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Background: The epigenetic regulators of cellular senescence, especially long non-coding RNAs 
(lncRNAs), remain unclear. The expression levels of lncRNA were previously known to be prognostic 
indicators for tumors. We hypothesized that lncRNAs regulating cellular senescence could also predict 
prognosis in patients with hepatocellular carcinoma (HCC) and developed a novel lncRNA predictive 
signature.
Methods: Using RNA sequencing data from The Cancer Genome Atlas Liver Hepatocellular Carcinoma 
(TCGA-LIHC) database, a co-expression network of senescence-related messenger RNAs (mRNAs) and 
lncRNAs was constructed. Using univariate Cox regression analysis and a stepwise multiple Cox regression 
analysis, we constructed a prognostic HCC senescence-related lncRNA signature (HCCSenLncSig). 
Kaplan-Meier analysis was used to compare the overall survival (OS) of high- and low-risk groups stratified 
by the HCCSenLncSig. Furthermore, the HCCSenLncSig risk score and other clinical characteristics were 
included to develop an HCC prognostic nomogram. The accuracy of the model was evaluated by the time 
dependent receiver operating characteristic (ROC) and calibration curves, respectively.
Results: We obtained a prognostic risk model consisting of 8 senescence-related lncRNAs: AL117336.3, 
AC103760.1, FOXD2-AS1, AC009283.1, AC026401.3, AC021491.4, AC124067.4, and RHPN1-AS1. 
The HCCSenLncSig high-risk group was associated with poor OS [hazard ratio (HR) =1.125, 95% 
confidence interval (CI): 1.082–1.169; P<0.001]. The accuracy of the model was further supported by 
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Introduction

With a 5-year survival rate of only 18%, liver cancer is 
the second most lethal tumor after pancreatic cancer (1). 
Hepatocellular carcinoma (HCC) accounts for between 
85% and 90% of primary liver cancers (2). Surgery, surgical 
ablation, and orthotopic liver transplantation are the most 
popular locoregional treatment options for HCC (3). 
Despite the approval of several tyrosine kinase inhibitors 
(TKIs) for first- and second-line systemic treatment, the 
overall survival (OS) of advanced HCC is poor and has not 
improved in the last decade (4). More recently, the FDA 
approved immune checkpoint inhibitors (ICIs) for HCC 
treatment. Unfortunately, even with the combination of 
anti-CTLA-4 and anti-PD-L1, the objective response rate 
(ORR) was only 20.1% (5). Due to the lack of appropriate 
patient-selective biomarkers, most HCC patients do not 
respond to ICI therapies (6). Therefore, new effective 
biomarkers must be developed in order to improve patient 
outcomes.

The known traditional biomarkers of HCC, such as 
Alpha-fetoprotein (AFP), Glypican-3, Osteopontin and 
Des-γ-Carboxy Prothrombin, despite common use, are 
characterized by poor sensitivity and specificity (7,8). It 
is now believed that abnormal miRNA and long non-
coding RNAs (lncRNAs) expression plays an important 
role in the oncogenic role of HCC (9,10). For example, 
miR-224 concentrations are higher in the serum of HCC 
patients, and the higher the concentration, the shorter the 

survival time (11). A high level of LINC00958 aggravated 
HCC lipogenesis and progression through sponging miR-
3619-5p, further upregulating the hepatoma-derived 
growth factor expression (12). Although several lncRNA 
prognostic models for HCC have been developed (13-18), 
the potential immune microenvironment predictive ability 
and therapeutic guidance of the models, especially for 
immunotherapy, have yet to be evaluated. 

Cellular senescence is a protective mechanism of tissue 
homeostasis that has long been thought to be a cancer-
preventive factor (19). It results in irreversible inhibition of 
proliferation, which, as a supplement to programmed cell 
death, inactivates cells and eventually eliminates diseased or 
defective cells (20). However, there is growing evidence that 
most senescent cells in the tumor microenvironment (TME), 
regardless of cell origin, participate in the shaping of cancer 
phenotypes through the so-called senescence-associated 
secretory phenotype (SASP) (21). The first evidence that 
the SASP promotes the proliferation of cancer cells came 
from studying co-cultures of preneoplastic epithelial cell 
lines with senescent WI-38 lung fibroblasts. When cultured 
together in vitro, the proliferation rate of preneoplastic 
epithelial cells was quicker than co-cultures with non-
senescent fibroblasts (22). Co-injection of breast cancer 
cells with senescent fibroblasts in nude mice also results in 
faster-growing tumors (23). Interleukin (IL)-6 is a known 
SASP factor that binds to the IL-6 receptor of cancer cells 
through senescence-related paracrine effects and then 
activates STAT3, which transcribes oncogenes including the 

ROC curves (the area under the curve is 0.783, sensitivity of 0.600, and specificity of 0.896 at the cut-off 
value of 1.447). The HCCSenLncSig was found to be an independent prognostic factor from other clinical 
factors in both univariate and multivariate Cox regression analyses. The prognostic nomogram shows 
HCCSenLncSig has a good prognostic effect for survival risk stratification. Finally, we found that a higher 
number of immunosuppressed Treg cells infiltrate in high-risk patients (P<0.001 compared to low-risk 
patients), possibly explaining why these patients have a poor prognosis. On the other hand, the expression 
of immunotherapy markers, such as CD276, PDCD1, and CTLA4, was also up-regulated in the high-risk 
patients, indicating potential immunotherapy response in these patients.
Conclusions: The development of HCCSenLncSig allows us to better predict HCC patients’ survival 
outcomes and disease risk, as well as contribute to the development of novel HCC anti-cancer therapeutic 
strategies.
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complex of CyclinD1 and mammalian target of rapamycin 
(mTOR) protein (21,24). Thus, with the increasing 
understanding of cellular senescence, it has recently been 
included as a significant hallmark of cancer (20). To date, 
however, there is a general lack of understanding of the 
underlying roles and mechanisms of genes involved in the 
senescence regulatory network of the TME of HCC.

