had good discrimination and 
calibration after internal and external validation. The 
probability predicted by the nomogram in both the training 
and validation cohorts generated net benefits, suggesting 
that it had good application value in predicting CCVCs 
in diabetic patients. Clinicians can use the nomogram to 
calculate the probability of CCVCs in diabetic patients; for 
example, the total score of a patient with T2DM duration of 
10 years, BMI of 25, SBP of 150 mmHg, HbA1c of 9%, and 
UA of 450 µmol would be calculated as 220, suggesting that 
the probability of CCVCs for this patient would be 70%. 
A personalized clinical treatment plan could be formulated, 
and the risk value calculation repeated according to different 
clinical states to dynamically evaluate improvements in the 
risk of CCVCs. This would effectively engage the patient to 
adhere to lifestyle interventions and medical treatments.

This study had several limitations. The retrospective 
and cross-sectional design of this study limited our access 
to longitudinal data and outcomes in T2DM patients. As 
a result, our model was unable to predict when T2DM 
patients would progress to CVCC. Besides, only patients 
with complete clinical data and in-hospital treatments 
were included, resulting in selection bias. Moreover, this 
study analyzed only common clinical factors, such as 
medical history and blood biochemical indicators, and did 
not include many clinical risk factors or the pathogeneses 
of CCVCs. Therefore, the clinical applicability of the 
current model should be further verified. Further multi-
center prospective investigations are required in the 
future. We plan to include patients from the community, 
and to add data on microvascular complications and 
indicators for monitoring vascular EC functions. These 
additions should further improve the clinical applicability 
of our nomogram.

Conclusions

T2DM patients with longer disease duration and higher 
BMI, SBP, HbA1c, and UA levels had higher probability 
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of developing CCVCs. The nomogram based on these 
five independent risk factors quantitatively assessed the 
risk of CCVCs in T2DM patients. Our findings may help 
clinicians formulate clinical treatment plans and encourage 
patients to adhere to them.
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