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Background: Artificial intelligence (AI) has breathed new life into the lung nodules detection and 
diagnosis. However, whether the output information from AI will translate into benefits for clinical workflow 
or patient outcomes in a real-world setting remains unknown. This study was to demonstrate the feasibility 
of an AI-based diagnostic system deployed as a second reader in imaging interpretation for patients screened 
for pulmonary abnormalities in a clinical setting.
Methods: The study included patients from a lung cancer screening program conducted in Sichuan 
Province, China using a mobile computed tomography (CT) scanner which traveled to medium-size cities 
between July 10th, 2020 and September 10th, 2020. Cases that were suspected to have malignant nodules 
by junior radiologists, senior radiologists or AI were labeled a high risk (HR) tag as HR-junior, HR-senior 
and HR-AI, respectively, and included into final analysis. The diagnosis efficacy of the AI was evaluated by 
calculating negative predictive value and positive predictive value when referring to the senior readers’ final 
results as the gold standard. Besides, characteristics of the lesions were compared among cases with different 
HR labels.
Results: In total, 251/3,872 patients (6.48%, male/female: 91/160, median age, 66 years) with HR lung 
nodules were included. The AI algorithm achieved a negative predictive value of 88.2% [95% confidence 
interval (CI): 62.2–98.0%] and a positive predictive value of 55.6% (95% CI: 49.0–62.0%). The diagnostic 
duration was significantly reduced when AI was used as a second reader (223±145.6 vs. 270±143.17 s, 
P<0.001). The information yielded by AI affected the radiologist’s decision-making in 35/145 cases. Lesions 
of HR cases had a higher volume [309.9 (214.9–732.5) vs. 141.3 (79.3–380.8) mm3, P<0.001], lower average 
CT number [−511.0 (−576.5 to −100.5) vs. −191.5 (−487.3 to 22.5), P=0.010], and pure ground glass opacity 
rather than solid.
Conclusions: The AI algorithm had high negative predictive value but low positive predictive value in 
diagnosing HR lung lesions in a clinical setting. Deploying AI as a second reader could help avoid missed 
diagnoses, reduce diagnostic duration, and strengthen diagnostic confidence for radiologists.
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Introduction

Lung cancer is the most commonly diagnosed cancer and 
the leading cause of cancer death (18% of total cancer 
deaths) (1). Early-stage diagnosis helps achieve timely 
treatment and improves survival (2). Appropriate screening 
tests and accurate interpretation of results are crucial for 
detecting early-stage disease and thus reducing the burden 
of lung cancer. Low-dose computed tomography (LDCT) 
is an ideal testing tool and its implementation has improved 
cancer detection worldwide (3). However, LDCT carries 
the risk of unnecessary follow-up CT scans if the results are 
overinterpreted (4,5). Therefore, a new focus of research 
has been the development of techniques that can diagnose 
nodules with expertise, ensuring identification of early-stage 
disease and avoidance of additional radiation exposure (6).

Over the past decade, artificial intelligence (AI) has 
breathed new life into the medical field due to its high 
efficacy in data postprocessing and disease diagnosis (7,8). 
Although concerns still exist in regard to its reproducibility 
and robustness, AI’s potential in optimizing clinical 
medicine practice has been widely acknowledged (9,10). 
Radiologists expect AI to act as an alternative for experts 
in diagnosing lung cancer or aiding in the diagnosis of 
abnormal tumor in the CT imaging. Thus, one of the 
most promising applications of AI algorithms is as a second 
reader for radiologists or imaging assistants, especially 
in regions where experts are scarce. A deep learning-
based automatic detection algorithm (DLAD) for lung 
segmentation and nodule detection (threshold-, region-, 
and clustering-based methods, etc.) has been built but has 
demonstrated varied accuracy [area under the curve (AUC) 
of currently reported validation tests ranged from 61.3% to 
92.0%] (11,12). Moreover, whether the output information 
from AI will translate into benefits for clinical workflow or 
patient outcomes in a real-world setting remains unknown. 
These questions have driven our research to facilitate 
implementation of this evolving technique (13,14).

