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Introduction

Chronic obstructive pulmonary disease (COPD) is 
characterized by progressive, irreversible limited airflow. 
Smoking is the most important risk factor, so smoking 
cessation is an efficient intervention to protect against 
COPD. However, the pathophysiology of COPD is 
complex and there is a lack of highly specific therapies. 

The main pathological disease manifestations include 
alveolar destruction, airway inflammation, apoptosis, 
microvasculature remodeling, and microvasculature 
proliferation (1). The Chinese Adult Lung Health study 
reported a COPD prevalence rate in adults aged over  
40 years in China of 13.7%, accounting for approximately 
100 million individuals (2). By 2030, the World Health 
Organization has estimated that approximately 5.4 million 
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people will die from COPD and associated conditions.
Several strategies can limit COPD progression, and have 

clinical efficacy (e.g., inhaled corticosteroids, long-acting 
muscarinic antagonists, and long-acting β2 agonists), but such 
treatments only slow disease progression, and ultimately fail 
to reverse disease progression (3). The precise pathogenesis 
underlying COPD remains unclear, so it is important to 
investigate and identify novel therapeutic targets.

It has not only been reported that COPD is regulated 
by multiple genes, but also there is some degree of 
familial clustering (4). Gene chip technologies are being 
increasingly used in scientific and clinical research (e.g., 
gene chip and RNA sequencing strategies). In 2008, Wang 
et al. investigated the gene expression profiles in lung 
specimens from 48 COPD patients and used candidate 
genes, such as transforming growth factor-β and serpin family 
E member 2, in their screening approach (5). Sun et al. 
explored differentially expressed genes (DEGs) in COPD 
and non-COPD patients using bioinformatics analyses and 
screened autophagy-related genes for validation, because 
they considered these genes were clinically significant and 
exerted some pathogenic effects in COPD (6). Thus, an 
in-depth exploration of public datasets and application of 
multiple validation models identifying the genetic variants 
related to COPD could be used to predict disease prognosis 
and generate individualized treatments for COPD.

To this end, we used 3 expression profiles from the online 
Gene Expression Omnibus (GEO) database and identified 
326 downregulated DEGs and 503 upregulated DEGs. We 
conducted Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analyses to identify the 
potential function of these DEGs. Subsequently, two 
phenotypes of COPD were combined for key module 
screening. We performed a module partition analysis using 
weighted gene co-expression network analysis (WGCNA) 
to further assess the significant modules. And five different 
algorithms were used to select the hub genes within the 
modules, which led to more accurate gene screening results. 
We present the following article in accordance with the 
STREGA reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-2523/rc).

Methods

Clinical sample

We selected four paraneoplastic tissue samples from COPD 
patients and non-COPD patients in The First Affiliated 

Hospital of Jinan University, respectively. All patients 
with COPD had a history of smoking ranging from 10 to  
30 years, and none of the patients without COPD had a 
history of smoking. The study was approved by Ethics 
Committee of Jinan University (No. KY-2021-051). The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). Informed consent was taken 
from all the patients.

COPD-related gene datasets and microarray data 

Species was set as Homo sapiens and the specimen type was 
set as lung tissue. Three COPD gene expression profiles, 
comprising GSE38974, GSE106986, and GSE76925, were 
explored in the GEO database (https://www.ncbi.nlm.nih.
gov/geo/). Our dataset included 148 COPD samples and 
54 controls. An additional profile GSE69818 included  
70 COPD samples, categorized by the presence or 
absence of emphysema and Global Initiative for Chronic 
Obstructive Lung Disease (GOLD) stage.

DEG analysis of COPD-related genes

We used the Limma R package to investigate DEGs in each 
GEO dataset. DEGs with |log2fold-change (FC)| >0.5 and 
adjusted P<0.05 were considered the cut-off criteria.

