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Background: Gastric cancer (GC) has a high incidence and high mortality rate among Asian countries, 
and distinguishing predictive prognosis biomarkers for GC are essential. Cancer-associated fibroblasts (CAFs) 
play a significant role in the progression, immune evasion, and therapeutic resistance of GC. Therefore, 
CAF-associated genes might have huge potential as prognostic biomarkers for predicting tumor progression 
and survival rate in GC pateints.
Methods: A sum of 1,134 GC patients from the The Cancer Genome Atlas Stomach Adenocarcinoma 
(TCGA-STAD), GSE62254, and GSE84437 datasets as well as GC cohorts from Xijing hospital were 
included. Firstly, we performed univariate Cox regression analysis to identify CAF-associated prognostic 
genes. Subsequently, the Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis was 
used to develop a CAF gene signature (CAFGS) in the TCGA-STAD training cohort. CAFGS’s predictive 
performance was examined in both the training and validation cohorts, and the relationship between 
CAFGS and the tumor microenvironment (TME) was investigated by ssGSEA, CIBERSORT, TIMER, and 
ESTIMATE. Finally, a nomogram of CAFGS was established.
Results: Ten CAF-associated genes (ANGPTL4, CPNE8, CST2, HTR1F, IL1RAP, NR1D1, NTAN1, 
OLFML2B, TMEM259, and VTN) were identified to develop CAFGS. A high CAFGS score represented a 
worse outcome for GC patients in four cohorts, and a strong correlation was found between CAFGS and the 
infiltration of immune cells. We showed that CAFs contribute to immune evasion and unfavorable prognoses 
of GC patients by promoting the formation of an immunosuppressive microenvironment, and a high level 
of CAF infiltration may attenuate the efficacy of immunotherapy. The nomogram based on CAFGS showed 
reasonable predictive ability and may deliver great clinical net benefits.
Conclusions: We established a CAFGS model with 10 CAF-associated genes that had a great predictive 
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Introduction

Gastric cancer (GC) is one of the most common malignant 
tumors globally, ranking fifth for incidence and fourth 
for mortality in the world (1). However, tools to predict 
the prognosis of GC currently are inadequate, and there 
is currently a lack of biomarkers for predicting prognosis 
as well as the responsiveness to therapy in patients. For 
example, traditional gastrointestinal tumor biomarkers 
including carcinoembryonic antigen (CEA), carbohydrate 
antigen 19-9 (CA19-9), and carbohydrate antigen 72-4 
(CA72-4) have limited sensitivity and specificity in the 
diagnosis of gastric cancer. TNM stage is the primary tool 
used to predict the prognosis of patients with GC. However, 
GC patients of the same TNM stage often show different 
clinical outcomes, suggesting that there are other factors 
that influence long-term outcomes. Thus, the development 
of novel biomarkers for GC which could predict prognosis 
and immunotherapy response with excellent predictive 
performance would be significant. 

The tumor microenvironment (TME) harbors malignant 
cancer cells, immune cells, stromal cells, and other 
components, such as blood vessels, extracellular matrix, 
and cytokines, all of which participate in tumorigenesis and 
cancer progression (2). Among cells in the TME, cancer-
associated fibroblasts (CAFs) are the most prevalent and 
essential stromal cells correlated with an unfavorable 
prognosis in multiple cancers. It was reported that CAFs 
could promote cancer progression by secreting growth 
factors, cytokines, and chemokines (3). Furthermore, 
CAFs contribute to immune evasion by upregulating 
immunosuppressive cytokines and immune checkpoint 
ligands, preventing anti-tumor CD8+ T cell infiltration, and 
effecting an anti-tumor response via crosstalk with other 
immune cells (4). Consequently, CAFs usually contribute 
to an unfavorable prognosis. Recently, Herrera et al. [2021] 
developed a CAF-derived gene signature to predict the 
prognosis of colon cancer patients. They identified 596 
CAF-associated genes, which were used to develop a “CAF 

signature” and showed great predictive robustness (5). 
They demonstrated that CAF-associated genes may act as 
biomarkers to reveal the clinical outcome of colon cancer 
patients. GC and colon cancer are both gastrointestinal 
tumors and share similarities in pathological characteristics. 
Consequently, using CAF-associated genes to forecast 
the prognosis of patients with GC could be a promising 
strategy.

In this study, in order to screen out CAF genes related to 
overall survival, we performed univariate COX proportional 
hazards regression based on the 596 CAF-associated genes 
identified by Herrera et al. [2021] (5) and then construct a 
CAF gene signature (CAFGS) to estimate prognosis in GC 
patients. Screening of 43 prognostic genes and construction 
of CAFGS (10 candidate genes signature) were achieved 
using Least Absolute Shrinkage and Selection Operator 
(LASSO) regression. Furthermore, we indicated the 
significant role of CAFGS in immune cell infiltration as well 
as in immune checkpoint inhibitor (ICI) responses in GC 
patients. We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-2810/rc).

Methods

Public datasets and sample collection

We collected gene expression profiles along with the 
relevant clinical data from The Cancer Genome Atlas 
Stomach Adenocarcinoma (TCGA-STAD), GSE62254, 
and GSE84437 datasets. The training set contained 
RNA-seq data from 353 patients [Illumina HiSeq 2000, 
log2(x+1) transformed RSEM normalized read count] and 
corresponding clinical information from the TCGA-STAD, 
which were retrieved from the Cancer Genomics Browser 
of the University of California Santa Cruz (UCSC). The 
validation datasets included two microarray gene expression 
matrixes with processed series matrix files collected from 
the Gene Expression Omnibus (GEO) database, including 

value for GC prognosis and survival rate evaluation. This study could provide a novel insight for investigating 
the role of CAFs in GC.
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Figure 1 Outline of the present research. (A) Flowchart of the present research; (B) LASSO coefficients of 43 genes in the TCGA-STAD 
training cohort; (C) determination of optimal lambda value using partial likelihood deviance of variables. We adopted minimum criteria 
as the optimal values. LASSO, Least Absolute Shrinkage and Selection Operator; TCGA-STAD, The Cancer Genome Atlas Stomach 
Adenocarcinoma.

