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The m6A methyltransferase WTAP plays a key role in the 
development of diffuse large B-cell lymphoma via regulating the 
m6A modification of catenin beta 1
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Background: Diffuse large B-cell lymphoma (DLBCL) is the most frequently occurring subtype of 
lymphoma. Unfortunately, the fundamental processes underlying the pathogenesis of DLBCL remain 
little understood. N6-methyladenosine (m6A) methylation has been shown to be the most common internal 
alteration of mRNAs found in eukaryotes, and it is thought to play a key role in cancer pathogenesis. 
However, the precise relationship between m6A mRNA methylation and DLBCL pathogenesis remains to be 
fully elucidated.
Methods: The mRNA and protein expression of Wilms tumor 1-associating protein (WTAP) were 
determined using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis 
in lymphoma cells lines. The effects of WTAP expression on human lymphoma cells lines were assessed 
using cell proliferation assays, colony formation assays, and CCK8 assays. The Gene Expression Profiling 
Interactive Analysis (GEPIA) database was used to screen candidate gene targets of WTAP. Finally, the 
regulatory mechanisms of WTAP in DLBCL were investigated using methylated RNA immunoprecipitation 
(MeRIP) assays.
Results: This study investigated the precise function of WTAP in DLBCL formation. The results 
demonstrated that the levels of m6A RNA methylation and WTAP expression were both elevated in 
DLBCL cell lines and tissues. Downregulation of WTAP expression in DLBCL cells caused a reduction in 
cell growth in a functional sense. WTAP knockdown reduced catenin beta 1 (CTNNB1) m6A methylation 
and CTNNB1 total mRNA levels. Furthermore, CTNNB1 overexpression eliminated the WTAP-induced 
reduction of cell growth in DLBCL cells. 
Conclusions: In conclusion, these findings demonstrated that WTAP promotes DLBCL development via 
modulation of m6A methylation in CTNNB1.
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Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most 
prevalent lymphoma subtype, accounting for 30–40% of all 
adult non-Hodgkin lymphoma cases (1). Only about 50% 
of patients are cured with front line therapy with rituximab 
based therapy (2,3), due to the high number of refractory 
cases further develop of novel markers and therapeutics are 
needed to improve outcomes in DLBCL. A comprehensive 
understanding of the processes involved in DLBCL 
formation and progression is crucial for the development of 
novel therapeutic agents in the treatment of DLBCL.

The most common internal alteration of eukaryotic 
mRNAs is N6-methyladenosine (m6A) methylation (4-6). m6A 
methylation occurs via a methyltransferase complex consisting 
of methyltransferase-like3 (METTL3), methyltransferase-
like 14 (METTL14), and associated proteins, such as Wilms 
tumor 1-associating protein (WTAP) (7-12). Removal of this 
alteration can be brought about by m6A demethylases, such 
as alkylation repair homolog protein 5 (ALKBH5) or fat mass 
and obesity-associated protein (FTO) (13,14). Coordinated 
control of the demethylases or m6A methyltransferases in 
mammalian cells is required to maintain this reversible 
and dynamic RNA modification. Interestingly, WTAP has 
been shown to play a role in the pathogenesis of a variety 
of illnesses, including cancers (15-18). Many transcriptional 
regulators have been demonstrated to control the transcription 
of  CTNNB1 ,  which is a key regulator of the Wnt/
β-catenin signaling pathway in DLBCL development (19).  
Nevertheless, the relevance of WTAP induced CTNNB1 
N6-methyladenosine modfication in DLBCL development 
and the regulatory mechanisms involved remain not fully 
elucidated. The purpose of this study is to explore expression 
and mechanism of WTAP in DLBCL. We present the 
following article in accordance with the MDAR reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-3027/rc).

Methods

Tissue specimens

A total of 38 clinical specimens, including 19 inflammatory 
lymph glands and 19 resected DLBCL lymph glands, were 
obtained from The First Affiliated Hospital, and College 
of Clinical Medicine of Henan University of Science 
and Technology between 2016 and 2020. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The study was approved by committee 

board of The First Affiliated Hospital, and College of 
Clinical Medicine of Henan University of Science and 
Technology (No. 2022-03-B060). Informed consent was 
taken from all the patients.