GO and KEGG pathway enrichment analyses

To analyze the main biological functions of the DEGs, 
GO and KEGG pathway analyses were performed using 
clusterProfiler in R. GO functional categories consisted 
of molecular function (MF), biological process (BP), and 
cellular component (CC). KEGG analyses identified 
significant DEG pathways. A corrected P value <0.05 was 
considered statistically significant.

Protein-protein interaction (PPI)

Those DEGs was applied to PPI analysis using a Search 
Tool called STRING (https://cn.string-db.org/). Then 
imported the interaction data into Cytoscape, five kinds of 
algorithms were selected for analysis. 

WGCNA of DEGs 

We used the WGCNA package in R (https://cran.r-project.
org/package=WGCNA) to perform WGCNA analyses 

https://atm.amegroups.com/article/view/10.21037/atm-22-2523/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-2523/rc
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based on GSE69818, which included the gene expression 
data of 70 patients with COPD. Soft thresholding powers 
were determined using the pick Soft Threshold function in 
WGCNA. The soft thresholding power parameter β was 
set at β=6. A topological overlap matrix-based dissimilarity 
measure was used for the hierarchical clustering of genes 
to divide similar genes into modules. Module membership 
(MM) represented correlations between the gene expression 
values across samples and the module eigenprotein (ME). 
Correlations between gene expression profiles versus the 
ME were used to quantify how close the genes were to a 
given module. Modules were identified and designated by 
an assigned color. 

Cell culture, cigarette smoke extract (CSE) preparation, 
and treatments

Human 16HBe and THP-1 cell lines obtained from Sun 
Yat-sen University were cultured in Dulbecco’s Modified 
Eagle’s Medium supplemented with 10% fetal bovine serum 
and penicillin-streptomycin (Gibco) at 37 ℃ in 5% CO2. 
Cigarettes (Hong Shuang Xi manufactured by Guangdong 
China Tobacco Industry Co., Ltd.) used in this study emitted 
11 mg tar, 1.0 mg nicotine, and 13 mg CO per cigarette. 
The cigarettes were connected to the gas sampling, 
bringing the smoke in contact with cell culture medium 
by repeated aspiration using a 50-mL syringe. The optical 
density (OD) value obtained at a wavelength of 490 nm  
equivalent to 0.25 was defined as 100%. Cells were exposed 
to 5% CSE for 72 h.

RNA extraction and quantitative polymerase chain 
reaction (qPCR)

RNA was extracted using the TRIzol reagent (Invitrogen, 
San Diego, CA, USA) according to the manufacturer’s 
instructions. Total RNA was reverse transcribed using a 
reverse transcription kit (Ericbio, China). SYBR green (iQ 
SYBR green supermix, BioRad) quantitative polymerase 
chain reaction was performed using CFX instrument 
(BioRad, Hercules, CA, USA). Reactions contained 10 µL 
SYBR Green 1×, 1 µL cDNA, and 0.4 µL reverse primers. 
Relative fold change (FC) was determined from cycle 
threshold values using the 2−ΔΔCt method.

Statistical analysis

Statistical analysis was performed using R language software 

(version 4.0.2, https://www.r-project.org).

Results

DEG identification

We selected the genetic data for 148 COPD and 54 non-
COPD lung tissues from the GSE38974, GSE106986, and 
GSE76925 datasets. DEG analysis was performed for each 
dataset in GEO2 R. A total of 1,210 upregulated genes and 
2,123 downregulated genes were screened from GSE38974; 
535 upregulated genes and 1,480 downregulated genes 
from GSE106986; and 2,692 upregulated genes and 3,453 
downregulated genes from GSE76925. There were 326 
upregulated genes (log2FC >1 and adjusted P<0.05) and 503 
common downregulated genes (log2FC <−1 and adjusted 
P<0.05) in at least 2 datasets. The datasets are visually 
represented by volcano charts (Figure 1A-1C). Overlaps in the 
DEG data are illustrated by Venn diagram (Figure 1D,1E).