InferRead CT Lung (https://us.infervision.com/
product/5/) is an AI platform developed by Infervision 
Technology Co., Ltd. (15). It is designed to support 

concurrent reading and aid radiologists in pulmonary 
nodule detection during chest CT scan reviews. It has 
received Food and Drug Administration (FDA) approval 
and Conformité Européenne (CE) certification and 
is integrated into the clinical practice of more than  
280 hospitals worldwide (https://www.fda.gov/medical-
devices/510k-clearances/july-2020-510k-clearances). Here 
we prospectively examined cases collected through a mobile 
CT traveling to nearby medium-sized cities. All cases were 
sent to our center and diagnosed by radiologists using AI 
as a second reader. We sought to demonstrate the efficacy 
of a developed lung nodule detection and diagnosis AI 
algorithm and examine its effects on radiologists as a second 
reader in screening patients for pulmonary abnormalities 
in a real-world setting. We present the following article in 
accordance with the STARD reporting checklist (available 
at https://atm.amegroups.com/article/view/10.21037/atm-
22-2157/rc).

Methods

Population

This prospective study cohort was selected from a lung 
cancer screening program in Sichuan Province, China 
(ChiCTR2200056422, http://www.chictr.org.cn). This 
program aimed to conduct a cross-sectional screening of 
lung cancer in adults aged between 40–69 years in Sichuan 
Province using a mobile CT platform (NeuViz, Neusoft 
Medical, China). The mobile CT is a miniature advanced 
CT diagnosis room composed of CT inspection system, air 
suspension platform, radiation protection cargo, intelligent 
imaging cloud system, 5G communication module, and 
automatic power supply system. It was transported by 
car to nearby medium cities (Figure S1). Patients whose 
images were successfully transferred back to our center, 
diagnosable, and available for AI analysis were included. 
The exclusion criteria included: (I) patients aged <40 or 
>69 years, (II) patients with no electronic health records, 
and (III) patients whose images were not transferrable. The 
study was conducted in accordance with the Declaration 
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4,858 continuous patients examined through mobile CT scanner
(July 10th, 2020 to Sep 10th, 2020)

3,872 patients arranged to the seven participated senior radiologist

251 patients with an at least one HR label from the AI algorithm, 
junior radiologist or senior radiologist

Only HR-AI or HR-senior
(n=145)

Reclassified to HR
(n=35)

Both HR-AI and HR-senior 
(n=95)

Remaining non-HR
(n=104)

A number of 11 patients 
with only HR-junior

A number of 6 patients with 
only HR-senior and were not 
reclassified to non-HR after 
referring to AI’s HR label

With our any HR label (n=2,559)
not assigned to the studied senior 
radiologists (n=973) prominent false 
positive recognized by AI algorithm 
(n=89)

Figure 1 Study protocol. AI, artificial intelligence; CT, computed tomography; HR, high-risk.

of Helsinki (as revised in 2013). The study was approved 
by ethics committee of West China Hospital of Sichuan 
University [No. 2020(145)]. Informed consent was taken 
from all the patients. Demographic data, smoking history, 
and history of pulmonary or other neoplastic diseases were 
recorded and stored in a secure electronic data capture 
system (EDC). In total, 4,858 participants received mobile 
LDCT screening between July 10th, 2020 and September 
10th, 2020 (Figure 1).

AI intervention workflow for radiologists

Images of all included patients were sent to the Department 
of Radiology of a single center for interpretation and 
diagnosis. A total of 7 radiologists with similar expertise  
(5-year work experience, trained and worked at our center) 
interpreted the images. All participating radiologists were 
blinded to patients’ clinical information.