Quantitative real-time polymerase chain reaction  
(qRT-PCR)

Total RNA was extracted from cell lines or sample tissues 
using TRIzol reagent, and cDNA was synthesized using the 
One-Step RT-PCR Kit (Thermo Fisher Scientific). ACTIN 
was used as an internal reference control. Primers were as 
follows: 

CTNNB1 forward, 5'-TCAGGCGTCTGTAGAGGCTT-3', 
and reverse, 5'-ATGCACATCCTTCGATAAGACTG-3'; WTAP 
forward, 5'-GACGCCATCAACACCGAGTT-3', and reverse, 
5'-CTTTGTCGTTGGTTAGCTGGT-3'; 

ACTIN forward, 5'-TGTGGGCATCAATGGATTTGG-3', 
and reverse, 5'-ACACCATGTATTCCGGGTCAAT-3'.

Western blot

Western blot analysis was conducted as described  
previously (20). Primary antibodies were listed as below: 
WTAP (ABCAM:80233, USA, 1:1,000, anti-rabbit), 
ACTIN (ABCAM:82433, USA, 1:10,000, anti-rabbit), 
CTNNB1 (ABCAM:80931, USA, 1:1,000, anti-rabbit). 
ACTIN was used as a protein loading control. 

Cell culture

The human DLBCL cell lines Farage, OCILy10, SU-
DHL4, HBL1, and U293, as well as the human B 
lymphocyte cell line GM12878 were obtained from the 
American Type Culture Collection (ATCC). Under normal 
conditions, cells were cultured with Dulbecco’s Modified 
Eagle Medium (DMEM) supplemented with 1% penicillin/
streptomycin and 10% fetal bovine serum (FBS).

Cell proliferation assay

Cell proliferation was assessed using the Cell Counting 
Kit-8 (CCK-8; Beyotime, Shanghai, China) as described 
previously (21). 

Lentivirus production and transfection

The short hairpin (sh) RNA lentiviral expression plasmid 

https://atm.amegroups.com/article/view/10.21037/atm-22-3027/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-3027/rc
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targeting WTAP and the human CTNNB1  cDNA 
lentivirus (LV-CTNNB1) were obtained from Shanghai 
Genelily BioTech Co., Ltd. Cells were transfected with 
Lipofectamine 3000 (Invitrogen) for 48 hours according 
to the manufacturer’s instructions. The transfection 
efficiency was evaluated using RT-qPCR. The 5'-
3' sequences of shRNA were as follows: shRNA-NC: 
5'-CGGGUAGAGAGGGCAGUGGGAGG-3': shRNA-
WTAP: 5'-AGUGGUGGAAGAGGUGGGUCG-3'.

Quantification of m6A

The degree of m6A methylation in the total RNA extracted 
from cells or tissue was determined using the Abcam m6A 
RNA Methylation Assay Kit (15). A microplate reader was 
used to assess the absorbance at 450 nm.

Methylated m6A RNA immunoprecipitation (Me-RIP) 
assay

The Me-RIP analysis was performed as previously 
described (15). 

RNA stability assay

The stability of the CTNNB1 transcripts was determine as 
previously described (22) using qRT-PCR.

Statistics

All data are presented as mean ± standard deviations (SD). 
The unpaired two-tailed Student’s t-test was used to 
compare groups. Analysis of variance (ANOVA) or repeated 
ANOVA was used for multiple comparisons using the 
GraphPad Prism R version 6.0 software. A Bonferroni post 
hoc test was subsequently conducted. A P value <0.05 was 
considered statistically significant.

Results

The levels of m6A RNA methylation and WTAP expression 
are elevated in DLBCL

To determine the role of m6A modification in the 
pathogenesis of DLBCL, 19 inflammatory lymph glands and 
19 DLBCL tissues were collected and the bulk m6A RNA 
methylation was examined. The m6A levels were significantly 
higher in DLBCL tissues compared to control inflammatory 

lymph glands (Figure 1A). Similarly, DLBCL cell lines 
including SU-DHL4, OCILy10, Farage, U2932, and HBL1 
also showed elevated levels of m6A compared to the human 
B lymphocyte cell line GM12878 (Figure 1B). qRT-PCR 
experiments demonstrated that WTAP mRNA levels were 
increased in DLBCL tissues compared to inflammatory 
lymph gland tissues (Figure 1C). These results were further 
supported by data collected from the Gene Expression 
Profiling Interactive Analysis (GEPIA) database (Figure 1D).  
Furthermore, enhanced WTAP protein expression in 
DLBCL tissues was confirmed by Western blot analysis 
(Figure 1E). In addition, upregulation of WTAP mRNA 
levels was observed in DLBCL cell lines (Figure 1F). These 
findings suggested that WTAP, through modulating m6A 
methylation, may function as a pro-tumor gene implicated 
in DLBCL pathogenesis.