DEG GO and KEGG analyses

To explore the DEGs biological functions, GO and KEGG 
term enrichment analyses of the identified 326 upregulated 
genes and 503 downregulated genes were performed using 
the clusterProfiler package in R. For BP terms, DEGs were 
significantly enriched for interleukin-1 (IL-1) production, 
regulation of IL-1 production, regulation of IL-1β 
production, and positive regulation of IL-1 production. 
DEGs were significantly enriched in the “inflammatory 
response”  pathways .  For  CC terms,  DEGs were 
significantly enriched in the extracellular regions and vesicle 
lumen, such as collagen-containing extracellular matrix 
(ECM), basement membranes, secretory granule lumen, 
cytoplasmic vesicle lumen, and vesicle lumen. For MF 
terms, DEGs were mainly enriched in the ECM structural 
constituents, cell adhesion molecule binding, bone 
morphogenetic protein (BMP) binding, carbohydrate kinase 
activity, and glycosaminoglycan binding (Figure 2A). KEGG 
pathway analyses indicated the most significantly enriched 
pathways for DEGs were ECM-receptor interactions, the 
hypoxia-inducible factor-1 (HIF-1) signaling pathway, and 
focal adhesion. These signaling pathways were related to 
the inflammatory reaction processes and alveolar and airway 
remodeling (Figure 2B). 

WGCNA and key module visualization

The gene co-expression network established by WGCNA 

https://www.so.com/link?m=bf2PY7eXritVYvN9Ax7W3H/x7PtNhafRirIiPVcooUp/reyXuZaPJx8Rqa9GpodXWTfeLkJJLo/Nu34eRORKYF+knlhvJMhZbvm7SBqz0am5V9EM8OvR6Emtm+4ALkh/wlPuc2VaHSxmW2X51jxtSAVPjwjbPHMic51vuccSaY1HraphN7tMxomWpnuk=
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in R. A total of 70 COPD lung tissue samples were 
clustered by Pearson’s correlation and average linkage 
algorithms (Figure 3A). β=6 was chosen as the soft-
thresholding parameter to ensure a scale-free network. Also, 
the fitting degree of the scale-free topological model was 
set at 9.0 (Figure 3B). Then, the ME values were analyzed 
for correlations with tissue or disease traits. In total, 7 
expression modules were identified using average linkage 
hierarchical clustering (Figure 3C). In terms of COPD 
phenotypes, the top 4 correlated modules were yellow  
(86 DEGs), black (42 DEGs), green (50 DEGs), and blue 
(228 DEGs), which showed high R2 values and low P 
values. A network diagram was generated according to 
the weight value of each module and hub genes in each 
identified functional module (Figure 4).

“Hub” genes and module identification

Cytoscape was used to visualize the co-expression network 
of each module to screen for the key genes. The node 
and edge represented the gene and weight, respectively, 

between 2 genes. The relationship between MM and 
gene significance (GS) showed that 4 gene modules had 
significant correlations with COPD (Figure 5).

A scatterplot of GS was plotted to define module 
trait associations between gene expression and clinical 
characteristics of COPD patients; each module showed 
positively correlated GS and MM values (P<0.05). Yellow, 
black, and green modules were positively correlated with 
the GOLD stage, especially the black module (correlation 
coefficient; 0.34, P=0.028). The green module was positively 
correlated with the emphysematous phenotype (correlation 
coefficient: 0.24, P=0.00025).