GSE62254 [n=300, log2(x+1) transformed RMA normalized 
read count], GSE84437 [n=433, log2(x+1) transformed 
RMA normalized read count]. We utilized the average 
expression value for the genes that had several probes. 
Furthermore, we collected 48 surgically resected GC tissues 
from the Xijing Hospital of Digestive Disease between July 
2015 and September 2015. Table S1 provides a summary 
of the relevant clinicopathological information. A further 
596 CAF-associated genes were obtained from the study 
of Herrera (5). This study was a bioinformatics analysis. 
Figure 1A depicts the flowchart for the present research. 
Firstly, we performed univariate COX proportional hazards 

regression to identified CAF genes related with OS. Then 
we deceloped and validated a CAF related predictive model 
in four GC cohorts. Finally, we indicated the significant role 
of CAFGS in immune cell infiltration as well as in immune 
checkpoint inhibitor (ICI) responses in GC patients.

Selection of prognostic genes

Univariate Cox regression analysis was performed according 
to the expression of 596 CAF-associated genes to examine 
the correlation between CAF genes and overall survival (OS) 
in the TCGA-STAD dataset. CAF genes with P value <0.05 

https://cdn.amegroups.cn/static/public/ATM-22-2810-Supplementary.pdf
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were recognized as significant prognostic genes. 

Construction and evaluation of CAFGS

We performed LASSO regression analysis on the basis 
of the abovementioned prognostic CAF genes with 10-
fold cross-validation (6). Based on the LASSO regression 
coefficients and gene expression, the CAFGS score was 
calculated utilizing the equation as follows: CAFGS score 
= coefficient 1 × expression of gene 1 + … + coefficient n 
× expression of gene n. Participants in the TCGA-STAD 
and GSE62254 datasets were classified into low- and high-
risk groups based on their median CAFGS score, which 
served as a cut-off value for the classification. Patients in 
GSE84437 and Xijing validation cohorts were classified into 
low- and high-risk groups based on the best threshold value, 
which had been computed utilizing the “survminer” R 
package. The CAFGS prognostic performance was assessed 
by time-dependent receiver operating characteristic (ROC) 
curves and Kaplan-Meier survival analysis. The Wilcoxon 
rank-sum test was utilized to examine the differences 
between the two groups for a variety of clinicopathological 
factors. 

Differentially expressed genes (DEGs) identification and 
functional enrichment analysis

DEGs (fold change >1.5, adjusted P value <0.05) between 
high- and low-risk groups were determined utilizing 
“limma” R package. Subsequently, we utilized the R package 
“clusterProfiler” to conduct Gene Ontology (GO) and the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. 
Gene Set Enrichment Analysis (GSEA) was also carried out to 
illustrate the differences of signaling pathways between high- 
and low-risk groups. Gene sets with P value <0.05 and false 
discovery rates (FDRs) <0.25 were deemed significant.

Estimation of CAF infiltration and correlation analysis

CAF infiltration in the TME was evaluated by three 
algorithms: EPIC (7), xCell (8), and MCPcounter (9), which 
was achieved by the “immunedeconv” R package. Spearman 
correlation estimated the relationship between CAFGS and 
the infiltration of CAF predicted by these algorithms.

Estimation of immune cell infiltration

We utilized CIBERSORT, TIMER, and ssGSEA to 

approximate immune cell infiltration, and 22 kinds of 
immune cells were evaluated by CIBERSORT for their 
relative percentage in the TME (10). The gene signature 
of the 22 immune cell types was termed LM22, which 
contained 547 genes capable of distinguishing between 
distinct immune cell types. TIMER was used to examine the 
correlation between CAFGS and major immune cells (11).  
Single sample gene set enrichment analysis (ssGSEA) was 
also utilized to define the immune infiltration status of 
GC samples by calculating the normalized enrichment 
score (NES). The immune cell gene set was derived from 
TISIDB, an integrated database for tumor and immune 
system interaction. 

Estimation of immune and stromal scores

ESTIMATE is an algorithm estimating the levels of 
infiltrating immune and stromal cells in the TME utilizing 
transcriptional gene expression data (12). Here, we used 
this algorithm to calculate the percentage of immune and 
stromal cells in GC. 

Tumor immune dysfunction and exclusion (TIDE) analysis

TIDE is a technique established to assess the potential 
of immune evasion based on transcriptional profiles (13) 
which employs a collection of markers to model two 
primary processes of immune evasion: the dysfunction of 
tumor-infiltrating cytotoxic T lymphocytes (CTL) and 
the exclusion of CTL by immunosuppressive factors. The 
elevated TIDE score reflects the poorer effectiveness of 
ICI therapy and shortened survival time after receiving ICI 
therapy. We downloaded the TIDE estimation results of 
the TCGA-STAD from the TIDE website (http://tide.dfci.
harvard.edu/).

Acquisition of gene mutation information

The somatic mutation information of the TCGA-STAD 
dataset was obtained via the “TCGAbiolinks” R package, 
and the “maftools” R package was utilized to visualize 
the top 20 genes with the highest mutation frequency 
in both groups. Microsatellite instability (MSI) and 
tumor mutation burden (TMB) scores of the TCGA-
STAD were downloaded from the website (Assistant for 
clinical bioinformatics, http://www.aclbi.com/). Spearman 
correlation analyses examined the correlation between 
CAFGS score and TMB/MSI score, and the TMB/MSI 
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scores between the two groups were subjected to Wilcoxon 
rank-sum test for comparison.

Identification of independent prognostic variables and 
construction of nomogram

Univariate and multivariate Cox regression analyses 
were conducted to determine if CAFGS independently 
functioned as a significant prognostic marker. Nomograms 
were then developed for the GSE62254 and TCGA-STAD 
cohorts. Calibration curves and ROC curves were employed 
to evaluate predictive performance of these nomograms. 
Furthermore, decision curve analysis (DCA) was used to 
quantify their clinical utility. 

