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Background: Gram-negative sepsis is closely related to the immune response, involving collaborative 
efforts of different immune cells. However, the mechanisms underlying immune cell regulation in gram-
negative sepsis remain unclear. Therefore, this study investigated the potential regulatory mechanisms and 
identified the key genes related to immune cells in gram-negative sepsis. 
Methods: The RNA-sequencing data for gram-negative sepsis samples and normal samples were collected from 
the Gene Expression Omnibus (GEO) dataset GSE9960. CIBERSORT was performed to analyze the proportion 
of 22 types of immune cells in gram-negative sepsis and normal samples. Weighted gene co-expression network 
analysis (WGCNA) was used to determine the networks that are associated with the differentially distributed 
immune cells in the two groups. Differentially expressed genes were identified using the limma package. The least 
absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination 
(SVM-RFE) algorithms were applied to ascertain hub gene signatures. The gene interaction network of hub gene 
signatures was determined by ingenuity pathway analysis. Furthermore, the expression levels of the key genes 
were verified using quantitative real-time polymerase chain reaction (qRT-PCR). 
Results: CIBERSORT analysis showed that the proportions of plasma cells, resting CD4+ memory T cells, 
M1 macrophages, and eosinophils were significantly different between gram-negative sepsis and normal 
samples. WGCNA identified 1,100 genes in the most relevant modules associated with these immune 
cells. In addition, 87 differentially expressed genes were identified. By overlapping the genes found in the 
WGCNA and the differentially expressed genes, a total of 46 genes related to immune cells were identified. 
Integrative analysis of LASSO and SVM-RFE identified NLR family CARD domain-containing 4 (NLRC4) 
and ral guanine nucleotide dissociation stimulator like 4 (RGL4) as key gene signatures related to immune 
cells in gram-negative sepsis. The qRT-PCR results demonstrated that both NLRC4 and RGL4 were 
upregulated in peripheral blood mononuclear cells (PBMCs) from patients with sepsis. 
Conclusions: This investigation provides novel insights into the molecular mechanisms of immune 
cells involved in the pathogenesis of gram-negative sepsis. NLRC4 and RGL4 were identified as key gene 
signatures related to immune cells and may act as potential diagnostic biomarkers for gram-negative sepsis.
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Introduction

Sepsis is a potentially life-threatening condition caused by an 
excessive immune response against an invading pathogen (1).  
It occurs when the host immune system overreacts to 
infections and causes damage to the host tissues and organs. 
In 2017, there were an estimated 47–49 million cases of sepsis 
globally, with 11 million sepsis-related deaths, accounting 
for almost 1 in 5 total deaths worldwide (2). Thus, sepsis has 
become a significant global public health concern. 

Sepsis resulting from gram-negative bacterial infection 
is characterized by severe inflammatory response, multi-
organ dysfunction, and a high mortality rate (~60%) (3). 
Many studies have confirmed that lipopolysaccharide (LPS), 
a major microbial mediator of sepsis resulting from gram-
negative bacterial infection, can elicit a strong immune 
response (4-6). However, clinical signs and symptoms of 
early sepsis are often non-specific and can easily be missed. 
Despite extensive research and continuous development 
of immunological events, the mortality associated with 
gram-negative sepsis remains high (2,7,8). Knowledge 
of early molecular and biological changes in sepsis may 
help practitioners assess the condition and initiate timely 
treatment (9). Therefore, an in-depth understanding of the 
pathogenesis of gram-negative sepsis is warranted.

It is now clear that the intricate disruption of the 
host response is a major feature of sepsis, involving 
both sustained and profound inflammation and immune 
suppression, and an inability to re-establish homeostasis (1). 
Studies on the genomic response to sepsis have provided 
valuable insights into this imbalance. Evidence suggests that 
host genetics can influence sepsis outcomes (10). Patients 
with sepsis show significantly different blood leukocyte 
transcriptomes, with more than 70% of the measured 
RNA transcripts in these cells involved in inflammatory, 
translation initiation, adaptive immunity, or mitochondrial 
dysfunction pathways (11-17).

Sepsis directly or indirectly affects the function of 
almost all types of immune cells. Among the gram-negative 
bacteremia species that have been interrogated using 
genome-wide approaches to fitness factor identification 
in the mammalian bloodstream, there has been a 
predominance of mechanisms that support evasion of 
immune defenses and promote metabolic diversity (18). 
The formation of inflammasome, polarization and apoptosis 
of immune cells, cytokine explosion and apoptosis, and even 
exosomes play orchestrated roles in microenvironment of 
sepsis. Genetic changes in peripheral blood mononuclear 

cells (PBMCs) have been found to be associated with severity, 
immunosuppression, and mortality in patients (19). PBMCs 
play a well-established role in monitoring infection because 
they can encounter the source of infection and interact with 
infected cells through secreted signaling molecules. 