Next, we selected genes from these 4 modules to 
further analyze enrichment levels. In the BP functional 
category, DEGs were enriched in the extracellular structure 
organization, positive regulation of IL-1 production, 
regulation of mononuclear cell migration, positive 
regulation of cell adhesion, and positive regulation of 
IL-1β production (P<0.01) (Figure 6A). For CC, DEGs 
were specifically focused on the basement membrane, 
collagen-containing ECM, secretory granule lumen, 
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Figure 4 Visualization of the modules of interest and hub genes. (A) The 31 genes with the highest levels of intramodular connectivity in 
the black module. The color depth of the circle is proportional to the intramodular connectivity. (B) The 176 genes in the blue module. 
Genes highlighted in yellow are the hub genes. (C) The 41 genes in the green module. (D) The 66 genes in the yellow module.

cytoplasmic vesicle lumen, and vesicle lumen (P<0.01) 
(Figure 6B). For MF, DEGs were primarily assembled 
into the ECM structural constituents, cell adhesion 
molecule binding, calmodulin binding, integrin binding, 
and glycosaminoglycan binding (P<0.01) (Figure 6C). In 
the KEGG analyses, DEGs were mostly enriched in focal 
adhesion, regulation of actin cytoskeleton, ECM-receptor 
interaction, axon guidance, and neutrophil extracellular trap 
formation (Figure 6D).

Identification of hub genes using the PPI network

A PPI network of the DEGs in the 4 significant modules 

was selected for PPI network analysis in STRING (Figure 7). 
After ranking by several indices, such as closeness, degree, 
MCC (maximal clique centrality), radiality, and stress, 
the top 16 genes in these 5 indices were selected from the 
PPI network using the plug-in, cytoHubba. Considering 
the differences in the output of different algorithms, the 
following genes that co-existed in at least 4 algorithms were 
selected as the final hub genes: APP, FN1, IGF1, ACTB, 
CAPZA2, SPP1, CAT, and CSF2 (Figure 8).

Validation of gene transcription levels

A Venn diagram of the hub genes from the 5different 
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Figure 5 WGCNA module analysis. (A) Heatmap of the correlation between clinical traits with emphysema and GOLD stage. (B-E) A 
scatterplot of GS for recurrence vs. MM in each module. GOLD, Global Initiative for Chronic Obstructive Lung Disease; WGCNA, 
weighted gene co-expression network analysis; GS, gene significance; MM, module membership.

algorithms was constructed. Eight genes in the overlapping 
regions of at least 4 algorithms were selected for further 
analysis (Figure 9A). Additionally, expression heatmaps of 
hub genes in the GSE76925, GSE38974, and GSE106986 
datasets are shown in Figure 9B. The CSE-stimulated 
16HBE cells were found to highly express SPP1, CSF, and 
IGF1. In addition, IGF1 levels were increased and APP levels 
were decreased in CSE-stimulated THP-1 cells (Figure 10). 
SPP1 and FN1 had increased expression levels in COPD 
lung tissues, the opposite held for APP and CAT (Figure 11).

Discussion

Although the pathophysiology of COPD is complex and 
there is a lack of highly specific drugs to treat this disease, 
smoking is the most important risk factor for the disease. 
In developed countries, the populations of individuals who 
smoke represent approximately 70% of global smokers. In 
China, more than 300 million people smoke; in 2018, the 
smoking prevalence was 50.5% among men and 26.6% 

in individuals aged >15 years (7). Therefore, identifying 
specific therapeutic targets of smoking-induced pathogenic 
mechanisms could be beneficial in preventing and  
treating COPD.

Hub genes are central to disease-associated protein 
regulatory networks, so associated genetic studies may 
provide vital clues to the pathogenesis of COPD. In this 
study, gene expression profile data from the GEO database 
were analyzed for DEGs implicated in COPD. 

We selected 3 datasets, which included 148 COPD 
and 54 non-COPD lung tissue profiles, and we identified 
326 upregulated genes and 503 downregulated genes. 
GO analyses showed that DEGs were enriched in the 
inflammatory reaction processes and alveolar and airway 
remodeling. KEGG analysis showed that DEGs were 
enriched in focal adhesion, regulation of actin cytoskeleton, 
and ECM-receptor interaction. Chronic inflammation 
in COPD and acute exacerbation of COPD (AECOPD) 
are related to altered homeostasis of ECM molecules in 
the lungs (8,9). Cells require attachment to the ECM for 