Patients and tissue specimens

From July 2015 to September 2015, we collected a total 
of 48 surgically excised gastric adenocarcinoma tissues 
from patients enrolled at the Xijing Hospital of Digestive 
Disease. Isolation of total RNA from these samples was 
then performed utilizing an RNA extracting kit (Qiagen, 
Germany; #74106). To synthesize cDNA from 1000 ng 
of total RNA, we utilized the PrimeScript™ RT Master 
Mix kit (Takara, Japan; #PR036A-1), and quantitative 
real-time PCR (qPCR) determined the relative mRNA 
amount of genes. β-actin was the internal control. Table S2  
presents the primer sequences utilized. The relative 
expression of prognostic genes was determined by 2−ΔΔCT, 
then log2 transformed for signature validation. Subjects who 
participated signed a formal informed consent document, 
and the research was performed in conformity with the 
Declaration of Helsinki (as revised in 2013). This study was 
approved by the Ethical Committee of Xijing Hospital (No. 
KY20192088-F-1).

Statistical analysis

Univariate Cox regression analysis and Kaplan-Meier 
survival analysis were employed in identifying prognostic 
CAF-associated genes. Spearman correlation analysis was 
adopted to examine the correlation between CAFGS scores 
and other variables, and the Wilcoxon rank-sum test was 
conducted to probe into significant differences between two 
groups. Two-tailed P values were interpreted statistically 
significant when they were less than 0.05. To conduct 
statistical analysis, we utilized the tools GraphPad Prism 
(version: 8.0), SPSS (version: 24.0), and R (version: 3.6.1).

Results 

Identification of CAF genes correlated with OS 

To screen out CAF genes related to OS, we performed 
univariate COX proportional hazards regression based on 
596 CAF-associated genes. We then dichotomously divided 
patients in the TCGA-STAD by the median expression 
value of each prognostic gene, and the low- and high-
expression groups were subjected to Kaplan-Meier survival 
analyses to compare the survival difference between the 
two groups. Finally, we demonstrated that 43 CAF genes 
were substantially associated with OS (Figure S1), among 
which 31 were determined as “high-risk” genes, with hazard 
ratios (HR) greater than 1, and 12 were discovered to be 
protective genes with HR less than 1. 

Development and confirmation of CAFGS

To construct a gene signature for prognosis prediction, 
the remaining 43 genes were subject to LASSO regression 
analysis (Figure 1B,1C), and ten (ANGPTL4, CPNE8, CST2, 
HTR1F, IL1RAP, NR1D1, NTAN1, OLFML2B, TMEM259, 
VTN) were revealed and utilized to establish a gene 
signature. The risk score of CAFGS based on the LASSO 
coefficients and gene expression level were calculated as 
follows: CFAGS score = (0.0019) × ANGPTL4 + (0.2069) × 
CPNE8 + (0.0054) × CST2 + (0.1564) × HTR1F + (0.0019) 
× IL1RAP + (0.1624) × NR1D1 + (0.1771) × NTAN1 + 
(0.0123) × OLFML2B + (−0.2786) × TMEM259 + (0.0609) × 
VTN. Patients in the TCGA-STAD cohort were classified 
into low-risk and high-risk groups based on the median 
CAFGS score. Figure 2A shows that, with the increase of 
CAFGS, the mortality rates of GC patients also increased, 
and the CAFGS scores of the deceased patients were also 
considerably higher than those of the survivors (P<0.001) 
(Figure 2B). High-risk group patients had a substantially 
lower OS in contrast with those in the low-risk group (HR 
=2.90, 95% CI: 2.08–4.03, P<0.001) (Figure 2C). Time-
dependent ROC curves illustrated that the 5-year area 
under the curve (AUC) of CAFGS reached 0.713 in the 
TCGA-STAD training cohort (Figure 2D). Moreover, the 
CAFGS score was positively correlated with the TNM 
stage in GC patients, and a higher CAFGS score was found 
in advanced TNM stages (Figure 2E).

To validate the results, we used GSE62254 and 
GSE84437 cohorts as validation datasets. With the same 
formula, GC patients were classified into high-risk and 
low-risk groups according to the optimal cutoff value, and 
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Figure 2 Establishment and evaluation of CAF gene signature in the TCGA-STAD training cohort. (A) CAFGS score, gene expression 
profiles, and survival status distribution; (B) comparison of CAFGS score between surviving patients and deceased patients; (C) low- and 
high-risk groups were subjected to Kaplan-Meier survival analysis; (D) time-dependent ROC curves of CAFGS; (E) comparison of CAFGS 
score between patients with different TNM staging. CAF, cancer-associated fibroblast; TCGA-STAD, The Cancer Genome Atlas Stomach 
Adenocarcinoma; CAFGS, CAF gene signature; ROC, receiver operating characteristic; TPR, true positive rate; FPR, false positive rate; 
TNM, Tumor Node Metastasis.

the results showed patients having lower CAFGS scores 
exhibited considerably extended OS times as opposed to 
those with elevated scores (GSE62254: HR =1.58, 95% CI: 
1.15–2.17, P=0.005; GSE84437: HR =1.36, 95% CI: 1.04–
1.79, P=0.025) (Figure 3A,3B). Furthermore, we collected 
48 GC tissues from Xijing Hospital of Digestive Disease, 
and after RNA extraction and qPCR, obtained the relative 
expression of 10 genes in GC patients. CAFGS were 
then calculated as described above, and their distribution, 
survival status, and expression of the ten genes are shown 
in Figure 3C. Similarly, patients with high CAFGS showed 

worse outcome and deceased patients had higher CAFGS 
scores than those still surviving (HR =2.67, 95% CI: 0.95–
7.52, P=0.022) (Figure 3D-3E), implying a higher CAFGS 
score may indicate worse outcomes in GC patients.