LncRNAs participate in a variety of biological processes, 
and accumulating evidence indicates that various HCC-
related lncRNAs are abnormally expressed in tumor tissues 
and participate in cancer phenotypes by binding to DNA, 
RNA, or proteins or by encoding small peptides (25).  
Similarly, lncRNAs are also significantly involved in 
regulatory processes in senescent cells (26). A recent 
transcriptional sequence study showed that lncRNA 
PURPL is one of the most abundant transcripts of lncRNA 
in senescent cells induced by radiation or drug therapy. 
PURPL reduces the stability of p53 by competitively 
binding to MYBBP1A with p53, thus maintaining a low 
concentration of intracellular p53 (27). Since PURPL 
promotes the tumorigenesis of colon cancer cells by 
negatively regulating p53 as a survival factor, it may also 
contribute to the survival phenotype of senescent cells (26). 
In addition, short peptide PINT87aa, which is encoded by 
LINC-PINT, was demonstrated to mediate cell cycle arrest, 
cellular senescence, and mitophagy in HCC cells (28). In 
view of this, identifying lncRNA transcriptional changes 
helps to define senescence and cancer characteristics.

Herein,  we constructed and val idated an HCC 
senescence-related lncRNA signature (HCCSenLncSig) 
and demonstrated that it can predict the prognosis of 
HCC patients. In addition, we developed a nomogram 
that included HCCSenLncSig and clinical factors and 
further compared gene enrichment, mutations, immune 
cell infiltration, and potential response to targeted therapy 
and immunotherapy in the HCCSenLncSig high- and low-
risk  groups. The present study highlights the regulatory 
network of cellular senescence, which is expected to 
improve the efficacy of individualized treatment for HCC. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-3348/rc).

Methods

Dataset and sample extraction

Figure 1 depicts the flow chart of the present study. RNA-

sequencing data (RNA-seq), clinical characteristics, and 
mutation data of HCC were obtained from The Cancer 
Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-
LIHC) database (https://portal.gdc.cancer.gov/). Patients 
lacking complete follow-up information, surviving less than 
30 days, or lacking complete clinicopathological information 
will be excluded. The 279 cellular senescence genes 
were obtained from the online database CellAge (http://
genomics.senescence.info/cells), which was developed 
after scouring the literature for gene manipulation 
experiments that caused cells to induce or inhibit cellular  
senescence (29). The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). 

Cellular senescence genes with differential expression in 
HCC and normal tissues

The differentially expressed genes (DEGs) involved in 
cellular senescence between tumor and normal tissues were 
identified with a log2 fold change absolute value greater than 
1 and a false discovery rate (FDR) of <0.05. The R package 
“limma” was used to visualize the DEGs. The DEGs 
were then analyzed by Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and Gene Ontology (GO) enrichment 
analysis.

Identifying an HCCSenLncSig 

The absolute values of Pearson correlation coefficient >0.3 
and P<0.001 were used as thresholds in the establishment 
of a senescence-related messenger RNA (mRNA)-lncRNA 
co-expression network to identify the senescence-related 
lncRNAs. The lncRNA-mRNA co-expression network 
was visualized using a Sankey diagram generated by the 
R package “ggalluvial” and Cytoscape software (version 
3.7.2). We first used univariate Cox regression analysis 
to identify lncRNAs associated with HCC prognosis, 
and then included them in multivariate Cox regression 
analysis to calculate risk scores. The risk score of each 
patient was calculated by the following formula: risk score 
= explncRNA1 × coef lncRNA1 + explncRNA2 × coef 
lncRNA2 + ... + explncRNAi × coef lncRNAi. Then, HCC 
patients were classified into high- and low-risk groups based 
on median risk scores. We termed this lncRNA predictive 
signature HCCSenLncSig. To determine whether the 
HCCSenLncSig risk score is an independent prognostic 
indicator, demographic data were included in the univariate 
and multivariate Cox regression analyses. The risk score 

https://atm.amegroups.com/article/view/10.21037/atm-22-3348/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-3348/rc
http://genomics.senescence.info/cells
http://genomics.senescence.info/cells
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level was used to investigate the distribution of survival 
status. The receiver operating characteristic (ROC) curve 
was used to assess the accuracy of the risk model. To 
visualize clinicopathological variables in high- and low-
risk groups, the R package “pheatmap” was used. The 
distribution of patients with varying risk scores was assessed 
using principal component analysis (PCA), which was then 
visualized using the R package “scatterplot3d.” To test 
whether HCCSenLncSig is generally applicable to predict 
the prognosis of HCC, we randomly divided TCGA-LIHC 
patients into 2 cohorts and repeated the grouping 1,000 
times, and randomly selected 1 of the cohorts for internal 
validation. The K-M curves and time-dependent ROC 
curves of the two internal validation sets grouped according 
to the HCCSenLncSig median risk score were tested.

Construction of the nomogram

By combining risk scores with clinicopathological features, 
we constructed a nomogram using the R package “rms” 
that predicts HCC patients’ survival at 1, 3, and 5 years. 

A calibration curve was used to determine whether the 
predicted survival rate matched the actual survival rate. 

Functional enrichment analysis of the senescence-related 
lncRNA predictive signature

According to the prognostic model, gene set enrichment 
analysis (GSEA) was performed for the high- and low-
risk groups. Significant biological processes and pathways 
were enriched when the nominal (NOM) P<0.05 and 
FDR q<0.25 were used. The reference files from the 
Molecular Signatures Database (MSigDB) were c2.cp.
kegg.v7.4.symbols.gmt and c5.go.v7.4 symbols.gmt (http://
software.broadinstitute.org/gsea/msigdb/index.jsp). The 
“ggplot2” R package was used to visualize the results.

