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Introduction

Docetaxel, a widely prescribed cell-cycle specific cytotoxic 
chemotherapy drug for various cancers, can promote 
tubules to assemble into stable microtubules and inhibit 

their depolymerizations, eventually resulting in cell 

death to prevent tumor growth (1,2). As we know, the 

appropriate dose of chemotherapeutic drugs is a key 

point for anticancer therapy. Overdose of drugs may lead 
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to severe hematological toxicity and result in treatment 
failure (2-4). The main dose-limiting toxicity of docetaxel 
is neutropenia, which is a dose-dependent, reversible, and 
noncumulative leukoneutropenia (5,6). Currently, in clinical 
practice, the dose of docetaxel is determined by the patient’s 
body surface area (BSA) and is recommended at 75 mg/m2 
(2,7,8). However, the drug-blood concentration of docetaxel 
between different patients has shown great inter-individual 
variability (IIV) (9). Research has revealed that there are 
factors other than the BSA that affect the pharmacokinetics 
(PK) of docetaxel, such as liver function, age, weight, 
and albumin (ALB), co-administration of ritonavir which 
may be related to the docetaxel clearance (CL) (10-16). 
Nonetheless, there have been few reports about the other 
factors, and to date, no model based on Chinese cancer 
patients has been developed. In China, the dose of docetaxel 
is strictly prescribed according to the patient’s BSA, and it 
requires therapeutic drug monitoring (TDM) due to the 
great IIV. At the same time, numerous studies have shown 
that the area under the curve (AUC) of docetaxel is an 
independent predictor of drug toxicity (17,18). As a result, 
it is necessary to establish docetaxel population PK model 
for Chinese cancer patients, to predict the AUC and avoid 
toxicity. We aimed to explore the factors that influence the 
PK of docetaxel in Chinese cancer patients and provide 
information for the individualization of docetaxel dose. We 
present the following article in accordance with the MDAR 
reporting checklist (available at https://atm.amegroups.
com/article/view/10.21037/atm-22-2619/rc).

Methods

Patient selection 

This study was conducted in Henan Provincial People’s 
Hospital. The inclusion criteria were as follows: (I) 
patients were diagnosed with cancer; and (II) patients were 
treated with docetaxel. Patients were excluded if any of 
the following conditions applied: pregnant (19) or nursing 
women; previously received docetaxel chemotherapy; 
severe hypertension, diabetes or clinically significant 
complications; or combined with radiotherapy and other 
anticancer therapy. The baseline characteristics of the 
enrolled patients included: gender, age, body weight (BW), 
body mass index (BMI), ALB, BSA, hemoglobin (HGB), 
platelet (PLT), total protein (TP), leukocyte [white blood 
cell (WBC)], alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), alkaline phosphatase (ALP), 

lactate dehydrogenase (LDH), total bilirubin (TBIL), and 
creatinine (CREA). These data were retrieved from the 
patient’s medical record.

Study design 

All participants received docetaxel by intravenous infusion. 
According to the dose guideline of docetaxel on the drug 
label, docetaxel was administered at a dose of 75 mg/m2 
once every 3 weeks. Docetaxel was diluted with 250 mL of 
0.9% sodium chloride injection or 5% glucose injection as a 
solvent and infused within 2 hours. Two blood samples were 
collected from each participant: (I) during the intravenous 
drip, 2 mL of peripheral venous blood was collected as 
monitoring blood sample I; (II) after the drip, 2 mL of 
peripheral venous blood was collected as monitoring blood 
sample II. The samples were separated by centrifugation at 
3,000 r/min for 10 minutes (4 ℃), and the separated plasmas 
were then suctioned and preserved at −80 ℃ until analysis. 
The plasma concentrations were detected by Dirui CS-600 
auto-chemistry biochemical analyzer (Changchun, China) 
and MyDocetaxel kit (Pennsylvania, USA) (20). 

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by institutional ethics committee of Henan 
Provincial People’s Hospital [2020 (Ethical Review) No. 11]. 
Written informed consent was obtained from patients or 
their parental/legal guardians. This study was not applicable 
to clinical trial registration because the participants received 
standard treatment.

Structural model development

Simple compartmental models were used to describe 
the docetaxel PK. A nonlinear mixed-effects modelling 
(NONMEM) approach was applied to develop the PK 
model using the Phoenix® NLMETM 7.0 (Certara, St. Louis, 
MO, USA) software, with first-order conditional estimation 
and extended least squares (FOCE-ELS) method. All PK 
parameters accorded with a log-normal distribution.