CAFGS correlated with CAF infiltration in GC

To test whether CAFGS could precisely represent the 
infiltration of CAF, we performed correlation analysis 
between CAFGS and classical CAF markers, such as 
vimentin (VIM), platelet-derived growth factor receptors 
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Figure 3 Evaluation of CAFGS in three validation cohorts. (A,B) Low- and high-risk groups were subjected to Kaplan-Meier survival 
analysis in GSE62254 (A) and GSE84437 (B) validation cohorts; (C) CAFGS score, gene expression profiles, and survival status distribution 
in Xijing validation cohorts; (D) Kaplan-Meier survival analysis in Xijing validation cohorts; (E) comparison of CAFGS score between 
surviving patients and deceased patients in Xijing validation cohort. CAF, cancer-associated fibroblast; CAFGS, CAF gene signature.

(PDGFR), fibroblast activation protein (FAP), α-smooth 
muscle actin (α-SMA), and S100 Calcium Binding Protein 
A4 (S100A4). The findings illustrated that CAFGS 
exhibited a positive correlation with the expression of CAF 
marker genes, such as ACTA2 (R=0.50), FAP (R=0.41), 
VIM (R=0.46), PDGFRA (R=0.40), and PDGFRB (R=0.51)  
(Figure 4A) in the TCGA-STAD dataset. Moreover, 
to verify the robustness of CAFGS as an indicator in 
estimating CAF infiltration, we used three algorithms 
(EPIC, xCell, and MCP-counter) to estimate the infiltration 
of CAFs in the TME. The findings demonstrated a positive 

correlation between CAFGS score and CAF infiltration in 
the TCGA-STAD dataset (R=0.280, R=0.330, R=0.350) 
(Figure 4B-4D). In addition, we verified the results in 
the GSE62254 dataset. CAFGS score was also positively 
correlated with the expression of CAF marker genes  
(Figure S2A), and CAFGS score was positively correlated 
with CAF infiltration estimated by the three algorithms 
(R=0.470, R=0.230, R=0.510) (Figure S2B-S2D). We also 
validated the similar results in the GSE84437 dataset  
(Figure S2E-S2H). All above data demonstrated CAFGS 
could well represent the infiltration of CAF in the TME. 

https://cdn.amegroups.cn/static/public/ATM-22-2810-Supplementary.pdf
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Figure 4 Estimation of CAF infiltration by CAFGS in the TGCA-STAD training cohort. (A) Spearman correlation analysis between 
CAFGS and classical markers was used to identify CAF; (B) Spearman correlation analysis between CAFGS and CAF infiltration estimated 
by EPIC; (C) Spearman correlation analysis between CAFGS and CAF infiltration estimated by xCell; (D) Spearman correlation analysis 
between CAFGS and CAF infiltration estimated by MCPcounter. CAF, cancer-associated fibroblast; CAFGS, CAF gene signature; TCGA-
STAD, The Cancer Genome Atlas Stomach Adenocarcinoma.

Identification of CAFGS associated biological mechanisms 

In view of the strong stratification ability of CAFGS, we 
investigated CAF-related biological alterations in both 
low- and high-risk groups by firstly identifying DEGs 
between low- and high-risk groups in the TCGA-STAD 
cohort (n=353). In total, 177 DEGs (fold change >1.5, 
adjusted P value <0.05) were identified and subsequently 
subjected to GO/KEGG analysis, and the results of GO 
demonstrated that extracellular matrix-related terms were 
enriched substantially in high-risk groups. Similarly, the top 
five enriched terms of KEGG analysis were cell adhesion 
molecules, protein digestion, PI3K-Akt signaling pathway, 
focal adhesion, ECM-receptor interaction, and absorption, 
which are highly correlated with the biological functions of 
CAFs (Figure S3A). The results in GSE62254 (n=300) and 
GSE84437 (n=433) validation sets showed a similar trend 
(Figure S3B,S3C). 

Furthermore, we conducted GSEA between low- and 

high-risk groups, and from the three datasets, epithelial-
mesenchymal transition (EMT) was shown to be enriched 
substantially in the high-risk group, which is in compliance 
with the biological behavior and oncogenic role of CAFs 
in aggressive GC. Moreover, a substantial enrichment was 
discovered in hedgehog signaling, TGF-β signaling, KRAS 
signaling, and angiogenesis in the high-risk group. The 
findings indicated CAFs could perform a cancer-promoting 
role in GC by activating these pathways (Figure 5A-5C). 

Relationship between CAFGS and TME

Subsequently, using ssGSEA and CIBERSORT algorithms, 
we examined the correlation between CAFGS and immune 
cells in GC. Results of ssGSEA in the TCGA-STAD dataset 
illustrated T follicular helper cells, immature dendritic cells, 
natural killer cells, macrophages, plasmacytoid dendritic 
cells, myeloid-derived suppressor cells (MDSCs), mast 
cells, natural killer T cells, effector memory CD4+ T cells, 

https://cdn.amegroups.cn/static/public/ATM-22-2810-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-2810-Supplementary.pdf
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Figure 5 GSEA identified biological pathways between low- and high-risk groups in TCGA-STAD (A), GSE62254 (B), and GSE84437 (C) 
cohorts, respectively. GESA, gene set enrichment analysis; NES, normalized enrichment score; TCGA-STAD, The Cancer Genome Atlas 
Stomach Adenocarcinoma.

regulatory T cells (Tregs), central memory CD4+ T cells, 
and type 1 T helper cells were significantly enriched in the 
high-risk group, while type 17 T helper cells and activated 
CD4+ T cells were enriched in the low-risk group (Figure 
6A). In addition, to approximate the levels of infiltrating 
immune cells, we employed the CIBERSORT algorithm, 
and the results showed plasma B cells, resting mast cells, 
M2 macrophages, and monocytes exhibited a greater 
abundance in the high-risk group. However, activated mast 
cells and follicular helper T cells were enriched in the low-
risk group (Figure 6B). We also performed ssGSEA and 
CIBERSORT in the GSE62254 (Figure S4) and GSE84437 
(Figure S5) validation datasets. Among the three datasets, 
T follicular helper cells, macrophages, immature dendritic 
cells, plasmacytoid dendritic cells, mast cells, MDSCs, 
effector memory CD4+ T cells, Tregs, central memory 
CD4+ T cells, type 1 T helper cells, and MDSCs, were all 
substantially enriched in the high-risk groups, suggesting 
CAF infiltration in GC may contribute to poor prognosis 
by recruiting these immunosuppressive cells in the TME. 
Notably, despite the results of CIBERSORT varying 
in three datasets, the high-risk group in each exhibited 
more resting mast cells as opposed to the low-risk group, 
illustrating that CAFs and mast cells may have reciprocal 

interaction, and that CAFs may inhibit the activation of 
mast cells.