For each case, images were initially sent to a radiology 
resident (junior reader) and AI server for first reading. 
The radiologist (senior reader) assigned to the case then 
performed a second reading and final report. During the 
second reading, the senior reader reviewed the image alone 
and made an initial diagnosis, and then reviewed the report 
from the junior reader, corrected description errors, and 
made a final diagnosis. When making the final diagnosis, 
the senior reader would also consult the AI algorithm 
results and decide whether to accept the AI findings.

During this workflow, the senior reader was required to 
give a high-risk (HR) label when a HR lesion was suspected 
as raised by the junior reader, AI, or senior reader. An 
additional label (HR-junior, HR-AI, HR-senior, or HR-
final) was also included to designate who provided the 
HR diagnosis. The length of time for each case report 
was automatically traced and recorded by the imaging 
workstation. Radiologists made a note of any delays, for 
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example, a phone call. Those reports labeled as “delayed” 
were excluded when calculating average report duration. A 
backstage management system was used to record whether 
the results from the AI algorithm were reviewed (Figure 2).

Clinical and imaging data collection

The following demographic data were collected: (I) clinical 
features (age, gender, BMI, smoking history, and respiratory 
system related symptoms) and (II) imaging diagnostic work-
flow (HR labels, diagnostic duration, and AI use) from 
the EDC and online imaging system. Next, CT imaging 
characteristics, including location, dimension (average of 
long and short axes at the maximum axial area), maximum 
axial area, volume, nodule type [ground glass nodule (GGN), 
partial-solid nodule (PSN), or solid nodule (SN)], and signs 
of malignancy (spiculation, lobulation, irregular shape, and 
pleural involvement) of each lesion were acquired from the 
AI workstation. These characteristics were automatically 
described and calculated by the AI algorithm and manually 
revised by a blinded investigator (Appendix 1). Additionally, 
for each lesion, an AI-based risk score was calculated and 
recorded. For patients with multiple lesions, only the 
lesion with the highest risk score or highest suspicion of 
malignancy was selected and used for analysis (16).

Study outcomes

The primary outcome was defined as the diagnostic 

accuracy of AI when compared with the results from senior 
readers. In addition, cases were divided into 2 groups based 
on whether agreement on HR was reached between AI and 
the senior readers, and the CT imaging characteristics of 
the 2 groups were compared. The secondary outcome was 
subjective evaluation of AI performance by the participating 
radiologists. At the end of the study, participating 
radiologists were required to complete a questionnaire 
concerning the performance of AI in the clinical workflow.

Statistical analysis

Descriptive analysis was performed to describe the 
characteristics of the demographic data. Continuous variables 
are presented as mean ± standard deviation (SD) or median 
with interquartile range (IQR), and categorical variables 
are presented as frequency and percentage. The baseline 
variables and CT features of patients for whom there was 
agreement between AI and radiologists regarding the HR 
label were compared with those of patients for whom there 
was disagreement between AI and radiologists. Student’s 
t-test or Mann-Whitney U test was used for continuous 
variables, and Chi-square test or Fisher’s exact test was used 
for categorical variables. Heatmaps showing the contribution 
weight of pixels of a CT image to the AI prediction results 
are presented graphically for featured cases. A P value less 
than 0.05 in two-sided was considered statistically significant. 
Statistical analysis was performed with R project (v. 3.3.1, R 
Foundation for Statistical Computing, Vienna, Austria).

HR- junior

Real world data

A

D

C

B

Automated deep learning-
based diagnostic system

With AI 
working as 
a second 

reader

vs.

Final report

?

Radiologist  
(senior reader)

Traditional 
clinical 

workflow

Radiology resident 
(junior reader)

HR-Al

HR- final
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Figure 2 Workflow illustration. AI, artificial intelligence; HR, high-risk; HR-AI, HR diagnosis from AI; HR-junior, HR diagnosis from 
junior reader; HR-senior, HR diagnosis from senior reader.
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Table 1 Baseline characteristics of participants

Characteristic Data

No. of patients 238

Age*, years 66 [60–71]

Gender

Male 91 (36.3)

Female 160 (63.7)

BMI, kg/m2, mean ± SD 24.0±3.3

Smoking history

Never 180 (75.6)

Quit 19 (8.0)

Current smoker 39 (16.4)

History of COPD 1 (0.4)

History of malignancy 6 (2.5)

Symptoms

Short of breath 21 (8.8)

Hoarseness 8 (3.4)

Chest pain 18 (7.6)

*, data are expressed as medians with interquartile range in 
parentheses. Categorical data are expressed as numbers with 
percentages in parentheses. BMI, body mass index; COPD, 
chronic obstructive pulmonary disease.