Analysis of somatic mutation data and tumor mutation 
burden (TMB)

The TMB was calculated as the number of somatic, coding, 
base replacement, and insert-deletion mutations discovered 

Figure 1 Flowchart of the present study. TCGA, The Cancer Genome Atlas; RNA-seq, RNA sequencing; HCC, hepatocellular carcinoma; 
DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; lncRNAs, long non-
coding RNAs; HCCSenLncSig, hepatocellular carcinoma senescence-related lncRNA predictive signature; ROC, receiver operating 
characteristic; TMB, tumor mutation burden.
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per megabase of the genome using non-synonymous and 
code-shifting indels and a 5% detection limit. The R 
package “maftools” (30) was used to count the number of 
somatic non-synonymous point mutations in each sample. 
In addition, TMB was compared between high- and low-
risk  groups, and survival curves for TMB and risk score 
integration were plotted. 

Estimation of immune cell infiltration

Single-sample gene set enrichment analysis (ssGSEA) 
was performed using the R package “GSVA” to assess the 
infiltration fraction of 16 immune cells and the activity of 13 
immune-related pathways (31). In order to cross-reference 
to the ssGSEA results, the CIBERSORT algorithm (32) 
was used to estimate the infiltration proportions of 22 
immune cell types in HCC samples. We retained samples 
with P<0.05 for further investigation. To determine 
whether there was a significant difference in the proportion 
of immune cells between the low- and high-risk groups, the 
Wilcoxon rank-sum test was used.

Potential relationship between the HCCSenLncSig and 
immunotherapy, chemotherapy, and targeted therapy

First, the differential expression of 40 immune checkpoints 
was compared between high- and low-risk HCCSenLncSig 
groups. The tumor immune dysfunction and exclusion 
module (TIDE, http://tide.dfci.harvard.edu/), which 
predicts treatment responses to anti-PD1 and anti-CTLA4 
therapies based on pretreatment transcript expression 
profiles, was then used to distinguish between the potential 
treatment responses of high- and low-risk groups. In 
addition, to further assess the role of the HCCSenLncSig 
in predicting response to HCC treatment, we calculated 
the half-maximal inhibitory concentration (IC50) of 
chemotherapy and targeted therapy drugs commonly used 
in clinical HCC treatment. The Wilcoxon signed-rank test 
and the R package “pRRophetic” were used to compare the 
IC50 values between the high- and low-risk groups.

Statistical analysis

To compare the levels of expression of cell senescence-
related DEGs in cancer and normal tissues, the Wilcoxon 
test was used. The Kaplan-Meier method and log-rank 
test were used to compare the OS between patients in the 
high- and low-risk groups. The “survivalROC” package 

was used to develop the 5 years’ time-dependent ROC 
curves, calculate the area under the curve (AUC), and 
determine the sensitivity and specificity of the model at 
the optimal cut-off value. The model is considered to have 
good performance when the AUC value is greater than 
0.7. To compare differences between groups, the Kruskal-
Wallis test was used. Clinical data was analyzed using the 
chi-squared test or Fisher’s exact test. The relationships 
between lncRNA expression, immune infiltration, and 
immune checkpoint gene expression were assessed using 
Spearman or Pearson correlation coefficients. All statistical 
analyses were performed using R software (version 4.1.2), 
and a corrected P value of less than 0.05 was considered 
statistically significant.

Results

Enrichment analysis of senescence-related DEGs in HCC

There were 424 HCC patients in total. After excluding 
those who lacked complete follow-up information, survived 
less than 30 days, or lacked complete clinicopathological 
data, 343 patients were eventually recruited for follow-
up analysis. To determine whether the senescence-related 
genes are abnormally expressed in tumor tissues, we first 
compared the expression levels of 279 genes from the 
CellAge database between HCC tumor and normal tissues 
(available in https://cdn.amegroups.cn/static/public/atm-
22-3348-1.xlsx). A total of 71 DEGs were obtained, of 
which 27 were down-regulated and 44 were up-regulated 
in HCC tumor tissues (Figure 2A,2B, available in https://
cdn.amegroups.cn/static/public/atm-22-3348-2.xlsx). 
KEGG pathway analysis revealed that the 5 most enriched 
pathways were cellular senescence, human T-cell leukemia 
virus 1 infection, bladder cancer, endocrine resistance, and 
hepatitis B (Figure 2C). On the other hand, GO analysis 
revealed that the 5 most enriched categories were cell aging, 
aging, cellular response to chemical stress, epithelial cell 
proliferation, and regulation of DNA-binding transcription 
factor activity (Figure 2D). These findings suggested 
that the DEGs are primarily involved in cell senescence, 
tumorigenesis, cell proliferation, stress, and transcriptional 
activation.

Construction of the HCCSenLncSig

Pearson correlation analysis was used to identify 734 
senescence-related lncRNAs (available in https://cdn.

https://cdn.amegroups.cn/static/public/atm-22-3348-1.xlsx
https://cdn.amegroups.cn/static/public/atm-22-3348-1.xlsx
https://cdn.amegroups.cn/static/public/atm-22-3348-2.xlsx
https://cdn.amegroups.cn/static/public/atm-22-3348-2.xlsx
https://cdn.amegroups.cn/static/public/atm-22-3348-3.xlsx
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Figure 2 Identification of senescence-related DEGs. (A) Heatmap of 71 senescence-related DEGs in normal and tumor HCC tissues. (B) 
Volcano plot of 279 senescence-related genes in normal and HCC tumor tissues. Pink dots represent genes that are up-regulated, while 
blue dots represent genes that are down-regulated. (C) KEGG analysis of senescence-related DEGs. (D) GO analysis of senescence-related 
DEGs. N, normal tissues; T, tumor tissues; FDR, false discovery rate; FC, fold change; PD-L1, programmed cell death ligand-1; PD-1, 
programmed cell death-1; BP, biological process; CC, cellular components; MF, molecular function; DEGs, differentially expressed genes; 
HCC, hepatocellular carcinoma; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology. 
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amegroups.cn/static/public/atm-22-3348-3.xlsx). Univariate 
Cox regression analysis revealed that 54 lncRNAs were 
associated with the prognosis of HCC (Figure 3A). Using 
multivariate Cox regression analysis, 8 senescence-related 
lncRNAs (AL117336.3, AC103760.1, FOXD2-AS1, 
AC009283.1, AC026401.3, AC021491.4, AC124067.4, and 
RHPN1-AS1) were identified to form the HCCSenLncSig 
predictive signature. A heatmap of the expression levels 
of these HCCSenLncSig lncRNAs in individual HCC 
patients is shown in Figure 3B. Cytoscape software was 
used to visualize the co-expression network of 36 pairs of 
senescence-related lncRNAs-mRNAs (Figure 3C, |R2| >0.3 
and P<0.001). A Sankey diagram in Figure 3D shows that 
AC009283.1, AC021491.4, AC026401.3, and AC103760.1 
were protective factors, whereas AC124067.4, AL117336.3, 
FOXD2-AS1, and RHPN1-AS1 were risk factors.