Silencing WTAP expression inhibited the proliferation of 
DLBCL cells

A lentivirus-mediated shRNA was used to knock down 
WTAP expression in the DLBCL cell lines SU-DHL4 and 
HBL1. qRT-PCR and Western blot analysis demonstrated 
that the expression of WTAP was suppressed in sh-WTAP 
transfected cells, suggesting good transfection efficiency 
(Figure 2A,2B). CCK-8 assays showed that the proliferation 
capacity of DLBCL cells was inhibited when WTAP 
expression was suppressed (Figure 2C). Furthermore, 
the colony-forming ability of WTAP-silenced cells was 
lower than that of control cells (Figure 2D). These results 
suggested that WTAP knockdown inhibited DLBCL cell 
growth in vitro.

WTAP knockdown impeded CTNNB1 expression and m6A 
methylation of CTNNB1 mRNA

The role of CTNNB1 ,  an upstream Wnt pathway 
component, in WTAP-mediated DLBCL cell proliferation 
was examined. Data from the GEPIA database showed that 
CTNNB1 was positively linked with WTAP in a variety 
of malignancies, including DLBCL tissues (Figure 3A).  
While CTNNB1 mRNA expression was significantly 
elevated in DLBCL tissues, there was a positive association 
between WTAP levels  and upregulated CTNNB1 
expression in DLBCL tissues (Figure 3B). To determine 
whether WTAP is involved in the regulation of CTNNB1 
expression in DLBCL cells, HBL1 and SU-DHL4 
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cells were transfected with sh-WTAP. Silencing WTAP 
resulted in lower CTNNB1 mRNA and protein expression  
(Figure 3C,3D). Furthermore, silencing WTAP decreased 
m6A methylation in CTNNB1 mRNAs (Figure 3E). RNA 
stability tests were performed to determine if reduced 
m6A methylation impacted CTNNB1 mRNA stability in 
cells. CTNNB1 gene transcripts had a shorter half-life in 
HBL1 and SU-DHL4 cells transfected with sh-WTAP  
(Figure 3F). Together, these results suggested that the 
reduced CTNNB1 expression induced by silencing WTAP 
may be mediated, in part, by decreased mRNA stability 
associated with altered m6A methylation levels. Therefore, 
we hypothesized that WTAP silencing in DLBCL cells 
reduces CTNNB1 expression via modulation of mRNA 
methylation (m6A).

WTAP knockdown inhibited DLBCL cell proliferation, 
while CTNNB1 overexpression ameliorated this effect

To investigation whether CTNNB1 is involved in the 
inhibition of DLBCL cell growth caused by WTAP 
knockdown, SU-DHL4 and HBL1 cells were transfected 
with a negative control (NC) plasmid, the sh-WTAP 
plasmid, LV-CTNNB1 plasmid, or the sh-WTAP + LV-
CTNNB1 plasmids. The expression of CTNNB1 in the 
transfected cells was assessed by Western blot and qRT-
PCR (Figure 4A,4B). CTNNB1 overexpression significantly 
reduced the effect of WTAP silencing on proliferation and 
colony formation in DLBCL cells (Figure 4C,4D). This 
suggested that CTNNB1 overexpression eliminated the 
inhibitory impact of WTAP knockdown on DLBCL cell 
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Figure 1 m6A RNA methylation and WTAP expression were elevated in DLBCL. (A) The bulk m6A RNA methylation in 19 inflammatory 
lymph glands and 19 DLBCL tissues. *P<0.05. (B) The bulk m6A RNA methylation in DLBCL cell lines and GM12878. *P<0.05. (C) 
qRT-PCR was used to examine WTAP mRNA expression in 18 inflammatory lymph nodes and 18 DLBCL tissues. *P<0.05. (D) WTAP 
expression in DLBCL tissues and normal counterparts in the GEPIA database *P<0.05. (E) Western blot was used to examine WTAP 
protein expression in 5 DLBCL tissues and 5 inflammatory lymph nodes. (F) The mRNA expression of WTAP in DLBCL cell lines and 
GM12878 was investigated using qRT-PCR. *P<0.05. WTAP, Wilms tumor 1-associating protein; DLBCL, diffuse large B-cell lymphoma; 
qRT-PCR, quantitative real-time polymerase chain reaction; TPM, transcript per million; T, tumor; N, normal.
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Figure 2 WTAP knockdown prevented DLBCL cell proliferation. The efficiency of WTAP silencing in SU-DHL4 and HBL1 cells were 
assess by (A) qRT-PCR and (B) Western blot *P<0.05. (C) The CCK-8 assay was used to assess the viability of DLBCL cells. *P<0.05. (D) 
Colony formation assays (0.1% crystal violet, magnification ×1). *P<0.05. WTAP, Wilms tumor 1-associating protein; DLBCL, diffuse large 
B-cell lymphoma; qRT-PCR, quantitative real-time polymerase chain reaction; CCK-8, Cell Counting Kit 8; sh, short hairpin; NC, negative 
control; LV, lentivirus.
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activity.