With AI
Group

Ti
m

e,
 s

800

600

400

200

0
Without AI

Figure 3 Box-and-whisker plots of diagnostic duration with and 
without AI algorithm as the second reader for radiologists. Each 
box indicates median interpretation time with interquartile range; 
whiskers extend to minimum and maximum interpretation times. 
AI, artificial intelligence.

Results

Patient demographics

In total, 251/3,872 patients (6.48%) were labeled as HR. 
The final group comprised 91 males and 160 females (the 
median age for all patients was 66 years, ranging from 
60–71 years). Baseline clinical characteristics were collected 
from 238 patients. Of these patients, 6 had a history of 
malignant diseases, including 2 with lung cancer, 3 with 
gastrointestinal cancer, and 1 with breast cancer. A total of 
39 (15.5%) patients were current smokers and 19 used to 
smoke (Table 1).

During the workflow, patients received a total of 587 
subclass HR labels, including 120 HR-junior labels, 101 
HR-senior labels, 234 HR-AI labels, and 132 HR-final 
labels from senior readers. By referring to the senior 
readers’ final results as the gold standard, positive predictive 
value (PPV) of the AI platform was 55.6% [95% confidence 
interval (CI): 49.0–62.0%], while the negative predictive 
value (NPV) came to 88.2% (95% CI: 62.2–98.0%). The 

time spent by senior readers on finalizing a single radiology 
report was 234±137.3 s. The time spent finalizing a report 
was significantly shorter when AI was deployed as a second 
reader (with AI: 223±145.6 s vs. without AI: 270±143.17 s, 
P<0.001) (Figure 3).

Comparison of CT image characteristics between AI- and 
radiologist-labeled HR nodules

In summary, radiologists and AI agreed on the HR label 
for 95 (37.8%) patients, junior radiologists and AI were in 
agreement for 106 (42.2%) patients, and among junior and 
senior radiologists, agreement was reached for 61 (24.3%) 
patients. Overall, agreement on HR labeling among the 
junior radiologists, senior radiologists, and AI was reached 
for only 58 (23.1%) patients.

Patients with a HR label that AI and radiologists had 
agreed on had a significantly higher percentage of lesions 
with a dimension over 6 mm [90 (94.7%) vs. 115 (79.3%), 
P=0.002], a larger maximum axial area [107.8 (IQR, 65.3–
267.2) vs. 55.7 (IQR, 30.9–100.5) mm2, P<0.001], and a higher 
volume [773.9 (IQR, 300.1–2,805.8) vs. 191.0 (IQR, 90.7–
445.6) mm3, P<0.001] compared to patients who received an 
inconsistent opinion from AI and radiologists (Table 2).
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Table 2 Comparison between patients with agreed and disagreed HR labels from AI and senior radiologists

Characteristics Agreed HR labels (n=95) Disagreed HR labels (n=145) P value

Age, years 66 [63–72] 66 [58–70] 0.091

Gender (male/female) 38/57 49/96 0.400

Location of the nodule 0.797

Left upper lobe 15 (15.8) 25 (17.2)

Left lower lobe 21 (22.1) 36 (24.8)

Right upper lobe 32 (33.7) 38 (26.2)

Right middle lobe 5 (5.3) 10 (6.9)

Right lower lobe 22 (23.2) 36 (24.8)

Dimension 0.002*

<6 mm 5 (5.3) 30 (20.7)

≥6 mm 90 (94.7) 115 (79.3)