Xie et al. Key genes of COPDPage 8 of 15

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(12):665 | https://dx.doi.org/10.21037/atm-22-2523

0.01  0.02           0.04          0.06

Gene ratio

0.01  0.02             0.04             0.06       0.075

Gene ratio

0.02          0.04          0.06      0.076

Gene ratio

0.01 0.02          0.04         0.06          0.08

Gene ratio

Count

GO-BP

Count

Count

Count

P value

P value

P value

P value

GO-CC

KEGGGO-MF

5

10

15

20

0.035

0.040

0.045

0.050

Collagen-containing extracellular matrix

Secretory granule lumen

Cytoplasmic vesicle lumen

Vesicle lumen

Focal adhesion

Cell-substrate adherens junction

Cell-substrate junction

Axon part

Cell leading edge

Basement membrane

Cell projection membrane

Platelet alpha granule

Specific granule

Platelet alpha granule lumen

Phagocytic vesicle

Specific granule lumen

Filopodium

Main axon

Neuromuscular junction

Tertiary granule lumen

Focal adhesion

Regulation of actin cytoskeleton

ECM-receptor interaction

Axon guidance

Neutrophil extracellular trap formation

Lysosome

Toxoplasmosis

Thyroid hormone signaling pathway

Platelet activation

Dopaminergic synapse

TGF-beta signaling pathway

Small cell lung cancer

HIF-1 signaling pathway

GnRH secretion

Amoebiasis

Tryptophan metabolism

Pentose phosphate pathway

Glycosphingolipid biosynthesis-ganglio series

Galactose metabolism

Fructose and mannose metabolism

Cell adhesion molecule binding

Extracellular matrix structural constituent

Cadherin binding

Calmodulin binding

Glycosaminoglycan binding

Sulfur compound binding

Integrin binding

Heparin binding

Collagen binding

Monosaccharide binding

Spectrin binding

Oxygen binding

BMP binding

RAGE receptor binding

Inositol 1, 4, 5 trisphosphate binding

Peptide disulfide oxidoreductase activity

Extracellular structure organization

Cellular divalent inorganic cation homeostasis

Positive regulation of cell adhesion

Cellular calcium ion homeostasis

Ameboidal-type cell migration

Extracellular matrix organization

Interleukin-1 production

Platelet degranulation

Positive regulation of leukocyte migration

Regulation of interleukin-1 production

Positive regulation of interleukin-1 production

Cell redox homeostasis

Regulation of mononuclear cell migration

Neuromuscular junction development

Positive regulation of mononuclear cell migration

Protein kinase C signaling

Immunological synapse formation

Cell-cell adhesion mediated by integrin

Transforming growth factor beta receptor,
cytoplasmic mediator activity

Positive regulation of tumor necrosis factor
superfamily cytokine production

Positive regulation of interleukin-1 beta
production

0.025

0.050

0.075

0.100

5

10

15

20

25

10

20

0.05

0.10

0.15

3

6

9

12

15

0.01
0.02
0.03
0.04
0.05

A B

C D

Figure 6 GO and KEGG analyses of the DEGs. (A) Biological process, (B) cell component, and (C) molecular function. (D) The KEGG 
pathway analysis is displayed with the parameters, gene count, gene ratio, and −log10 P value. DEG, differentially expressed gene; GO, 
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

survival, and detachment induces apoptosis of many types 
of cells (10). The actin cytoskeleton may mediate smooth 
muscle binding with the ECM to form focal adhesions, 
which is important in airway remodeling (11). In the 
GSE69818 dataset, 782 DEGs were determined, which were 
then subjected to WGCNA to identify the key functional 

modules. Next, we carried out GO and KEGG enrichment 
analyses for the genes in the key modules, and we found 
that DEGs were also enriched in the inflammatory reaction 
processes and alveolar and airway remodeling. Furthermore, 
PPI network analysis of these DEGs with 5 algorithms was 
also performed and finally we obtained 8 hub genes: APP, 
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Figure 7 PPI network of DEGs. Genes are denoted as nodes, and interactions between them are presented as edges. Green represents 
upregulated genes and red represents downregulated genes. Color gradients from red to blue represent the change in logFC. The thickness 
of the line represents the size of the co-expression coefficient. DEG, differentially expressed gene; FC, fold change; PPI, protein-protein 
interaction.