This current study used bioinformatics to identify the 
immune cells that are closely related to gram-negative 
sepsis and to analyze the potential molecular mechanisms 
of immune cell-related gene regulation, with the aim of 
screening sepsis-specific biomarkers for early diagnosis 
and treatment. Our study provides novel insights into the 
molecular mechanisms of immune cells in the pathogenesis 
of gram-negative sepsis. We present the following article in 
accordance with the STREGA reporting checklist (available 
at https://atm.amegroups.com/article/view/10.21037/atm-
22-3307/rc).

Methods

Data source and the identification of differentially 
expressed genes 

The gene expression profiles of 18 gram-negative sepsis 
samples and 16 normal samples were downloaded from 
the GSE9960 datasets (A total of 70 critically ill patients 
were enrolled in a single-centre observational study. Gene-
expression profiling was performed using Affymetrix 
microarray with 54,675 transcripts) (19) and the differentially 
expressed genes were screened using the limma package (20)  
with P value <0.05 and |log2 (fold change)| >1 as the 
selection criteria.

Distribution of immune cells 

The gene expression data in the GSE9960 dataset were 
uploaded to the CIBERSORT software (21) and the 
proportions of 22 immune cells in each sample were 
predicted. Immune cells that showed significantly different 
distribution between gram-negative sepsis and normal 
samples were selected for subsequent analyses.

Weighted gene co-expression network analysis (WGCNA) 

A sample cluster tree map was constructed to explore 
and exclude outliers. WGCNA was then implemented 
on the gene expression data and information of the 
selected immune cells. For the purpose of selecting an 
optimal soft threshold, we used the pick soft threshold 

https://atm.amegroups.com/article/view/10.21037/atm-22-3307/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-3307/rc
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function of WGCNA to figure β from 1 to 30. According 
to the selected soft threshold, the adjacency matrix was 
transformed into a topological overlap matrix to establish 
the network. A gene dendrogram and module color were 
constructed according to the degree of dissimilarity. 
Furthermore, the initial module was divided by dynamic 
tree cutting and the similar ones were merged. The Pearson 
correlation coefficient between eigengenes of the module 
and the differential infiltration level of immune cells was 
calculated to determine the module most associated with 
the selected immune cells.

Selection of hub gene signatures by least absolute shrinkage 
and selection operator (LASSO) and support vector 
machine-recursive feature elimination (SVM-RFE)

The glmnet package (22) in R was used to apply the 
LASSO algorithm and explore gene signatures under the 
most desirable lambda with the smallest classification error. 
The e1071 package in R was used to implement SVM-
RFE to determine the best variables (gene signatures) by 
deleting feature vectors generated by SVM in combination 
with 5-fold cross-validation. Finally, by overlapping gene 
signatures, hub gene signatures were identified from the 
LASSO and SVM-RFE algorithms. 

Functional enrichment analysis

The Metascape online tool (https://metascape.org) was 
applied to analyze the biological functions of genes related to 
immune cells, which integrated the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) and Reactome data resources. 
In addition, Ingenuity® Pathway Analysis (IPA) (23) was 

used to investigate disease and biological functions of hub 
gene signatures and to predict the interaction of hub gene 
signatures with other differentially expressed genes in gram-
negative sepsis.

Validation of key differentially expressed genes by 
quantitative polymerase chain reaction (qRT-PCR)

A total of 32 participants, including 17 candidates who 
fulfilled the criteria for Sepsis 3.0 and 15 non-infectious 
disease volunteers, were recruited from the Emergency 
Medicine Clinical Research Center in Beijing Chaoyang 
Hospital, Capital Medical University. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). The current study on human participants 
was examined and approved by the Research Ethics 
Committee of Beijing Chaoyang Hospital, Capital Medical 
University (No. 2021-ke-316). The candidates provided 
written informed consent to participate in this study. There 
was no significant difference in age (P=0.73) or sex (P=0.91) 
between the two groups. The PBMCs were purified via 
density-gradient separation. Blood samples were diluted 
(1:1) with phosphate-buffered saline, layered over the same 
volume of Ficoll-Paque (Solarbio, Code No. P9010, China), 
and centrifuged at 1,000 ×g for 30 minutes. The buffy coat 
(containing mononuclear cells) was aspirated and collected. 
The total RNA was extracted using RNAiso Plus (TaKaRa, 
Code No. 9109, Japan), chloroform, and isopropyl alcohol. 
The extracted RNA was reversed transcribed to cDNA and 
qRT-PCR was performed using One Step PrimeScriptTM 
RT-PCR Kit (TaKaRa, Code No. RR086A, Japan). 
Primer sequences (Sangon Biotech, Lot No. 2014250862, 
2014250863, 2014423459, 2014423460, B661102, China) 
used in this study are shown in Table 1.