Maximum axial area (mm2) 107.8 (65.3–267.2) 55.7 (30.9–100.5) <0.001*

Volume (mm3) 773.9 (300.1–2,805.8) 191.0 (90.7–445.6) <0.001*

Average CT number −331.0 (−507.0–21.0) −255.0 (−517.0–23.0) 0.933

Malignant signs

Spiculated 37 (38.9) 18 (12.4) <0.001*

Lobulated 41 (43.2) 22 (15.2) <0.001*

Irregular shape 3 (3.2) 3 (2.1) 0.733

Pleural involved 27 (28.4) 10 (6.9) <0.001*

Type of nodule 0.013*

SN 29 (30.5) 57 (39.3)

PSN 48 (50.5) 46 (31.7)

pGGN 18 (18.9) 42 (29.0)

AI-risk score 0.93 (0.87–0.96) 0.86 (0.77–0.91) <0.001*

Dimensions are average of long and short axes, rounded to the nearest millimeter. Non-parametric data are expressed as medians with 
IQR in parentheses. Categorical data are expressed as numbers with percentages in parentheses. *, statistical significance. HR, high risk; 
AI, artificial intelligence; SN, solid nodule; PSN, partial-solid nodule; pGGN, pure ground glass nodule; IQR, interquartile range.

In addition, the AI risk score and percentage of presence 
of HR CT characteristics, including spiculation [37 (38.9%) 
vs. 18 (12.4%), P<0.001], lobulation [41 (43.2%) vs. 22 
(15.2%), P<0.001], and pleural involvement [27 (28.4%) 
vs. 10 (6.9%), P<0.001] were higher in patients with a 
unanimous HR label. Cases in which AI and radiologists 
differed in their opinions are presented in Figure 4.

CT characteristics of nodules with a revised HR classification

Among the 145 patients who were given disparate labels 
from the radiologists and AI, 35 (24.1%) were reclassified as 

HR and 4 (3.0%) HR patients were reclassified as non-HR 
after referring to the AI opinion (Table 3).

The lesions in patients with a revised HR label had a 
higher volume [309.9 (IQR, 214.9–732.5) vs. 141.3 (IQR, 
79.3–380.8) mm3, P<0.001] and a larger maximum axial area 
[69.1 (IQR, 51.9–118.1) vs. 50.0 (IQR, 27.8–97.8) mm2, 
P=0.014] when compared to those that were unchanged. 
Further, radiologists tended to revise the label if a nodule 
with an AI-labeled HR was pure GGN (pGGN) rather than 
PSN or SN (P=0.010). Similarly, the lesions in the revised 
group had a significantly lower average CT number [−511.0 
(IQR, −576.5 to −100.5) vs. −191.5 (IQR, −487.3 to 22.5), 
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Figure 4 Examples of patients with HR and non-HR labels and visualization of features correlated to risk-score calculated by the algorithm. 
Each group of the images shows: the original CT image (left), the heatmap of pixels that the AI algorithm classified as HR lesion (red 
indicates higher probability, middle), and the overlap of the original CT image and the heatmap (right). (A) A 62-year-old female labeled 
HR by both AI and radiologists. The AI algorithm identified abnormal features mainly at the left margin of the lesion as an irregular shape (red 
color). (B) A 71-year-old female with a radiologist-labeled HR. The AI algorithm captured this region but did not collect information from 
the lesion itself. (C) A 68-year-old female with an AI-labeled HR. The AI algorithm identified abnormal features from the lesion, whereas 
the radiologist labeled this as non-HR given multiple ground-glass opacities in the left lower lobe. (D) A 56-year-old male without a HR 
label from either the AI or radiologist. A relatively clean lung field was shown with no abnormalities detected in the captured region. HR, 
high-risk; AI, artificial intelligence. 

P=0.008) than the those in the non-revised group.