FN1, IGF1, ACTB, CAPZA2, SPP1, CAT, and CSF2.
A portion of these hub genes have been verified to be 

associated with COPD, but the other is unknown. CAT is an 
H2O2 scavenger, and a key enzyme of the biological defense 
system (12). In patients with smoking-related COPD, the 
expression of CAT in the bronchiolar epithelium decreases 
dramatically (13). FN1 is an ECM glycoprotein (14), and in 

this study its expression was decreased by CSE treatment, 
which might promote hormone resistance in COPD (15). 
CAPZA2 is one of the components of the cytoskeleton (16), 
but the association between CAPZA2 and COPD is poorly 
understood. The same holds true for ACTB.

The CSE-stimulated 16HBE cells were found to highly 
express SPP1, CSF, and IGF1. In addition, IGF1 levels were 



Xie et al. Key genes of COPDPage 10 of 15

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(12):665 | https://dx.doi.org/10.21037/atm-22-2523

Radiality Stress

MCCDegreeCloseness

0
0

0

Close
ne

ss

Degree

M
C

C

Stress

Radiality

0

0

0

0
0

0
0

0

0 0
0

0

0

0

9

1

1

1

2

1

1

1

1

14

3

3

2.0

1.5

1.0

0.5

0.0

−0.5

−1.0

CAT

APP

FN1

ACTB

SPP1

CSF2

IGF1

CAPZA2

G
S

E
106986

G
S

E
38974

G
S

E
76925

−0.63 **** −0.80 ****

−1.19 ****

−0.58 *

−0.53 ***

−0.86 ***

−0.88 ***

1.26 ****

0.58 * 1.00 **

1.04 **

0.60 **0.18 **

0.87 *

0.68 *

2.11 *** 2.21 *

−0.86 ***

NA

NA

NA

NA

NA

NA

A B

Figure 8 Hub genes selected from the PPI network using the closeness, degree, MCC, radiality, and stress methods. PPI, protein-protein 
interaction; MCC, maximal clique centrality.

Figure 9 Venn diagram showing the overlapping hub genes among the different algorithms (A) and heatmap of 8 hub genes’ expression in  
3 datasets (B). *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. NA, not available; MCC, maximal clique centrality.
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Figure 10 qPCR verified the relative expression of SPP1, CAPZA2, CSF2, IGF-1, APP, FN1, CAT, and ACTB genes in 16HBE and THP-
1 cell lines. (A) The 16HBE cell line was treated with CSE or the control medium for 72 h. qPCR confirmation of expression changes in 
hub genes. (B) The THP-1 cell line was treated with CSE or the control medium for 72 h. qPCR confirmation of expression changes in 
hub genes. *, P<0.05. CSE, cigarette-smoke extract; qPCR, quantitative polymerase chain reaction. C, Cell growth medium was used as the 
control medium.

Figure 11 qPCR verified the relative expression of SPP1, CAPZA2, CSF2, IGF-1, APP, FN1, CAT, and ACTB genes in lung tissues of 
COPD patients. *, P<0.05. COPD, chronic obstructive pulmonary disease; CON, patients without COPD; qPCR, quantitative polymerase 
chain reaction.