ηi
iP =P e×  [1]

P and Pi represent the typical value of a PK parameter 
and the ith patient’s individual parameter, respectively. The 
random variable ηi is normally distributed with a mean of 
zero and a variance of ω2. The residual error is characterized 
by the proportional error model (Eq. [1]).

( )iC =C 1+ε×  [2]
Ci and C represent the individual plasma concentration 

https://atm.amegroups.com/article/view/10.21037/atm-22-2619/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-2619/rc
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and predictions of plasma concentrations, respectively. ε 
accounts for the proportional errors of predictions for drug 
concentrations, which are normally distributed with a mean 
of zero and a variance of σ2 (Eq. [2]).

Population model

Covariate analyses were undertaken to evaluate the impact 
of docetaxel PK. The covariates in dataset were divided 
into two categories: continuous covariates and categorical 
covariates. Continuous covariates include age, BW, BMI, 
BSA, AST, ALT, TBIL, CREA CL (determined by the 
Cockcroft-Gault formula) and the categorical covariate was 
gender. A proportional shift function was used to assess 
the effect of the categorical covariate on each parameter. 
Continuous covariates were centered at their median values, 
and linear, exponential, and power functions were used to assess 
the effect of each covariate on the PK parameters (Eq. [3]).

iP =P i

median

Cov e
Cov

θ

η 
× × 
 

[3]

The forward inclusion followed by the backward 
elimination method was applied to establish the final PK 
model. A covariate was considered significant when the 
addition resulted in a decrease of the objective function 
value (OFV) >6.635 (P<0.01) and the elimination resulted 
in an increase of the OFV >10.828 (P<0.001).

Model evaluation and validation

The reliability of the base structural model and the final 
model was assessed visually by using goodness-of-fit plots 
and observing the trend in the plots. Four scatter plots were 
contained in goodness-of-fit plots: conditional weighted 
residuals (CWRES) versus time after dose, CWRES 
versus population predictions (PRED), observations versus 
PRED, and CWRES versus standard normal quantiles. The 
prediction performance and stability of the final model were 
evaluated by visual predictive checks (VPCs) and bootstrap 
resampling method (21,22). After random sampling, 2,000 
new datasets with different patient combinations were 
generated and parameters were re-estimated after using 
the final population model. We then compared the median 
parameter value and its 95% confidence intervals (CIs) with 
the estimate from the final model. In addition, 2,000 virtual 
datasets were simulated based on the final population model 
to compare the distribution characteristics of the predicted 
values with the measured values. The observations were 

displayed overlaid on the simulated 5th percentiles, median, 
and 95th percentiles.

Simulation

The main purpose of the simulations was to offer dose 
counsels for the clinical administration of docetaxel to 
Chinese cancer patients. In consideration of the plasma 
representing the effect site, Monte Carlo simulations 
(2,000 patients) were performed to create the plasma drug 
concentrations-time data. Non-compartment analysis was 
used to calculate the AUC of simulation data. An AUC  
<2.6 mg/L·h is the pharmacokinetic/pharmacodynamic  
(PK/PD) target attainment associated with the toxicity (23).  
The plasma-drug concentration date was calculated at 
different times utilizing the relationship between covariates 
and PK parameters in final population PK model. To 
perform the deterministic simulations, we fixed the typical 
values to the final parameter estimates and fixed IIV to 0. 
Patients were divided into subgroups based on covariates 
significantly associated with PK. In order to figure out the 
optimal individualized dose regimens for patients from 
different subgroups, simulations were performed using 
Phoenix NLME software. Based on the simulation results, 
we derived an easy-to-use dose regimen table.

Results

Baseline information

In accordance with the inclusion criteria, a total of 440 
patients (17 males and 423 females) were enrolled in this 
study, and 880 plasma concentration data were collected. 
The demographic and clinical characteristics of the enrolled 
patients are summarized in Table 1.

Population PK model

A two-compartment model was used to characterize the 
PK of docetaxel. After forward inclusion and backward 
elimination of all covariates, age, BMI and BSA were 
identified and included in the final population PK model. 
Their relationships in the final model were described as 
follows:

( )
1.31 0.99 0.72

38.20 /
24.84 1.61 50

i
i

BMI BSA AGECL e L hη
−

     = × × × ×     
     

( )
1.31 0.99 0.72

38.20 /
24.84 1.61 50

i
i

BMI BSA AGECL e L hη
−

     = × × × ×     
     

 [4]
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( )=5.73 i
ciV e Lη×  [5]

( )=40.99 i
iQ e L hη×  [6]