Self-evaluation results

Self-evaluation results from the radiologists showed that the 
median score of nodule detection and nodule classification 
was 8 (IQR, 8–8.5) and 7 (IQR, 5.5–8), respectively. The 
majority (5/7, 71.4%) of participants indicated that the AI 
algorithm was superior to radiologists in nodule detection, 
while only 14.2% (1/7) felt AI was superior to radiologists 
in nodule classification. Additionally, with the AI algorithm 
as a second reader, 85.71% (6/7) and 42.8% (3/7) of 
participants indicated that nodule detection accuracy and 
nodule classification, respectively, could be improved. In 
contrast, no participant thought the diagnostic result from a 
radiology resident would increase accuracy, in either nodule 
detection or classification (Table S1).

Discussion

This study demonstrated that the validated lung cancer 
AI software had a relatively high NPV and low PPV in 

diagnosing HR lung nodules in the general population, 
and thus it is feasible to use lung cancer AI as a second 
reader for clinical evaluation. The major advantage of the 
AI algorithm was a reduction of 47 s in average diagnosis 
time. Additionally, the diagnosis provided by the AI 
algorithm was most useful when the target nodule had a 
larger volume, ground glass opacity (GGO), or recognized 
signs of malignancy. However, continued learning for AI 
using selected case training may be warranted to improve 
its specificity and thus better realize its potential, further 
enhancing its role in clinical settings.

The performance of the mature AI product in this 
patient population was inferior to a previous report in 
a simulated study environment (17). Technically, the 
sensitivity and specificity of a designed AI algorithm, 
which is a diagnostic tool, could be adjusted based on the 
needs of the medical center (18). Thus, it is not surprising 
that the NPV would be higher with a lower PPV. This 
results from demand for high sensitivity in a screening-
test scenario to avoid missing any potential lung cancer 
nodules (19). Although a false positive diagnosis would lead 
to unnecessary CT examination, a second consideration 

https://cdn.amegroups.cn/static/public/ATM-22-2157-Supplementary.pdf
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Table 3 Characteristics of HR-AI patients reclassified to HR by radiologist

Characteristics Reclassified (n=35) Non-reclassified (n=104) P value

Age, years 65 [59–69] 66 [60–71] 0.438

Gender (male/female) 13/22 36/68 0.947

Location of the nodule 0.013*

Left upper lobe 11 (31.4) 13 (12.5)

Left lower lobe 5 (14.3) 30 (28.8)

Right upper lobe 11 (31.4) 26 (25.0)

Right middle lobe 4 (11.4) 4 (3.8)

Right lower lobe 4 (11.4) 31 (29.8)

Dimension 0.054

<6 mm 3 (8.6) 27 (26.0)

≥6 mm 32 (91.4) 77 (74.0)

Maximum axial area (mm2) 69.1 (51.9–118.1) 50.0 (27.8–97.8) 0.014*

Volume (mm3) 309.9 (214.9–732.5) 141.3 (79.3–380.8) <0.001*

Average CT number −511.0 (−576.5 to −100.5) −191.5 (−487.3–22.5) 0.008*

Malignant signs

Spiculated 5 (14.3) 13 (12.5) 0.776

Lobulated 6 (17.1) 16 (15.4) 0.793

Irregular shape 2 (5.7) 1 (1.0) 0.156

Pleural involved 9 (25.7) 9 (8.7) 0.451

Type of the nodule 0.010*

SN 9 (25.7) 47 (45.2)

PSN 9 (25.7) 34 (32.7)

pGGN 17 (48.6) 23 (22.1)

AI-risk score 0.90 (0.86–0.94) 0.83 (0.76–0.89) <0.001*

Dimensions are average of long and short axes, rounded to the nearest millimeter. Non-parametric data are expressed as medians with 
interquartile range in parentheses. Category data are expressed as numbers with percentages in parentheses. *, statistical significance. 
HR, high risk; AI, artificial intelligence; SN, solid nodule; PSN, partial-solid nodule; pGGN, pure ground glass nodule.