increased and APP levels were decreased in CSE-stimulated 
THP-1 cells. CSF2, also known as granulocyte-macrophage 
colony-stimulating factor (GM-CSF), is a major survival 
and activating factor for macrophages and neutrophils in 
the lung (17). Cigarette smoking increases the expression 

of pulmonary GM-CSF and granulocytes, resulting in 
pulmonary inflammation (18). Shen et al. found that carriers 
of the CSF2 117Ile allele had a 2.4-fold higher risk of 
COPD than the wild-type (Thr/Thr) carriers when exposed 
to indoor air pollution (19). 
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SPP1, or osteopontin, participates in bone metabolism, 
immune  re sponses ,  and  cancer  meta s t a s i s  (20 ) . 
Papaporfyriou et al. showed that SPP1 sputum levels were 
higher in patients with COPD than in asymptomatic 
smokers and non-smokers (21). Cigarette smoke-induced 
inflammatory cytokine secretion and inflammatory 
cell infiltration play key roles in COPD. SPP1 is a 
chemokine that regulates immune cell differentiation and  
proliferation (22). Shan et al. showed that exposure of 
dendritic cells to CSE induced SPP1 mRNA expression 
and stimulated Th17 cell differentiation, thus mediating 
interleukin-17A (IL-17A) driven inflammation, and 
ultimately resulting in emphysema (23). SPP1 knockdown 
attenuated CSE-induced immune cell infiltration, IL-17A 
production, and alveolar destruction. Thus, SPP1 appears to 
be involved in the pathogenesis of emphysema by regulating 
innate and adaptive immune responses.

SPP1 is closely associated with the phosphatidylinositol 
3-kinase (PI3K)-protein kinase B (AKT) signaling pathway, 
and activation of the Toll-like receptor (TLR) signaling 
pathway (24,25). PI3K signaling regulates growth, 
proliferation, survival, metabolism, and angiogenesis  
in vitro and in vivo. Activated AKT regulates cell functions 
by phosphorylating various enzymes, transcription factors, 
and kinases; thus, aberrant AKT activity may affect these 
fundamental processes (26,27). SPP1 could regulate 
inflammatory cell activation, inflammatory mediator release, 
and airway remodeling in COPD by intervening in the 
PI3K/AKT signaling pathway.

Similarly, it has been reported that TLRs are important 
in COPD pathogenesis (28). These receptors belong to 
the pattern recognition receptor (PRR) family. Cigarette 
smoke stimulates immune competent cells in the respiratory 
tract, potentially activating TLRs (29). This activation may 
be mediated by damage-associated molecular patterns 
(DAMPs) and high mobility group box-1 (HMGB1), heat 
shock protein 60 (HSP60), HSP70, and β-defensin. We 
therefore speculate that SPP1, which is involved in the TLR 
and PI3K/AKT mechanisms, is stimulated by cigarette 
smoke, which in turn leads to COPD progression.

In our study, the APP transcription levels in THP-1 
cells were decreased after CSE exposure for 72 h, which 
was consistent with our bioinformatics data. APP is a 
protein-coding gene related to cerebral amyloid angiopathy 
and Alzheimer’s disease (30). It regulates axonal growth, 
neuronal adhesion, and axonogenesis, and participates 
in cell movement, proliferation, and transcription (31). 
However, APP has not been thoroughly investigated in 

pulmonary disease etiology. Spitzer et al. have reported 
that APP is hydrolyzed to β-amyloid (Aβ) in macrophage 
lineages, and stimulated pro-inflammatory cytokine 
secretion from macrophages (32). APP also regulates tumor 
necrosis factor-α (TNF-α), IL-6, and IL-10 secretion from 
human monocyte-derived macrophages. APP knockdown 
in macrophages decreased TNF-α and IL-6 levels and 
increased the IL-10 level (32). However, IL-10 secretion 
was diminished during lipopolysaccharide (LPS)-induced 
inflammation. Puig et al. compared C57BL6 wild-type 
and APP−/− mice, and found that the migratory capacity 
of peritoneal macrophages and cytokine secretion levels 
were reduced in the latter (33). In an infectious meningitis 
study, Kumar et al. reported that APP−/− mice had lower 
survival rates, and its overexpression had the opposite 
effect (34). Thus, APP appears to play an anti-infection 
role in macrophages. In our study, we identified decreased 
APP transcription levels in macrophages after exposure to 
CSE. Theoretically, smoking induces decreased immune 
responses in the respiratory tract, which may explain why 
smokers are more likely to acquire respiratory infections.