Correlation between HCCSenLncSig and the prognosis of 
HCC patients

The risk score of HCCSenLncSig was calculated as follows: 
risk score = (0.6488 × AL117336.3 expression) + (−0.3616 
× AC103760.1 expression) + (0.5888 × FOXD2-AS1 
expression) + (−0.7890 × AC009283.1 expression) + (−0.3235 
× AC026401.3 expression) + (−1.1729 × AC021491.4 
expression) + (0.3475 × AC124067.4 expression) + (0.9231 
× RHPN1-AS1 expression). The formula was used to 
calculate the risk score for each patient, and patients were 
divided into 2 groups based on the median risk score, with 
178 in the high-risk group and 165 in the low-risk group 
(Figure 4A). Kaplan-Meier analysis showed that the OS 
time of the high-risk group was significantly shorter than 
that of the low-risk group (Figure 4A). Figure 4B,4C show 
individual patient risk scores and survival statistics, with 
the number of deaths increasing as the risk score increases. 
Univariate and multivariate Cox regression analysis showed 
that the HCCSenLncSig risk score was an independent 
prognostic factor (Figure 4D,4E) and its AUC was 0.783, 
sensitivity of 0.600, and specificity of 0.896 at the cut-off 
value of 1.447, which showed that it was a better predictor 
of HCC prognosis than other clinicopathological variables 
(Figure 4F). The AUCs of the 1-, 3-, and 5-year ROC 
curves were 0.774, 0.713, and 0.793, respectively, indicating 
that the HCCSenLncSig had good prognostic performance 
(Figure 4G).

The express ion levels  of  8  lncRNAs from the 
HCCSenLncSig model and clinicopathological factors are 
shown in Figure 5A. We used PCA with whole-genome, 

senescence-related mRNAs, senescence-related lncRNAs, 
and the HCCSenLncSig to distinguish between high- and 
low-risk patients (Figure 5B-5E). The HCCSenLncSig  
(Figure 5E) model clearly distinguishes between low- and 
high-risk groups, showing the accuracy of the model.

In addition, we assessed whether the HCCSenLncSig 
had prognostic value in subgroups with different 
clinicopathological parameters (Figure 6A-6P). There 
were significant correlations between the risk score 
and age (>65 and 65 years, Figure 6A,6B), male patients  
(Figure 6D), grade 1 to 3 (Figure 6E-6G), stage I and III 
(Figure 6I,6K), and T1, T3, and T4 (Figure 6M,6O,6P) 
when the correlations between the risk score and 
clinicopathological factors were assessed. In contrast, female 
patients (Figure 6C), grade 4 (Figure 6H), stage II and IV 
(Figure 6J,6L), and T2 (Figure 6N) were not associated with 
the risk score. The subgroup case numbers of M and N 
stage were too small to be evaluated. Taken together, the 
HCCSenLncSig risk score was proven to be an independent 
prognostic risk factor for patients with HCC. 

Construction of a predictive nomogram

We combined the HCCSenLncSig risk score with other 
clinicopathological factors to develop a nomogram to guide 
the clinical assessment of prognosis to estimate the 1-, 3-, 
and 5-year survival probability of HCC patients (Figure 7A). 
According to the 3 calibration diagrams, the nomogram 
estimated that the mortality rate was similar to the actual 
mortality rate (Figure 7B-7D).

Internal validation of the HCCSenLncSig

To test whether the HCCSenLncSig was universally 
applicable to HCC cancer OS predictive values, 343 
TCGA-LIHC patients were randomly divided into 2 
cohorts for internal validation (n=172 in the first internal 
cohort and n=171 in the second internal cohort). In both 
the first and second internal cohorts, the OS of patients 
in the high-risk group was lower than that of the low-
risk group (Figure 8A,8B), which is consistent with the 
results generated from the entire TCGA-LIHC dataset. In 
addition, based on the time-dependent ROC curves, the 
AUCs for 1-, 3-, and 5-year survival of the first internal 
cohort were 0.809, 0.741, and 0.833, respectively (Figure 8C).  
In the second internal cohort, the AUCs for 1-, 3-, and 5-year 
survival were 0.743, 0.66, and 0.765, respectively (Figure 8D).  
These results show that the HCCSenLncSig has good 