from a radiologist could avoid such a problem. Previous 
AI studies have suggested that AI might be optimal for 
underdeveloped areas or those without medical resources 
(20,21). Our results further supported this by demonstrating 
AI performance for data collected using a mobile CT. The 
images collected in this study had comparable image quality 
and equivalent radiation doses to images acquired from in-
hospital CT scanners (Appendix 2). Our data supported the 
use of an AI platform for screening tests at locations with 
a shortage of thoracic imaging experts. Patients could be 
triaged faster and referred to experts if there was suspicion 

of a HR lesion.
Another significant finding from our study was that 

diagnostic duration when AI was used as a second reader 
was shorter than without AI. This result is consistent with 
previous reports, although the difference in time reduction 
was smaller. For instance, Annarumma et al. reported that 
the average reporting delay could be reduced from 11.2 to 
2.7 days by using a radiograph AI diagnostic system (22). 
Nevertheless, the workload at our center is extremely large 
(over 100 reports per day for each radiologist), and the 
average diagnostic duration of each case had to be shortened 

https://cdn.amegroups.cn/static/public/ATM-22-2157-Supplementary.pdf
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to <5 min, which may explain the difference. We also found 
that the reduction in diagnosis time mostly occurred in 
cases with a negative finding. For such cases, it is possible 
that an agreed finding of “negative” from AI would increase 
confidence in the radiologist’s diagnosis, which would 
encourage them to finalize the report in a shorter time.

The AI opinion as a second reader affected radiologist 
decision-making and led to a change in the final report in 
approximately 1/5 of cases, mainly driven by a larger lesion 
volume and a GGO rather than solid imaging presentation. 
Interestingly, dimensions did not impact radiologists’ 
decisions. Understandably, 3-dimensional (3D) volume is 
preferred to 2D for diagnosis of malignant lung nodules 
(23,24). Nevertheless, 2D-axial view was still the first 
choice for taking a quick look at a case as quantifying 3D 
volume by hand is not convenient (25). As the AI algorithm 
has been proven to have high accuracy in multiple 
quantification tasks, it does provide an ideal assistant for 
radiologists (20,26). GGO is another key sign of early-
stage lung cancer but is more likely to be missed even by an 
experienced radiologist, especially when handling a large 
volume of cases (27). Our results are supported by reports 
stating that AI has significantly increased the detection of 
GGO in hospitals (28,29).

The disagreement between radiologists and the AI 
algorithm regarding HR nodule diagnosis implied that the 
AI algorithm “thinks” in a different way from human beings. 
It remains unknown how to fill this gap and better facilitate 
the implementation of AI. As expected, the performance 
of an AI platform in a real-world setting is lower than 
that in a simulated setting (30,31). Continued learning by 
additional data feeding could partially help maintain AI  
performance (32). However, the clinical thinking during 
the diagnosis is not necessarily “learned” by the computer 
(33,34). Cao et al. developed a step-by-step aorta dissection 
AI segmentation model which realistically reflected how 
doctors would handle the task, and this step-by-step model 
was superior to the traditional model developed by simple 
data feeding (35). In our study, the heat map of a missed 
case by AI showed that the focus of AI algorithm deviates, 
which cannot simply be solved by adding another training 
case. Thus, we propose that future AI design open the “black 
box” and follow the steps that a doctor would take when 
determining diagnoses.

Limitations

Our study had several limitations. First, we did not acquire 

the pathologic diagnosis or follow-up data for these 
nodules. Thus, if AI had a different opinion for the nodules, 
we could not judge them to be incorrect. Nevertheless, 
the purpose of this study was to report AI performance 
in a real-world clinical workflow, as well as to investigate 
the impact of AI participation on radiologists. Results 
concerning the final diagnosis need to be further analyzed 
in a future study. Second, although we collected data from 
multiple centers using the mobile CT, all participating 
radiologists were from a single center. While the diagnostic 
expertise of all radiologists was kept consistent, validation 
from more centers is still warranted.