( )270.87 i
piV e Lη= ×  [7]

In Eq. [4], 38.20 L/h was the typical value of docetaxel 
CL; 1.31 and 0.99 represented the estimated coefficient 
describing the associations between BMI and CL, BSA and 
CL, with CL increasing when BMI and BSA ascended; and 
−0.72 indicated the estimated coefficient describing the 
relationship between the age and CL, with CL decreasing 
when the age increased. In Eqs. [5-7], 24.84, 1.61 and  
50 were median values of BMI, BSA and age, respectively. 
The typical values of Vc, Q and Vp were 5.73 L, 40.99 L/h 
and 270.87 L, respectively. All parameters were estimated 
with an acceptable accuracy [relative standard error 
(RSE) ranged from 2.55% to 5.45%]. Table 2 indicates the 
parameter estimates of the final population PK model. 

Goodness-of-fit and model validation

Between the base model and final model, the scatter plots 
among observations and PRED were compared with 
each other (Figure 1A-1D). We applied CWRES versus 
time, PRED, and standard normal quantiles to test if 
any misspecifications existed in base and final models  
(Figure 1E-1J). In the base model, an association of the 
parameters’ ETAS (inter-individual variations) (CL) and 
covariates (age, BMI, and BSA) could be observed (Figure 2),  
so the three covariates were added to parameter CL in the 
final model. After the incorporation of age, BMI, and BSA, 
the above association disappeared, suggesting a significant 
improvement in the final model (Figure 2). In these plots, 
there was no obvious systematic bias observed, and the 
proposed final model was able to describe docetaxel PK in 
enrolled patients appropriately. Plots of correlation between 
PK parameters and all covariates in the base and final 
models are displayed in Figure S1.

The median values were roughly the same as the original 

Table 1 Demographic and clinical characteristics of enrolled patients for modelling (n=440)

Variables Median Range Average SD

Dosage (μg) 120,000 60,000 to 200,000 126,493 24,377 

Duration (h) 1.00 0.83 to 4.00 1.13 0.32 

Age (years) 50 13 to 79 50 10 

BW (kg) 62 43 to 97 63 9 

BMI (kg/m2) 24.84 17.18 to 36.31 24.91 3.58 

ALB (g/L) 39.2 25.8 to 49.6 38.75 4.2 

BSA (m2) 1.61 1.29 to 2.15 1.62 0.13 

HGB (g/L) 111 74 to 224 111 15 

PLT (×109/L) 246 48 to 565 255 86 

TP (g/L) 67.6 51.2 to 82.9 67.5 6.4 

WBC (×109/L) 5.98 2.28 to 52.69 7.76 6.08 

ALT (U/L) 20 6 to 187 28 22 

AST (U/L) 21 9 to 131 27 17 

ALP (U/L) 69.0 6.4 to 242.0 73.1 25.3 

LDH (U/L) 214 83 to 2,011 226 124 

TBIL (μmol/L) 7.3 2.8 to 29.0 8.0 3.5 

CREA (μmol/L) 46.00 3.45 to 151.00 47.93 12.99 

BW, body weight; BMI, body mass index; ALB, albumin; BSA, body surface area; HGB, hemoglobin; PLT, platelet; TP, total protein; WBC, 
white blood cell; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; LDH, lactate dehydrogenase; 
TBIL, total bilirubin; CREA, creatinine; SD, standard deviation.

https://cdn.amegroups.cn/static/public/ATM-22-2619-Supplementary.pdf
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parameter estimates, and the values estimated during data 
fitting were contained in the 95% CIs. Bootstrapping 
showed acceptable robustness of the final population PK 
model. Table 2 listed the bootstrap results which included 
the median parameter estimate with 95% CI. Docetaxel 
VPCs plots visually displayed the actual observed values 
and 5th to 95th percentiles, or in other words, the 90% 
prediction intervals (PI). The plots showed the 5th and 95th 
percentiles (dashed lines) and the 50th percentiles (solid 
lines). From this plot, we can see that most observations fall 
within the 90% PI, which indicated the sufficient predictive 
properties of the final population model (Figure 3).