As CAFs were reported to regulate the polarization of 
macrophages in the TME, we investigated their relationship 
with macrophages, and the results of TIMER showed 
macrophages were strongly correlated with CAFGS in the 
three datasets (Figure S6A). As shown by CIBERSORT, 
the M2 macrophage infiltration level was higher in 
high CAFGS patients. Combining the above results, we 
illustrated that CAFs may promote the M2 polarization of 
macrophages. 

Moreover,  we used ESTIMATE to explore the 
composition of the TME in low- and high-risk groups. 
The findings illustrated that stromal and estimate scores 
were significantly elevated in the high-risk group, while 
immune scores showed no difference in the TCGA-
STAD cohort (Figure S6B-S6D), whereas tumor purity 
was reduced (Figure S6E), and similar results were seen 
in the validation datasets of GSE62254 and GSE84437 
(Figure S6F-S6M). These aforementioned results 
suggested the high-risk group was characterised by an 
elevation in stromal cell infiltration, such as CAFs, and the 
characteristics of the low-risk group included a stromal 
fibroblast-low microenvironment.

https://cdn.amegroups.cn/static/public/ATM-22-2810-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-2810-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-2810-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-2810-Supplementary.pdf
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Figure 6 Infiltration of immune cells in high-risk and low-risk groups in the TCGA-STAD training cohort. (A) Results of ssGSEA illustrated 
distinctively different statuses of immune cell infiltration in the two groups; (B) CIBERSORT estimated the infiltration of 22 distinct 
immune cells in the two groups. ns, not statistically significant; *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001, red asterisks indicate the 
corresponding cells are enriched in the high-risk group, while blue asterisks indicate the corresponding cells are enriched in the low-risk group. 
ssGESA, single sample gene set enrichment analysis; TCGA-STAD, The Cancer Genome Atlas Stomach Adenocarcinoma.

Relationship between CAFGS and ICI responsiveness

ICI therapy is an important aspect of GC treatment. As 
mentioned above, CAFs could influence the responsiveness 
of ICI therapy by regulating the TME. Therefore, 
we explored the relationship between CAFGS and 
responsiveness to ICI by analyzing their correlation with a 
variety of extensively utilized ICI biomarkers. The mRNA 
expression of immune checkpoint genes was examined 

first. Higher expression of PD-L2, TIM-3, and CD276 was 
observed in the high-risk group. Nevertheless, CTLA4,  
PD-1, and PD-L1 expression in the two groups seemed 
to make no difference (Figure 7A). Moreover, we used 
TIDE, an algorithm calculating T cell dysfunction and an 
exclusion criterion to predict ICI responsiveness and found 
TIDE scores were higher in the high-risk group than the 
low-risk group (Figure 7B). The T cell exclusion and T cell 
dysfunction scores were also elevated in the high-risk group 
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Figure 7 Relationship between CAFGS and immunotherapy response. (A) Immune checkpoint gene expression in low- and high-risk 
groups; (B-D) T cell dysfunction score, T cell exclusion score, and TIDE score were compared in the two groups; (E) comparison of TMB 
score between the two groups; (F) comparison of MSI score between the two groups. ns, not statistically significant; **, P<0.01; ***, P<0.001; 
****, P<0.0001. CAFGS, cancer-associated fibroblast gene signature; TIDE, tumor immune dysfunction and exclusion; TMB, tumor 
mutation burden; MSI, microsatellite instability.

(Figure 7C,7D). These results implied patients with higher 
CAFGS scores may have poorer ICI efficacy, and that 
their survival time is shorter after receiving ICI treatment, 
suggesting CAFGS may function as a prognosis biomarker 
for immunotherapy in GC.

We then investigated the correlation between CAFGS 
and tumor mutation load. It is widely acknowledged that 
tumor mutation burden (TMB) and microsatellite instability 
(MSI) are reliable biomarkers for immunotherapy (14),  
and we demonstrated an inverse association between 
CAFGS score and TMB/MSI. Moreover, lower levels of 
TMB and MSI scores were observed in the high-risk group  
(Figure 7E,7F), suggesting patients with high CAFGS scores 
may have a poor response for immunotherapy due to the 

low tumor mutation burden.

Relationship between CAFGS and somatic variation

The 20 most commonly mutated genes in the high-  
(Figure 8A) and low- (Figure 8B) risk groups were displayed 
as waterfall plots, among which some genes existed in 
both two groups, including TP53, TTN, MUC16, LRP1B, 
SYNE1, CSMD3, FLG, ARID1A, CSMD1, RYR2, FAT4, 
PCLO, and FAT3. Mutations of SPTA1, DNAH5, AHNAK2, 
DNAH11, PCDH15, and ZFHX4 genes were prevalent 
in the high-risk group, whereas mutations of KMT2D, 
OBSCN, PIK3CA, HMCN1, LAMA1, PLEC, and SACS 
were uniquely seen in the low-risk group.
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Figure 8 Most commonly mutated genes in the TCGA-STAD training cohort are shown as waterfall plots in both the high-risk groups (A) 
and low-risk groups (B). *, unique mutation in the high-risk group; **, unique mutation in the low-risk group. TCGA-STAD, The Cancer 
Genome Atlas Stomach Adenocarcinoma.