https://cdn.amegroups.cn/static/public/atm-22-3348-3.xlsx
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Figure 3 Identification of senescence-related lncRNAs related to HCC prognosis and lncRNA-mRNA co-expression network construction. 
(A) Forest plot showing 54 lncRNAs with hazard ratios, 95 percent confidence intervals, and P values for their associated HCC prognosis 
based on univariate Cox proportional hazards analysis. (B) Heatmap depicting the expression levels of 8 senescence-related lncRNAs 
identified by multivariate Cox regression analysis as being associated with HCC prognosis. (C) The lncRNA-mRNA co-expression network 
of the prognostic senescence-related lncRNA signature. Yellow squares represent prognostic lncRNAs, while green ellipses represent 
senescence-related mRNAs. Levels of expression of the 8 senescence-related lncRNAs were linked to the levels of 120 senescence mRNAs. 
(D) Sankey diagram showing the associations between prognostic senescence-related lncRNAs, mRNAs, and risk type. N, normal tissues; T, 
tumor tissues; lncRNAs, long-chain non-coding RNAs; HCC, hepatocellular carcinoma; mRNA, messenger RNA. 
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Figure 4 Prognostic value of the risk score determined by the HCCSenLncSig predictive model. (A) Kaplan-Meier curves for OS in the 
high- and low-risk groups stratified by the median of risk scores determined by the HCCSenLncSig. (B) Risk curve based on the risk score 
for each sample, where the yellow dot indicates a high-risk and blue dot indicates a low-risk. (C) Scatterplot based on the survival status of 
each sample. Yellow and blue dots indicate survival and death, respectively. (D) Forest plot for univariate Cox regression analysis. (E) Forest 
plot for multivariate Cox regression analysis. (F) ROC curve of the risk score and other clinicopathological variables. (G) Time-dependent 
ROC curves for 1-, 3-, and 5-year survival for the predictive signature. T, tumor; M, distant metastasis; N, lymph node metastasis; CI, 
confidence interval; AUC, area under the curve; HCCSenLncSig, hepatocellular carcinoma senescence-related lncRNA predictive signature; 
OS, overall survival; ROC, receiver operating characteristic.
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Figure 5 Visualization of the expression levels of the 8 prognostic lncRNAs based on clinicopathological variable stratification, and 
PCA of the gene sets performed to classify patients into different risk groups. (A) Eight prognostic senescence-related lncRNAs and 
clinicopathological variables were distributed in a heatmap for high- and low-risk groups. PCA of low- and high-risk groups based on (B) 
whole-genome mRNA transcripts, (C) senescence-related mRNAs, (D) senescence-related lncRNAs, and (E) risk model including the 
8 HCCSenLncSig senescence-related lncRNAs. Patients with high-risk scores are indicated in red, and those with low-risk scores are 
indicated in green. N, lymph node metastasis; M, distant metastasis; T, tumor; PC1, principal components 1; PC2, principal components 
2; PC3, principal components 3; mRNA, messenger RNA; lncRNAs, long-chain non-coding RNAs; HCCSenLncSig, hepatocellular 
carcinoma senescence-related lncRNA predictive signature; PCA, principal component analysis.

predictive performance in both internal validation cohorts, 
indicating that the prediction model is robust. 

Identification of biological pathways linked to the 
HCCSenLncSig

GSEA software was used for gene set functional annotation 
in HCCSenLncSig-identified high- and low-risk HCC 
patient groups. Specifically, the KEGG pathways of cell 
cycle [normalized enrichment score (NES) =2.18, NOM 

P<0.001, FDR q<0.002], pathogenic Escherichia coli 
infection (NES =2.12, NOM P<0.001, FDR q<0.001), 
homologous recombination (NES =2.11, NOM P<0.001, 
FDR q<0.001), Fc gamma R-mediated phagocytosis 
(NES =2.09, NOM P<0.001, FDR q<0.001), and oocyte 
meiosis (NES =2.02, NOM P<0.001, FDR q<0.004) 
were enriched in the high-risk group (Figure 9A). Drug 
metabolism-cytochrome p450 (NES =−2.2, NOM P<0.001, 
FDR q<0.001), tryptophan metabolism (NES =−2.09, 
NOM P<0.001, FDR q<0.001), fatty acid metabolism 
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Figure 6 Kaplan-Meier survival curves for high- and low-risk groups of patients sorted by clinicopathological variables. (A,B) Age; (C,D) 
sex; (E-H) grade; (I-L) overall stage; (M-P) T stage. T, tumor.

(NES =−2.09, NOM P<0.001, FDR q<0.001), tyrosine 
metabolism (NES =−2.04, NOM P<0.001, FDR q<0.002), 
and peroxisome (NES =−2.03, NOM P<0.001, FDR 
q<0.002) were enriched in the low-risk group (Figure 9A).  
On the other hand, the GO terms enriched in HCC 
patients with high-risk scores were positive regulation 
of spindle midzone (NES =2.25, NOM P<0.001, FDR 
q=0.005), chloride channel complex (NES =2.21, NOM 
P<0.001, FDR q=0.007), protein depolymerization (NES 
=2.19, NOM P<0.001, FDR q=0.009), regulation of 

microtubule cytoskeleton organization (NES =2.18, NOM 
P<0.001, FDR q=0.008), and microtubule (NES =2.18, 
NOM P<0.001, FDR q=0.007) (Figure 9B). In contrast, 
acylglycerol homeostasis (NES =−2.23, NOM P<0.001, 
FDR q<0.001), monocarboxylic acid catabolic process (NES 
=−2.2, NOM P<0.001, FDR q<0.001), organic acid catabolic 
process (NES =−2.19, NOM P<0.001, FDR q<0.001), lipid 
oxidation (NES =−2.18, NOM P<0.001, FDR q<0.001), and 
fatty acid catabolic process (NES =−2.18, NOM P<0.001, 
FDR q<0.001) were enriched in tumors of HCC patients 
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Figure 7 Construction and verification of the nomogram. (A) Nomogram combining clinicopathological variables and risk score predicts 
HCC patient 1-, 3-, and 5-year survival probabilities. The calibration curves assess the consistency between the actual and predicted OS at (B) 
1 year, (C) 3 years, and (D) 5 years. T, tumor; N, lymph node metastasis; M, distant metastasis; HCC, hepatocellular carcinoma; OS, overall 
survival.

with low-risk scores (Figure 9B). 

The relationship between HCCSenLncSig risk scores, 
driver mutations, and TMB

The somatic mutations in patients in low- and high-risk 
subgroups were assessed separately (Figure 10A,10B). TP53 
(37% vs. 15%) had a higher rate of somatic mutation in 
the high-risk group, while CTNNB1 and TTN (33% vs. 
17% and 27% vs. 19%, respectively) had a higher rate of 
somatic mutation in the low-risk group. In addition, for 
analysis of TMB levels, although there was no difference 
in TMB between the 2 groups (Figure 10C), the survival 

time of patients with higher TMB was significantly reduced 
(Figure 10D). In addition, the combination of high TMB in 
the high-risk group led to a worse prognosis (Figure 10E), 
demonstrating a significant synergistic effect between the  
2 indicators.