The SPP1 and APP levels correlate with lung fibrosis. 
Pardo et al. have reported that SPP1 was significantly 
increased in the bronchoalveolar lavage fluid of patients 
with idiopathic pulmonary fibrosis (IPF) (35). SPP1 
promotes the proliferation and migration of primary human 
lung epithelial cells. Also, patients with IPF have elevated 
serum SPP1 levels. Moreover, patients with an acute 
exacerbation had higher SPP1 levels than patients without 
an acute exacerbation (36). Several studies have suggested 
that SPP1 is not merely a biomarker of lung fibrosis, but 
may also promote the progression of lung fibrosis (37,38). 
Thus, SPP1 potentially represents a viable therapeutic 
target for lung fibrosis. APP promotes pulmonary fibrosis 
by regulating macrophage phenotypes. Monocyte-derived 
macrophages are polarized to pro-inflammatory and pro-
fibrotic phenotypes (39). APP in the induced pluripotent 
stem cell secretome caused a switch from a pro-fibrotic to 
a pro-inflammatory phenotype. After APP was scavenged 
by a specific antibody, the pro-fibrotic phenotype in 
the macrophage subsets was increased (40). IL-10 is an 
important anti-inflammatory cytokine and anti-fibrotic 
factor, LPS-induced secretion of IL-10 was also suppressed 
in APP knockout macrophages (32). Lung fibrosis can 
develop in some patients with advanced COPD, SPP1 and 
APP may contribute to this change.

IGF is a protein with a structure and function similar to 
insulin and is localized to the interstitial lung tissue, where 
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it is involved in lung development and anabolism. The 
IGF system plays an important role in lung development 
(41,42). The pathology of bronchopulmonary dysplasia 
includes thickened interstitial tissue in the lungs and 
enhanced cell densities, accompanied by the enhanced 
expression of IGF1 (43). Knockout of the IGF1 receptor 
gene causes pulmonary dysplasia (44). COPD patients have 
low serum levels of IGF1; in a severe COPD group there 
was a significant difference compared with the mild to 
moderate COPD group (45). IGF1 is also considered to be 
a key regulator of muscle quality, and muscle dysfunction 
is one of the most common systemic manifestations of 
COPD. The presence of IGF-1 promotes the formation 
of myotubes and the expression of muscle-specific protein. 
Moreover, it can prevent the muscle atrophy induced by 
glucocorticoid treatment (46). Conversely, a reduction in 
IGF1 levels accelerates muscle wasting. Prenatal tobacco 
exposure increased the mRNA level of IGF1 in offspring 
mice, and caused pulmonary dysplasia (47). Nicotine, a 
component of cigarette smoke, can induce the macrophage 
phenotype switch towards M2. M2 macrophages promote 
tumorigenesis via the secretion of IGF1 (48). The serum 
IGF1 level in smokers is positively linked to lung cancer 
risk (49). This is consistent with our bioinformatics analysis 
and qPCR results, which illustrates the complex regulatory 
relationship between IGF1 and cigarette smoke-induced 
COPD. Moreover, IGF1 might play different roles in 
different cell types.

However, our study has some limitations. Since the data 
did not contain prognostic information, it was not possible 
to analyze the relationship between these pivotal genes 
and patient prognosis. And our lung tissues were from 
lung cancer patients, which inevitably interfered with our 
prognostic judgments.

Conclusions

In conclusion, we found 8 hub genes by bioinformatics 
analysis, and finally identified 4 significant DEGs validated 
through qPCR: SPP1, CSF, IGF1, and APP. However, 
the limitation of this study is that inter-ethnic differences 
and cellular diversity were not considered. However, our 
results have provided insights into the pathophysiological 
mechanisms of COPD. 
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