CAFGS independently served as a prognostic indicator for 
GC patients

The above results illustrated that CAFGS could serve 
as a promising prognosis biomarker for GC patients. 
Consequently, to determine if CAFGS independently served 
as an independent prognostic indicator, we conducted 
univariate and multivariable Cox regression analyses in the 
GSE62254 and TCGA cohorts. The findings demonstrated 
CAFGS (HR =5.52, 95% CI: 3.24–9.41, P<0.001), T 
stage (HR =1.35, 95% CI: 1.07–1.71, P=0.011), N stage 
(HR =1.21, 95% CI: 1.04–1.41, P=0.016), and age (HR 
=1.03, 95% CI: 1.01–1.05, P=0.001) were independently 
correlated with OS in the TCGA-STAD cohort (Figure 9A),  

and CAFGS (HR =5.75, 95% CI: 2.05–16.12, P=0.001) 
was consistently validated as an independent prognostic 
indicator in the GSE62254 cohort (Figure S7A).

Development of CAFGS nomogram and clinicopathological 
nomogram

A nomogram integrating independent prognostic 
variables, including CAFGS, was developed for predicting 
the mortality rate of GC patients in the TCGA-STAD 
(Figure 9B)  and GSE62254 (Figure S7B) cohorts, 
respectively. A clinicopathological nomogram without 
CAFGS was also developed (Figure 9C, Figure S7C). The 

https://cdn.amegroups.cn/static/public/ATM-22-2810-Supplementary.pdf
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Figure 9 Construction of nomograms in the TCGA-STAD training cohort. (A) Univariate and multivariate COX regression; (B) CAFGS 
nomogram; (C) clinicopathological nomogram. TCGA-STAD, The Cancer Genome Atlas Stomach Adenocarcinoma; CAFGS, cancer-
associated fibroblast gene signature; CI, confidence interval.

predictive performance of the CAFGS nomogram was 
then compared with the clinicopathological nomogram, 
and the results showed the CAFGS model had better 
predictive performance. At the time point of 3 years, the 
calibration curves of the CAFGS nomogram exhibited 

greater concordance with the actual survival rate in contrast 
with the calibration curves of the clinicopathological 
nomogram (Figure 10A,10B), and DCA curves showed 
that the CAFGS model had a better net benefit than the 
clinicopathological model (Figure 10C,10D). Finally, time-
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Figure 10 Evaluation of CAFGS nomogram and clinicopathological nomogram. (A,B) Calibration curves of the CAFGS model and 
clinicopathological model in the TCGA-STAD and GSE62254 cohorts, respectively; (C,D) DCA curves compared the clinical significance 
of two nomograms in TCGA-STAD and GSE62254 cohorts, respectively; (E,F) TCGA-STAD and GSE62254 cohorts were used to 
calculate the AUCs, which represent the predictive accuracy of two nomograms. CAFGS, cancer-associated fibroblast gene signature; 
TCGA-STAD, The Cancer Genome Atlas Stomach Adenocarcinoma; DCA, decision curve analysis; AUC, area under the curve.

dependent ROC curves showed the CAFGS nomogram 
had preferable predictive performance compared with the 
clinicopathological nomogram in both datasets of TCGA-

STAD and GSE62254 cohorts. The 5-year AUC of CAFGS 
nomogram reached 0.806 in the TCGA-STAD dataset, 
while the 5-year AUC of CAFGS nomogram was 0.781 in 
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the GSE62254 validation dataset (Figure 10E,10F).

Discussion 

CAFs have been shown to perform critical functions in 
tumor initiation, progression, and therapeutic resistance. 
Furthermore, they could promote immune evasion of 
cancer by interacting with cancer cells and immune cells 
in the TME (15). Recently, Herrera et al. [2021] developed 
a CAF-derived gene signature which contained 596 genes 
and showed great prognostic significance in colon cancer 
patients (5). GC, especially undifferentiated carcinoma of 
the stomach, often manifests massive fibrosis accompanied 
by increased infiltration of CAFs. Consequently, using 596 
CAF-associated genes identified by Herrera et al. [2021] (5), 
we established a CAF gene signature (CAFGS) to evaluate 
the prognosis of GC, and the results showed CAFGS had 
great value in prognosis evaluation of the disease. Moreover, 
CAFGS had a close relationship with immunotherapy 
efficacy and immune cell infiltration status in GC patients. 
These findings are essential as GC was usually associated 
with poor prognosis and invalid therapeutic response to 
immunotherapy.

In this study, 10 CAF-associated genes (ANGPTL4, 
CPNE8 ,  CST2 ,  HTR1F ,  IL1RAP ,  NR1D1 ,  NTAN1 , 
OLFML2B, TMEM259, VTN) were finally identified and 
used to establish a CAFGS. Among these biomarkers, 
VTN, ANGPTL4, and IL1RAP were most closely related to 
CAF. For instance, VTN is a protein-coding gene encoding 
vitronectin, which is an adhesive glycoprotein promoting 
cell adhesion in the extracellular matrix (ECM) through 
binding to different types of integrins (16). There is a close 
relationship between CAFs and VTN, as CAFs are involved 
in extracellular matrix remodeling as well and trigger 
invasion mainly via integrin. CAFs highly express VTN to 
shape the fibrotic TME (17). Moreover, serum VTN was 
reported to be diagnostic and a prognostic biomarker in 
breast cancer (18), melanoma (19), prostate cancer (20), 
and hepatitis B-related liver cancer (21). Overexpression of 
ANGPTL4 was correlated with poor prognosis of cancer 
patients also. In GC cells in virto, knockdown of ANGPTL4 
inhibits progression of the disease (22), suggesting CAF-
derived ANGPTL4 may play an oncogenic role in TME. 
Analogously, CAF was reported to secrete ANGPTL4, 
MMP13, and STC1, which could promote proliferation 
of breast cancer cells (23). In gallbladder cancer, the 
expression of ANGPTL4 was also upregulated in CAFs, 
and in the stroma of xenograft tumors in nude mice and 