The landscape of immune infiltration in various HCC risk 
subgroups

Immune cells in the TME have been proven to undergo 
senescence, and thereby modulate cancer hallmarks 
and consequent tumor phenotypes (33). Therefore, we 
investigated the differences in immune cells and immune 
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Figure 8 HCCSenLncSig internal validation for overall survival using the entire TCGA dataset. (A) Kaplan-Meier survival curves for 
the first internal cohort. (B) Kaplan-Meier survival curves for the second internal cohort. (C) In the first internal cohort, the ROC curve 
and AUCs at 1-, 3-, and 5-year survival were calculated. (D) In the second internal cohort, the ROC curve and AUCs at 1-, 3-, and 5-year 
survival were calculated. AUC, area under the curve; HCCSenLncSig, hepatocellular carcinoma senescence-related lncRNA predictive 
signature; TCGA, The Cancer Genome Atlas; ROC, receiver operating characteristic.

functions between the 2 risk groups. The results showed that 
immune cell types such as activated dendritic cells (aDCs), 
dendritic cells (DCs), macrophages, T follicular helper cells 
(Tfh), T helper type 2 cells (Th2), and T regulatory cells 
(Treg) in the high-risk group were significantly different 
from those in the low-risk group (Figure 11A). Moreover, 
the scores of the immune functions, such as antigen-
presenting cell (APC) co-inhibition, APC co-stimulation, 
C-C chemokine receptor (CCR), checkpoint, human 
leukocyte antigen (HLA), major histocompatibility complex 
(MHC) class I, parainflammation, T cell co-inhibition, T 
cell co-stimulation, and type II IFN response were also 
significantly different between the 2 groups (Figure 11B). 
To further investigate the relationship between risk score 

and immune cell infiltration, we used the CIBERSORT 
algorithm to estimate the proportions of 22 immune cell 
types in the HCC tumor immune microenvironment. 
As shown in Figure 11C, activated memory CD4 T cells 
(P=0.013), activated NK cells (P=0.009), monocytes 
(P<0.001), M0 macrophages (P<0.001), resting DCs 
(P=0.037), resting mast cells (P<0.001), and neutrophils 
(P=0.005) varied significantly between high- and low-
risk score patients. The CIBERSORT findings partially 
confirmed the ssGSEA findings and, at the very least, 
revealed differences in immune infiltration between the 
high- and low-risk  groups. Based on the theory that 
immunotherapy must rely on a pre-existing immune-
hot microenvironment (34), these differences provide a 
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Figure 9 HCCSenLncSig-based GSEA of different risk groups. (A) According to the GSEA results, KEGG genes were differentially 
enriched for senescence-related lncRNA expression. Five KEGG items, namely the cell cycle, pathogenic Escherichia coli infection, 
homologous recombination, Fc gamma R-mediated phagocytosis, and oocyte meiosis, were significantly differentially enriched in the 
high expression phenotype. Drug metabolism-cytochrome p450, tryptophan metabolism, fatty acid metabolism, tyrosine metabolism, and 
peroxisome were enriched in the low-risk group based on the NES, NOM P value, and FDR value. (B) Differential enrichment of genes 
in GO with senescence-related lncRNAs (5 GO items, namely positive regulation of spindle midzone, chloride channel complex, protein 
depolymerization, regulation of microtubule cytoskeleton organization, and microtubule) revealed significant differential enrichment in the 
high expression phenotype. The other 5 GO terms, namely acylglycerol homeostasis, monocarboxylic acid catabolic process, organic acid 
catabolic process, lipid oxidation, and fatty acid catabolic process, were found to be significantly enriched in the low expression phenotype 
based on the NES, NOM P value, and FDR value. KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; BP, 
biological process; CC, cellular components; HCCSenLncSig, hepatocellular carcinoma senescence-related lncRNA predictive signature; 
GSEA, gene set enrichment analysis; lncRNA, long non-coding RNA; Fc, fold change; NES, normalized enrichment score; NOM, nominal; 
FDR, false discovery rate.

potential therapeutic guide for immunotherapy.

Potential relationship between the HCCSenLncSig and 
HCC immunotherapy, chemotherapy, and targeted therapy

There were 27 genes out of 47 evaluated immune 
checkpoints whose expression levels differed between the 
high- and low-risk groups (Figure 12A). Immunotherapy 
markers such as PDCD-1 and CTLA-4, which are now well 
established in clinical use, were found to be significantly 
higher in the high-risk group (Figure 12A), implying 
potential immunotherapeutic responses in high-risk 
patients. Moreover, when we used online software “TIDE” 
to predict the outcome of cancer patients treated with 
first-line anti-PD1 or anti-CTLA4 therapy, as shown in  
Figure 12B, we found no difference in TIDE scores between 
the 2 HCC subgroups. This finding could be explained 
by the fact that the TIDE database was created using 
melanoma data and only evaluated the efficacy of anti-
CTLA4 and anti-PD-1 therapies without considering other 
ICIs, such as anti-PD-L1 (35). 

Finally, we investigated the relationship between 
the HCCSenLncSig risk score and the efficacy of 
chemotherapy and targeted therapy for HCC. Most of the 
drugs commonly used in preclinical and clinical systemic 
therapy for HCC were more sensitive in the low-risk 
group, such as 5-fluorouracil (Figure 12C), cabozantinib 
(XL-184, Figure 12D), sunitinib (Figure 12E), gemcitabine  
(Figure 12F), paclitaxel (Figure 12G), imatinib (Figure 12H),  
and bortezomib (Figure 12I), while erlotinib (Figure 12J)  
was more sensitive in the high-risk group. Taken together, our 
drug sensitivity study demonstrates that the HCCSenLncSig 
has the potential to play a role in the clinical development of 
personalized treatment strategies. 