Simulation 

Three covariates (age, BMI, and BSA) were included in the 
final model, patients were categorized by age (<40, 40–60, 
>60 years), BMI (<18, 18–24, >24 kg/m2), and BSA (<1.4, 
1.4–1.59, 1.6–1.8, >1.8 m2). To prevent results distortion, 
we limited the ranges of covariates in simulation to the 
observed ranges in the modeled data. Other parameters 
values were fixed to the population typical values and 
random variability was fixed to zero. The simulations were 
performed to create ten simulated concentrations-time for 
each patient. The AUC was calculated using the trapezoid 
method. With the goal of an AUC <2.6 mg/L·h, the optimal 
doses for different subgroups of patients were derived. To 
evaluate the recommended dose regimens we derived, we 

applied Monte Carlo simulations with 2,000 simulated 
patients (IIV implemented) and the percent probabilities of 
PK/PD target attainment (AUC <2.6 mg/L·h) associated 
with age, BMI, and BSA values were determined. The dose 
regimens showing the percent probabilities of PK/PD target 
attainment of at least 80% are shown in Table 3. The results 
of this simulation only apply to patients whose age, BMI, 
and BSA were within the ranges observed in the modeled 
data. Simulation results illustrated that the recommended 
dose needed to be decreased as the age increased to 
maintain optimal exposures, while the recommended dose 
needed to be increased as BMI and BSA ascended. 

Discussion

Neutropenia is the main dose-limiting toxicity of docetaxel 
treatment. This toxicity may be life-threatening and often 
imposes a delay on subsequent administration that affects 
treatment efficacy (5). Previous studies (17,18,24-27) had 
revealed that the AUC of docetaxel was associated with 
neutropenia, and it was a predictor of the docetaxel toxicity. 
Consistent with most anticancer drugs, to date, docetaxel 
has been administered based on BSA in clinical practice (28). 
However, this ordinary method of calculating doses may 
not be appropriate for all patients due to the IIV. The drug 
concentrations of docetaxel for different patients might 
fluctuate in a large range (up to 11.45-fold) at the same time 
point (9). Docetaxel administration based on BSA cannot 

Table 2 Parameter estimates and bootstrap results of the final population pharmacokinetic model

Parameter (unit)
Model estimates Bootstrap results

Estimate RSE% 95% CI IIV (CV%) Median 95% CI IIV (CV%)

CL (L/h) 38.20 4.54 34.80 to 41.60 52.42 37.99 29.53 to 44.44 53.40

Vc (L) 5.73 5.41 5.13 to 6.34 48.00 5.75 4.20 to 6.41 48.21

Q (L/h) 40.99 2.55 38.94 to 43.04 0.32 41.83 35.76 to 47.70 0.42

Vp (L) 270.87 5.45 241.8 to 299.85 0.05 268.15 199.13 to 344.00 0.06

fAge-CL −0.72 4.81 −0.79 to −0.65 NA −0.71 −0.82 to −0.51 NA

fBMI-CL 1.31 4.84 1.19 to 1.43 NA 1.35 1.18 to 1.53 NA

fBSA-CL 0.99 2.72 0.93 to 1.04 NA 1.04 0.72 to 1.23 NA

Residual error (proportional error, CV%)

σ 27.28 4.28 24.99 to 29.57 NA 26.90 25.69 to 28.96 NA

CL, docetaxel clearance; Q, inter-compartment clearance; Vc, distribution volume of central compartment; Vp, distribution volume of 
the peripheral compartment; f, coefficient; BMI, body mass index; BSA, body surface area; RSE, relative standard error; CI, confidence 
interval; IIV, inter-individual variability; CV, coefficient variation; IIV, inter-individual variability; NA, not available.
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satisfactorily predict the blood-docetaxel concentration and 
avoid the toxicity for individuals. Until now, the optimal 
dose of docetaxel for Chinese cancer patients had not been 
investigated. We aimed to establish a population PK model 
of docetaxel for Chinese cancer patients to explore the 
other factors that influence the PK of docetaxel and provide 
information for individualization of docetaxel dose based on 
the PK/PD target attainment of AUC.

Our study involved 880 plasma-drug concentration data 
of 440 patients. We developed a population PK model 
of docetaxel in Chinese cancer patients by NONMEM, 
revealing that the age, BMI, and BSA of patients showed 
significant effects on the drug CL. This suggested that the 
age, BMI, and BSA of patients should be comprehensively 
considered in the clinical medication and might contribute 
to precision medication in the future. In addition, according 
to the PK/PD target attainment of an AUC <2.6 mg/L·h, 
a simple-to-use dose regimen table was derived based on 
Monte Carlo simulations (2,000 patients). As far as we 
know, this is the first report to evaluate the blood PK profile 
of docetaxel through population modelling and simulation 
in Chinese cancer patients. This is the biggest advantage of 
this model.