in human gallbladder cancer, ANGPTL4 was significantly  
upregulated (24). In addition, IL1RAP was identified as 
a CAF-associated gene in our study. IL1RAP encodes an 
accessory protein for the IL-1 receptor complex, contributing 
to the activation of the IL-1 signaling pathway. The soluble 
form of IL1RAP could also be detected in serum (25). In GC, 
IL1RAP was shown to regulate inflammation and apoptosis, 
and its knockdown could inhibit tumor progression (26). 
IL1RAP and its ligand IL-33, were highly expressed in 
myofibroblasts in the pancreas (27). Moreover, IL1RAP is 
essential for the activation of T lymphocytes and mast cells 
induced by IL-33 (28), and could also upregulate CD47 to 
inhibit macrophage phagocytosis (29). Recently the potential 
role of IL1RAP on TME-related inflammatory factors in 
stomach carcinoma has been reported (26). It is interesting 
to note that VTN, ANGPTL4, and IL1RAP can be detected 
in serum, which lays the foundation for the development of 
tumor biomarkers in human peripheral blood.

As for the remaining genes, CST2 encodes a type 2 
cysteine protease inhibitor, which exists in various body 
fluids, especially saliva, tears, and semen. Existing research 
showed the expression of CST2 has a certain value for 
the diagnosis of prostate cancer, breast cancer, and GC 
(30,31). Another recent report has demonstrated that 
CST2 overexpression was closely connected with the cell 
proliferation and migration as well as TGF-β signalling 
pathway (32), which coincided with our GSEA results 
in three datasets (Figure 5A-5C). NR1D1 encodes a 
transcription factor that negatively regulates the expression 
of core clock proteins, which is associated with immune cell 
infiltration in stomach adenocarcinoma (33), and OLFML2B 
was reported to be correlated with poor prognosis of 
GC (32,34). However, the functions of the remaining 
four genes, CPNE8, HTR1F, NTAN1, and TMEM259, 
necessitate further study.

Our results showed CAFGS had excellent performance 
in prognosis evaluation of GC patients, and a high CAFGS 
score is characterized by activation of extracellular matrix 
remodeling. GSEA also confirmed that CAFGS is closely 
associated with activation of EMT and the TGF-β signaling 
pathway, which are both typical features of fibrogenesis (35).  
However, the most interesting finding of this study lies in 
the relationship between CAFGS and the immune evasion 
mechanism of GC. A previous study reported that CAFs 
could promote the immune evasion of cancer cells to 
influence immunotherapy efficacy (36), and in the present 
research, we explored the possibility that CAFGS might 
serve as a biomarker for immunotherapeutic responsiveness. 
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We hypothesized that patients with high CAFGS scores 
may have poor ICI therapy efficacy, and the reasons may 
lie in the immunosuppressive microenvironment shaped 
by CAFs. Results of ssGSEA showed macrophages, 
MDSCs, Tregs, and other immunosuppressive cells were 
considerably enriched in the high CAF infiltration group, 
which may interact with CAFs to regulate the TME. For 
example, in our study, we showed that CAFs were associated 
with macrophages in three datasets. Specifically, CAFs were 
positively correlated with M2, but not M1 macrophage 
infiltration in GC (37). Interestingly, macrophage co-
culture with GC cells converted M1 phenotype into M2 
phenotype, and the contribution of the M2 phenotype in 
tumor progression has been evidenced in clinical studies 
of intraperitoneal tumor-associated macrophage in GC 
patients with peritoneal dissemination (38). Furthermore, 
previous studies showed that CAFs could recruit 
macrophages into the TME and promote M2 polarization, 
and our study is consistent with previous studies (39). CAFs 
could secrete SDF-1, IL-6, IL-8, IL-10, and TGF-β to 
promote the differentiation of M2 macrophages, which in 
turn could accelerate tumor growth, angiogenesis, EMT, 
and immune evasion (40). Moreover, M2 macrophages can 
release TGF-β, which in turn promotes the formation and 
maintenance of CAFs (41). CAFs and M2 macrophages 
can also produce MMPs, TGF-β, cyclooxygenase-2, and 
IL-6 to create a tumor-promoting microenvironment (42). 
In addition, CAF associated genes identified by this study 
were involved in immune evasion. For example, ANGPTL4 
promotes the recruitment of Treg cell and M2 macrophage 
in the TME (43), and cancer cells could upregulate the 
expression of CD47 in the cell membrane via the IL1-RAP 
dependent pathway to avoid macrophage phagocytosis (29).  
Thus, we speculate that CAFs contribute to immune 
evasion and unfavorable prognosis of GC patients by 
creating an immunosuppressive microenvironment, which 
is partially dependent on these CAF-associated genes.

Although CAFGS could act as an effective predictive tool 
to evaluate the prognosis of GC patients, some questions 
remain. Firstly, the expression pattern and biological 
function of these CAF genes in the TME is still unclear, 
as is whether these genes are ubiquitously expressed in all 
types of cells in the TME or specifically expressed in CAFs. 
Also, are CAFs in different tumor types different? The 
question of how these genes regulate the biological function 
of CAFs is also unanswered. Understanding the underlying 
molecular and cellular mechanisms governing the dynamic 
interactions of cancer cells with their microenvironment 

can be used as a novel strategy to disrupt cancer cell 
interplay and contribute to the development of efficient 
and safe therapeutic strategies to fight cancer. Secondly, 
while we showed that high CAFGS score group had higher 
expression level of immune checkpoint genes, such as TIM-
3, CD276, and PD-L2, the classical immune checkpoint 
molecules, such as CTLA4, PD-1, and PD-L1, had no 
significant difference between high-risk and low-risk group. 
The underlying mechanism should be explored further. 
In addition, the relationship between 10 CAF genes and 
immune checkpoint molecules should be explored at the 
protein level. Finally, our study is a bioinformatic analysis 
based on three public datasets and one qPCR validation 
cohort. The real prognostic values of the CAFGS should be 
validated prospectively in independent and multicenter GC 
cohorts with larger sample sizes in the future. 