Discussion

Due to the control of hepatitis B and C, the incidence of liver 
cancer in China has gradually decreased, from 29.2 cases  
per 100,000 people in 1998 to 21.9 cases per 100,000 
people in 2012 (36). However, the HCC cure rate remains 
unsatisfactory, which is due in part to a lack of biomarkers 

KEGG cell cycle

KEGG drug metabolism cytochrome P450

KEGG fatty acid metabolism

KEGG FC gamma R mediated phagocytosis

KEGG homologous recombination

KEGG oocyte meiosis

KEGG pathogenic escherichia coli infection

KEGG peroxisome

KEGG tryptophan metabolism

KEGG tyrosine metabolism

High expression                           Low expression High expression                           Low expression

GOBP acylglycerol homeostasis
GOBP fatty acid catabolic process
GOBP lipid oxidation
GOBP monocarboxylic acid catabolic process
GOBP organic acid catabolic process
GOBP protein depolymerization
GOBP regulation of microtubule cytoskeleton organization
GOCC chloride channel complex
GOCC microtubule
GOCC spindle midzone

0.8

0.4

0.0

−0.4

−0.8

E
nr

ic
hm

en
t s

co
re

0.8

0.4

0.0

−0.4

E
nr

ic
hm

en
t s

co
re

A B



Annals of Translational Medicine, Vol 10, No 14 July 2022 Page 15 of 21

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(14):766 | https://dx.doi.org/10.21037/atm-22-3348 

Figure 10 The relationship between HCCSenLncSig risk scores, epigenetic mutation, and TMB. Waterfall plot showing the genetic 
mutations between high-risk (A) and low-risk (B) HCC patients. (C) Difference in TMB between patients from the low- and high-risk score 
subgroups. (D) Kaplan-Meier curves for the high and low TMB groups. (E) Kaplan-Meier curves for patients stratified by both TMB and 
risk scores. The P value represents the ANOVA test between the subgroups. TMB, tumor mutation burden; HCCSenLncSig, hepatocellular 
carcinoma senescence-related lncRNA predictive signature; HCC, hepatocellular carcinoma; ANOVA, analysis of variance.

for treatment and prognosis. Traditionally used biomarkers, 
such as alpha-fetoprotein (AFP), can guide the diagnosis and 
monitoring of recurrence to some extent, but do not provide 
guidance for treatment (37). In addition, compared with a 
single clinical biomarker, combining multiple biomarkers 
into a single model can improve the prediction accuracy and 
help to develop an accurate personalized treatment plan (38).  
Senescent cells (of any cell type) have recently been 
identified as functionally significant cell types in the TME, 
including HCC (20). When HCC tissues expressed more 
senescence-related genes, patients had a lower OS and a 
shorter recurrence-free survival (39). When senescent cells 
(expressing p16INK4a+) were pharmacologically eliminated 
in aging mice, the incidence of spontaneous tumorigenesis 

and cancer-related death was reduced, and some age-related 
symptoms were delayed (40). The detection of senescent 
cells remains controversial at present. They are mostly 
identified by a combination of SASP expression, DNA 
damage, and β-galactosidase activity, which are neither 
specific nor universal (26,41-44). Recently, several lncRNAs 
have been found to be involved in the regulation of HCC 
cellular senescence (28,45-48), but the overall landscape of 
the regulatory network of senescent cells in HCC remains 
largely unknown. This situation prompted us to develop 
a HCCSenLncSig signature that could represent both 
senescence and HCC.

Based on the ROC curve, the HCCSenLncSig displayed 
moderate predictive performance for HCC OS. In addition, 

913

0

1139

0
37%

17%

19%

15%

11%

9%

10%

10%

8%

7%

9%

8%

6%

6%

9%

TP53

CTNNB1

TTN

MUC16

PCLO

ALB

RYR2

APOB

XIRP2

CSMD3

LRP1B

OBSCN

ABCA13

FLG

ARID1A

TP53

CTNNB1

TTN

MUC16

PCLO

ALB

RYR2

APOB

XIRP2

CSMD3

LRP1B

OBSCN

ABCA13

FLG

ARID1A

15%

33%

27%

17%

10%

10%

7%

7%

8%

7%

6%

7%

9%

7%

5%

Altered in 138 (80.23%) of 172 samples Altered in 134 (82.72%) of 162 samples

H-TMB + High-risk

H-TMB + Low-risk

L-TMB + High-risk

L-TMB + Low-risk

H-TMB

L-TMB

High

Low
High
Low

In frame ins
In frame del
Multi hit

In frame del
Frame shift ins
Multi hit

Missense mutation
Frame shift del
Nonsense mutation

Missense mutation
Frame shift ins
Frame shift del
Nonsense mutation

Low-risk                             High-risk

0.66

Low-risk              High-risk

No. of samples

TM
B

TM
B

0 64 0 54
No. of samples

RiskRisk

RiskRisk

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

4

2

0

Tu
m

or
 m

ut
at

io
n 

bu
rd

en
 (l

og
2)

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

Time, years

0      1      2      3      4      5       6      7      8       9     10

Time, years

0      1      2      3      4       5       6      7      8       9     10

P<0.001P=0.030

A B

C D E



Huang et al. Senescence-related lncRNA predicts HCC prognosisPage 16 of 21

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(14):766 | https://dx.doi.org/10.21037/atm-22-3348 

Figure 11 Immune cell infiltration and immune-related functions in different risk groups. (A) The ssGSEA algorithm was used to compute 
the levels of infiltration of 16 immune cells in the high- and low-risk groups. (B) The relationship between risk score and 13 immune-related 
functions. (C) The Wilcoxon rank-sum test was used to explore whether there were differences between the 22 kinds of immune cells in 
different groups. *, P<0.05; **, P<0.01; ***, P<0.001; ns, non-significant. aDCs, activated dendritic cells; iDCs, immature dendritic cells; 
NK, natural killer; pDCs, plasmacytoid dendritic cells; Tfh, T follicular helper; Th1, T helper type 1; Th2, T helper type 2; TIL, tumor-
infiltrating lymphocyte; Treg, T regulatory cell; APC, antigen-presenting cell; CCR, C-C chemokine receptor; HLA, human leukocyte 
antigen; MHC, major histocompatibility complex; IFN, interferon; ssGSEA, single-sample gene set enrichment analysis.
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the nomogram incorporating the HCCSenLncSig and other 
clinical parameters is expected to improve clinical decision 
making and guide the development of treatment strategies. 
In the lncRNA model, both FOXD2-AS1 and RHPN1-