As proved by another study, a three-compartmental 
model best represented plasma docetaxel concentration-
time data (14). At first, we attempted to develop a three-
compartment model, while the parameters were very 
unstable and the OFV decline was not significant (P>0.05). 
We considered that the relatively sparse blood samples 
collected mostly during or after the drip made it difficult 
to develop a complex compartment model. In addition, we 
also developed a single-compartment model, from which a 
large system deviation and a significant underestimation of 
the elimination phase data were observed. Finally, based on 
the two-compartmental model, we found that the plasma 
concentrations fit and the predicted values supported the 
observations well. Significant relationships between age, 
BMI, BSA, and CL were observed in the final PK model, 
indicating that the two-compartmental model was valid.

The drug CL of docetaxel decreased significantly with 
the increase of age in the final model. This correlation 
may be attributed to CYP3A, which is the primary enzyme 
responsible for the metabolism of docetaxel. A previous 
study has shown age-related declines in the in vitro activities 
of CYP3A (29). In addition, it has been demonstrated that 
elderly patients are more prone to neutropenia due to the 
increasing docetaxel exposure (30). On the contrary, with 
the rise of BMI, CL increased significantly, which might be F
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Figure 3 The visual predictive check plots (final population pharmacokinetic model). The actual original observations (blue dots). The 
5% and 95% quantiles (black dashed lines) and the 50% quantiles (black solid lines) from the simulated observations. DV, dependent value 
(observations); PRED, population predictions. 
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explained by the lipophilic nature of docetaxel. The bulky 
polycyclic rings of docetaxel led to a high affinity for the 
adipose tissue and required metabolic transformation in the 
liver to eliminate. As the research reported, obesity induced 

changes in the hepatic CL of lipophilic drugs, whose sulfo-
conjugation or glucurono-conjugation were increased (31). 
This may eventually result in an increase in CL for patients 
with a high BMI. 

Table 3 Docetaxel dose regimens for Chinese cancer patients based on age, BMI, and BSA (AUC <2.6 mg/L·h)

BMI, kg/m2
Docetaxel dose (mg)

<40 years 40–60 years >60 years

BSA <1.4 m2

<18 145 125 95

18–24 175 130 120

>24 190 165 140

BSA =1.4–1.59 m2

<18 150 140 110

18–24 190 145 125

>24 195 170 150

BSA =1.6–1.8 m2

<18 155 145 115

18–24 195 160 130

>24 200 175 170

BSA >1.8 m2

<18 160 150 130

18–24 200 180 150

>24 220 200 180

BMI, body mass index; BSA, body surface area; AUC, area under the curve.
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Docetaxel is metabolized in the liver and eliminated 
mainly by the feces through the biliary tract, so drug 
CL is reduced in patients with abnormal liver function. 
In this study, the values of AST and ALT of 80.68% of 
patients were in the normal range, indicating most of the 
participants had a normal liver function. The proportion 
of patients with hepatic impairment was insufficient, so the 
final model was more suitable for patients with normal liver 
function. Docetaxel is a lipophilic drug with a high protein-
binding rate. The α1-acid glycoprotein (AGP), an important 
component of serum ALB, is the main protein that binds to 
docetaxel, which is regarded a determinant for docetaxel PK 
(17,32). However, no effect of AGP on CL was observed 
in this study. This may be due to the decreasing of free 
fraction when AGP levels increase, whereby CL of unbound 
drugs may be only slightly affected by AGP levels (23).

Several limitations of this study should be noted: (I) 
most blood samples were recorded as having been collected 
during or after the drip at a given time, which might not 
have completely represented the real blood collection 
time in clinical practice, and this could have led to the 
distortion of the final model. A follow-up study with more 
accurate blood collection time is needed to confirm the study 
conclusions; (II) due to the sparse blood samples, the three-
compartmental model developed by the previous study was 
not applied; and (III) patients with normal liver function were 
the main components in the final model, so the conclusion in 
this study is not transferrable to patients with abnormal liver 
function. This is the biggest disadvantage of this model.

Conclusions

We developed a docetaxel plasma population PK model in 
Chinese cancer patients. Age, BMI, and BSA were identified 
as significant covariates influencing the docetaxel plasma 
concentration. Simulations were performed based on the 
final PK model, and based on the results, we derived a 
simple-to-use dose regimen table. These study results may 
assist clinicians in the selection of an optimal docetaxel dose 
regimen for the treatment of Chinese cancer patients. 
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Figure S1 Plots of correlation between pharmacokinetics parameters and all covariates in the base and final models. Eta, ETAS (η); ETAS, inter-individual variations in pharmacokinetic parameters; BMI, body mass index; ALB, 
albumin; BSA, body surface area; BW, body weight.
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