Conclusions

In conclusion, we used CAF-derived genes to establish a 
CAF gene signature, which shows great performance in the 
prognosis estimation of GC patients. CAF associated genes 
identified in this study could provide valuable insight and a 
useful resource for studying the role of CAFs and targeting 
therapy during cancer progression in GC. 
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Table S1 Clinical characteristics of patients from multiple cohorts

Characteristics TCGA-STAD (n=353) GSE62254 (n=300) GSE84437 (n=433) Xijing (n=48) Total (n=1,134)

Age, years

Mean±SD 65.51±10.62 61.94±11.36 60.06±11.58 58.79±8.62 62.19±11.36

Gender

Female 125 101 137 13 376

Male 228 199 296 35 758

T stage, n

T1 18 – 11 3 32

T2 61 186 38 4 289

T3 121 91 92 16 320

T4 153 21 292 25 491

N stage, n  

N0 106 38 80 20 244

N1 79 131 188 4 402

N2 75 80 132 10 297

N3 93 51 33 14 191

M stage, n

M0 330 273 – 48 651

M1 23 27 – – 50

TNM stage, n

I 46 30 – 4 80

II 111 97 – 19 227

III 172 96 – 25 293

IV 24 77 – – 101

Grade, n

G1 9 – – 2 11

G2 128 – – 33 161

G3 207 – – 11 218

Survival, n 

Alive 281 148 224 28 681

Dead 72 152 209 20 453

Lauren classification, n

Diffuse – 142 – – 142

Intestinal – 150 – – 150

Mixed – 8 – – 8

TCGA-STAD, The Cancer Genome Atlas Stomach Adenocarcinoma; TNM, Tumor Node Metastasis; SD, standard deviation.
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Table S2 Primer sequences of ten prognostic genes

Primer Forward sequence Reverse sequence

ANGPTL4 GATGGCTCAGTGGACTTCAACC TGCTATGCACCTTCTCCAGACC

CPNE8 GCAAAACTGCCTCCAGATGGAAG TCAGACTCCTGTAATAAGCCTCC

CST2 CCTACTCCCACCCCTTGTAGT GCAGCCTTCTCTGTCTTCTCCT

HTR1F TCTTGTGGCTGTCCTGGTGATG GCAGGTAATGTCAACACTCAGCC

IL1RAP CTGAGGATCTCAAGCGCAGCTA AGCAGGACTGTGGCTCCAAAAC

NR1D1 CTGCCAGCAATGTCGCTTCAAG TGGCTGCTCAACTGGTTGTTGG

NTAN1 CATTGTGACGGAACCGACACCA CTGTCGTCACTGAAGCCTCCAA

OLFML2B GAACCGAGATGAATAAGCGAGGC GGACACGGTTTCTTCCTGCAGA

TMEM259 TCACTACCGCTTCAATGGGCAG CTGAAGCAGCATCTCCTGGATG

VTN TGGCTGTCCTTGTTCTCCAGTG GTGTGCGAAGATTGACTCGGTAG
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Figure S1 Univariate COX regression in the TCGA-STAD dataset identified 43 genes correlated with OS. TCGA-STAD, 
The Cancer Genome Atlas Stomach Adenocarcinoma; OS, overall survival; CI, confidence interval.
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Figure S2 Estimation of CAF infiltration by CAFGS in GSE62254 and GSE84437 validation cohorts, respectively. (A,E) 
Spearman correlation analysis between CAFGS and classical CAF markers in GSE62254 and GSE84437 validation cohorts, 
respectively; (B,F) Spearman correlation analysis between CAFGS and CAF infiltration was estimated by EPIC in GSE62254 
and GSE84437 validation cohorts, respectively; (C,G) Spearman correlation analysis between CAFGS and CAF infiltration 
was estimated by xCell in GSE62254 and GSE84437 validation cohorts, respectively; (D,H) Spearman correlation analysis 
between CAFGS and CAF infiltration was estimated by MCPcounter in GSE62254 and GSE84437 validation cohorts, 
respectively. CAF, cancer-associated fibroblast; CAFGS, CAF gene signature.
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Figure S3 GO/KEGG enrichment analysis for DEGs between low- and high-risk groups in TCGA-STAD (A), GSE62254 (B), and 
GSE84437 (C) cohorts, respectively. GO, Gene Ontology; BP, Biological Process; MF, Molecular Function; CC, Cellular Component; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes; TCGA-STAD, The Cancer Genome Atlas 
Stomach Adenocarcinoma.
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Figure S4 Infiltration of immune cells in the GSE62254 validation cohort between low- and high-risk groups. ns, not statistically 
significant; *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001, red asterisks indicates the corresponding cells are enriched in the high-risk 
group, while blue asterisks indicates the corresponding cells are enriched in the low-risk group.
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Figure S5 Immune cell infiltration between the high-risk group and low-risk group in the GSE84437 validation cohort. ns, not statistically 
significant; *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001, red asterisks indicates the corresponding cells are enriched in the high-risk 
group, while blue asterisks indicates the corresponding cells are enriched in the low-risk group.
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Figure S6 Estimation of immune infiltration by TIMER and ESTIMATE. (A) Three datasets were analyzed for correlations between 
CAFGS score and major immune cells; (B-E) tumor purity, stromal, immune, and ESTIMATE scores of two groups in the TCGA-
STAD dataset; (F-I) tumor purity, stromal, immune, and ESTIMATE scores of two groups in the GSE62254 dataset; (J-M) tumor purity, 
stromal, immune, and ESTIMATE scores of two groups in the GSE84437 dataset. TCGA-STAD, The Cancer Genome Atlas Stomach 
Adenocarcinoma; CAFGS, cancer-associated fibroblast gene signature.
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Figure S7 Construction of nomograms in the GSE62254 validation cohort. (A) Univariate and multivariate COX regression; (B) CAFGS 
nomogram; (C) clinicopathological nomogram. CAFGS, cancer-associated fibroblast gene signature; CI, confidence interval.
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