Conclusions

A validated lung cancer detection AI algorithm could be 
deployed as a second reader for routine clinical practice, 
especially in regions where resources are scarce and fast, 
safe triage is expected. Continued learning is needed to 
maintain or improve the performance of AI in the clinical 
setting.
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Figure S1 Mobile CT (NeuViz, Neusoft Medical, China). The 
mobile CT was transported by truck to the surrounding small-
to-medium size cities and towns to collect chest CT scans from 
adults aged between 40–69 years who were willing to take part in 
this lung disease screening program. Then, all images were sent to 
West China hospital and interpreted by assigned chest radiologists.

Supplementary

Table S1 Subjective evaluation of the AI work performance

Content of evaluation
Answers of each radiologist

R1 R2 R3 R4 R5 R6 R7

Nodule detection performance

Radiologist alone 9 8 8 8 9 8 8

AI alone 10 10 7 9 9 9 8

Radiologist with resident 9 8 8 8 9 8 8

Radiologist with AI system 10 10 8 9 9.5 9 9

The benefit of AI system in nodule detection 8 8 8 9 9 7 8

Nodule classification performance

Radiologist alone 7 7 9 8 7 8 8

AI alone 8 5 8 7 6 7 5.5

Radiologist with resident 7 7 9 8 7 8 8

Radiologist with AI system 8 7 9 8.5 7.5 8 8

The benefit of AI system in nodule classification 8 6 7 6 6 5 3

The scoring range for each question was 0–10; Rx represent an individual participated radiologist in this study.
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Appendix 1 Image characteristics analysis by AI

The image characteristics of every pulmonary nodule were reported by the AI-based diagnostic system and corrected 
manually if necessary. In detail, the pulmonary nodule was first detected by the deep learning-based detection model, as 
labeled with 3D bounding-boxes. The boundary of the pulmonary nodule (voxel of interest, VOI) was further automatically 
segmented, and the nodule density was calculated by averaging Housfield unit (HU) of the voxels inside the VOI. Similarly, 
the size of each detected nodule, including the maximal dimension and volume were also calculated by AI. In addition, AI also 
reported qualitative descriptions of the nodule including spiculation, lobulation, irregular shape, and pleural involvement.

Appendix 2 Image quality evaluation

To compare the image quality of CT scans acquired through mobile CT and through conventional in-hospital CT scanner, 
an additional 15 patients scanned through the mobile CT and 15 patients (1:1 matching) who were referred to chest CT in 
our hospital were prospectively included using the following matching variables: age and gender. 

Regarding objective image quality evaluation, for each patient, a region of interest (covering 75% of the targeted area) was 
put at the descending aorta and trachea bifurcation level, and the mean CT attenuation value was recorded.

Regarding subjective image quality evaluation, each case was evaluated separately by two radiologists with over 3-years 
working experience in chest imaging who were blinded to the group and other patient information. Both radiologists were 
required to observe the lung parenchyma, the trachea, and segmental bronchus and assess the image quality according to 
structure resolution and artifacts caused by body motion, breathing, and heart and arterial pulse motion, using a three-point 
scale scoring system (36). Scores from the above four facets were summed as the subjective image quality score. 

In addition, volumetric CT dose index (CTDIvol) in milli-gray (mGy) and dose-length product (DLP) in milli-gray-
centimeter (mGy·cm) for each case were recorded by the scanner. Then, the effective dose (ED) in millisieverts (mSv) was 
estimated for each patient as the product of the DLP in mGy·cm times a conversion coefficient of 0.014 mSv/(mGy·cm), as 
referred to the European CT guideline for chest (37) and compared between the two patient groups.

No significant differences in the measured CT value (49.2±3.01 vs. 47.3±1.79 HU, P=0.221), total subjective image quality 
scores (8.8±0.31 vs. 9.1±0.41, P=0.175), or ED (2.07±0.11 vs. 2.19±0.12 mSv, P=0.151) were found between the patients 
scanned with mobile CT or conventional in-hospital CT scanner. 
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