Discussion

To the best of our knowledge, this study is the first to 
demonstrate the functional involvement of WTAP and 
m6A RNA alteration on the development of DLBCL. 
The bulk m6A RNA methylation and WTAP expression 
was significantly higher in DLBCL cell lines and tissues 
compared to B lymphocytes and control inflammatory 
lymph glands, respectively. m6A methylation is a chemical 
change in mRNAs that has been shown to play a key role in 
cancer formation and WTAP gene mutations have also been 
linked to a variety of malignancies. Functional tests revealed 
that silencing WTAP inhibited the growth of DLBCL cells. 
These data suggested that WTAP acts as an oncogene in 
the development of DLBCL, possibly through regulation of 

mRNA methylation.
Abnormal  l eve l s  o f  Wnt  s igna l ing  have  been 

implicated in the development of DLBCL (23-26). Many 
transcriptional regulators have been demonstrated to 
control the transcription of CTNNB1, which is a key 
regulator of the Wnt/β-catenin signaling pathway (27-30).  
Previous study indicated that m6A mRNA methylation 
regulates CTNNB1 to promote the proliferation of 
hepatoblastoma (31). The results of this investigation lead 
us to believe that elevated m6A levels in CTNNB1 mRNAs 
might have potential involvement in WTAP-controlled 
DLBCL cell proliferation regulation, more research into 
the regulatory significance of the WTAP/CTNNB1 axis 
in DLBCL formation is needed. This study confirmed 
that WTAP-mediated RNA m6A methylation is required 
in DLBCL. Therefore, future studies will explore specific 
WTAP inhibitors for the clinical treatment of DLBCL.

Figure 3 WTAP silencing reduced CTNNB1 expression and m6A methylation in CTNNB1 mRNAs. (A) The GEPIA database was used to 
determine CTNNB1 expression in DLBCL tissues and to determine the association between WTAP expression and CTNNB1 expression 
in DLBCL tissues. (B) qRT-PCR was used to assess the mRNA expression of CTNNB1 in 19 DLBCL tissues and 19 inflammatory lymph 
gland specimens. *P<0.05. Linear regression analysis revealed a favorable connection between WTAP and CTNNB1 mRNA expression. 
(C) qRT-PCR and (D) Western blot analysis were performed to analyze the mRNA and protein expression of CTNNB1 in SU-DHL4 and 
HBL1 cells transfected with sh-WTAP. *P<0.05. (E) The Me-RIP assay was used to detect m6A methylation in CTNNB1 transcripts in SU-
DHL4 and HBL1 cells transfected with sh-WTAP. *P<0.05. (F) The half-life (T1/2) of CTNNB1 mRNA transcripts in HBL1 and SU-DHL4 
cells transfected with sh-WTAP. *P<0.05. GEPIA, Gene Expression Profiling Interactive Analysis; WTAP, Wilms tumor 1-associating 
protein; DLBCL, diffuse large B-cell lymphoma; CTNNB1, catenin beta 1; qRT-PCR, quantitative real-time polymerase chain reaction; sh, 
short hairpin; NC, negative control; Me-RIP, methylated m6A RNA immunoprecipitation.
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In conclusion, our findings indicated that the m6A 
methyltransferase WTAP is involved in the regulation of 
m6A modifications in CTNNB1 mRNAs, thereby, regulating 
DLBCL cell growth. Indeed, the WTAP/CTNNB1 axis 
may be a potential therapeutic target for the treatment of 
DLBCL.
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Figure 4 WTAP knockdown inhibited DLBCL cell growth, and this effect was reversed by overexpression of CTNNB1. (A) qRT-PCR and 
(B) Western blot analyses were used to assess CTNNB1 expression at the mRNA and protein levels, respectively. (C) CCK8 and (D) colony 
formation assays were used to determine the viability and apoptosis rate in SU-DHL4 and HBL1 cells (0.1% crystal violet, magnification 
×1). Cells were transfected with Lv-NC, Lv-shWTAP, Lv-CTNNB1, or Lv-shWTAP + Lv-CTNNB1. *P<0.05 vs. the control groups. 
WTAP, Wilms tumor 1-associating protein; DLBCL, diffuse large B-cell lymphoma; CTNNB1, catenin beta 1; qRT-PCR, quantitative real-
time polymerase chain reaction; CCK-8, Cell Counting Kit 8; sh, short hairpin; NC, negative control; LV, lentivirus.
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