AS1 have previously been identified as oncogenes in HCC, 
where FOXD2-AS1 aggravates HCC tumorigenesis by 
regulating the miR-206/MAP3K1 axis (49), and RHPN1-
AS1 accelerates proliferation, migration, and invasion 
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Figure 12 Comparison of immune checkpoints, TIDE scores, and sensitivity of chemotherapy and targeted therapy drugs in high- and 
low-risk groups. (A) The expression of 27 immune checkpoint genes differed between the high- and low-risk  groups. Red boxes represent 
high-risk patients, while blue boxes represent low-risk patients. (B) The online software “TIDE” predicted the TIDE score of the outcome 
of subgroups of HCC patients treated with anti-PD-1 or anti-CTLA4 therapies. The IC50 values for (C) 5-fluorouracil, (D) XL-184 
(cabozantinib), (E) sunitinib, (F) gemcitabine, (G) paclitaxel, (H) imatinib, (I) bortezomib, and (J) erlotinib in the high- and low-risk  groups. 
*, P<0.05; **, P<0.01; ***, P<0.001; ns, non-significant; P<0.05 indicates statistical significance. TIDE, tumor immune dysfunction and 
exclusion module; HCC, hepatocellular carcinoma; PD-1, programmed cell death-1; IC50, half-maximal inhibitory concentration. 
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via regulating the miR-485-5p/BSG axis in HCC (50). 
Furthermore, AL117336.3 (51) and AC026401.3 (52)  
have been identified as HCC prognosis signatures. 
However, research on the prognostic value in cancer and 
contributions to senescence for AC103760.1, AC009283.1, 
AC021491.4, and AC124067.4 is lacking. As a result, more 
research is needed to further investigate the effects of these 

lncRNAs in HCC and senescence. 
The highlight of this study is to emphasize the important 

relationship between cell senescence and the prognosis 
and microenvironment of HCC. At present, the role of the 
senescent microenvironment in tumors is often ignored 
in preclinical study, which are usually designed in young 
mice rather than old mice (53). This may help explain why 
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many successful preclinical responses are not reproduced 
after entering real clinical trials. In addition, compared with 
other studies using the TCGA database to develop lncRNA 
prognostic models (13-18), our HCCSenLncSig model 
is comparable. This shows that the senescent cells in the 
TME are helpful in predicting the prognosis of HCC, and 
are at least as valuable as other biomarkers.

Clinical trials of immunotherapy-based treatment for 
HCC are ongoing. However, the ORR of immunotherapy 
is not satisfactory either as monotherapy or in combination. 
The ORR for anti-PD-1 was 14.3% (54,55), 17.6% for 
anti-CTLA-4 (6), and 20.1% for the combination of anti-
CTLA-4 and anti-PD-L1 (5). These findings support 
the fact that the efficacy of immunotherapy depends on 
appropriate patient selection. Senescence, an important 
parameter, has recently been included in preclinical or 
clinical retrospective studies to screen individuals who 
may benefit from ICI therapy. In a melanoma mouse 
model, anti-CTLA-4, anti-PD-1, and anti-PD-L1 were 
all effective in young mice, but the latter was not effective 
in older mice (56). In clinical retrospective studies, 
patients over the age of 60 responded better to PD-1 than 
patients under the age of 60 (57). Similarly, the current 
study also demonstrated the relationship between the 
HCCSenLncSig model derived from senescent genes 
and the HCC immune microenvironment. According 
to HCCSenLncSig stratification, the expression of most 
immune checkpoints, activation of immune pathways, and 
infiltration of anti-tumor immune cells were higher in the 
high-risk group than in the low-risk group (Figures 11,12), 
suggesting that high-risk patients may benefit more from 
immunotherapy. Notably, existing studies have provided 
strong evidence that pre-existing anti-tumor immune 
responses in patients have been shown to be effective in the 
setting of immune checkpoint blockade therapy (34). On 
the other hand, high TMB has been linked to an increase 
in CD8+T cells, which recognize tumor neoantigens and 
thus produce a strong tumor killing effect (58). Although 
there was no difference in TMB in our model between 
the hierarchical TCGA-LIHC high-risk and the low-risk 
group (Figure 10C), individuals with a high-risk score and 
a high TMB had a poor prognosis (Figure 10E), indicating 
a significant synergistic effect between the 2 indicators. 
These findings emphasize the potential future direction of 
tumor immunotherapy by focusing on cellular senescence 
treatment.

Another aspect of the senescent impact on cancer 
phenotypes is the senescence of stromal cells. Despite the 

fact that most traditional drugs have been used to induce 
senescence and thus programmed cell death, stromal cells 
in the TME, despite having experienced a senescence 
phenotype, still mediate tumor survival via SASP (20,59). In 
a breast cancer model, senescent cells significantly increased 
cell proliferation, invasion, and metastasis by secreting IL-
6, IL-8, IL-10 (60), CXCL11 (61), and VCAM1 (62). In 
such cases, senescent cellular targeting treatment strategies 
should be well considered during therapy (53). By using 
HCCSenLncSig-based risk scores, we can identify patients 
who are likely to benefit from current first-line HCC 
systemic drug therapy. Because the HCCSenLncSig model 
takes senescence into account, it may benefit clinical 
treatment options. 

There are several limitations to the current study. First 
and foremost, additional external data should be considered 
to test whether the HCCSenLncSig model adequately fits 
the dataset. Second, some prognostic factors such as surgical 
data were not included in the nomograms owing to the lack 
of these data in TCGA. This may affect the accuracy of 
the model. Third, functional studies are required to better 
understand the molecular mechanism of senescence-related 
lncRNA effects.

In conclusion, we developed a HCCSenLncSig lncRNA 
signature that can be used to predict the prognosis of 
HCC. Importantly, the level of immune infiltration and the 
potential efficacy of tumor immunotherapy are related to 
the HCCSenLncSig.
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