Statistical analysis

All data were analyzed using R software (v.4.0.0, http://www.
r-project.org/). The Wilcoxon test was applied to compare 
proportions of immune cells between gram-negative sepsis 
and normal samples, and a P value of <0.05 was considered 
statistically significant. The diagnostic value of the hub 
gene signatures was evaluated using the area under the 
receiver operating characteristic (ROC) curve. Unpaired t-test 
was performed for PCR results (2−ΔΔct) of clinical samples 
through GraphPad Prism version 8 (GraphPad software;  
https://www.graphpad.com/) and a P value <0.05 was 
considered statistically significant. 

Table 1 Oligonucleotides used in this study

Primer set Real-time quantitative PCR primer

RGL4-F ATGGATGCGGAGCTGTTCAAGAAG

RGL4-R AGCCTGTTGAAGTGTGCGATGG

NLRC4-F TGGCAAAGGCAAGTCCACTC

NLRC4-R CCTGCTGAGACGGAGGAAGA

β-actin-F CTACAATGAGCTGCGTGTGG

β-actin-R AAGGAAGGCTGGAAGAGTGC

PCR, polymerase chain reaction; RGL4, ral guanine nucleotide 
dissociation stimulator like 4; NLRC4, NLR family CARD domain-
containing 4. 

http://www.r-project.org/
http://www.r-project.org/
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Results

Distribution of immune cells in gram-negative sepsis and 
normal samples

CIBERSORT was used to investigate the distribution of 
immune cells in gram-negative septic and normal samples. 
Follicular helper T cells, regulatory T cells, activated NK 
cells, M2 macrophages, resting dendritic cells, and activated 
mast cells were barely detected in either gram-negative 
sepsis samples or normal samples (Figure 1A). Interestingly, 
the proportions of plasma cells, M1 macrophages, and 
eosinophils were significantly higher in gram-negative sepsis 
samples compared to normal samples, while the proportion 
of resting CD4+ memory T cells was remarkably lower in 
gram-negative sepsis samples than in normal samples (Figure 
1B). Therefore, plasma cells, M1 macrophages, eosinophils, 
and resting CD4+ memory T cells were selected for 
WGCNA.

Identification of the key module associated with the selected 
immune cells 

Outlier samples were not explored based on the clustering 
results. A dendrogram and trait heatmap were constructed, 
as shown in Figure 2A. Using the pick soft threshold 
function in WGCNA, the best soft threshold power was 
determined to be 30, in which R2 was approximately 0.9 
(Figure 2B). A total of 8 modules were identified in the co-
expression network after merging similar modules (Figure 
2C). Correlations between module eigengenes and selected 
immune cells are displayed in Figure 2D. In the module-
trait relationships shown in Figure 2D, the dark orange 
module (MEdarkorange) was most associated with the 
selected immune cells. The correlation coefficients between 
the dark orange module and plasma cells, M1 macrophages, 
eosinophils, and resting CD4+ memory T cells were 0.52, 
0.48, 0.47, and −0.52, respectively. A total of 1,100 genes in 
the dark orange module were selected for further analysis.
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Figure 1 Immune cells distribution analysis. (A) The proportions of immune cells. A total of 16 normal samples are shown on the left and 
18 sepsis samples are shown on the right. (B) The differences in immune cells distribution between normal and sepsis samples. P<0.05 was 
considered statistically significant.
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Identification of immune cell-related genes in  
gram-negative sepsis

A total of 87 differentially expressed genes were identified 
in gram-negative sepsis samples compared to normal 
samples, with 62 upregulated genes and 25 downregulated 

genes (Figure 3A), suggesting that they may be associated 
with the development of gram-negative sepsis. The 
expression of these 87 genes is shown in a heatmap in 
Figure 3B. Furthermore, to explore immune cell-related 
genes associated with the development of gram-negative 
sepsis, the 1,100 genes identified in the WGCNA analysis 
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Figure 2 Identification of the key module by WGCNA. (A) Clustering dendrogram of the 34 samples using Pearson’s correlation 
coefficient. The vertical axis represents the relative distance between clusters. The 34 samples are shown as cluster variables and the smaller 
the height, the more likely they are to cluster together. The trait heatmap below shows the hierarchical clustering. (B) Analysis of network 
topology for different soft-thresholding powers. Both horizontal axes represent weight parameters. The vertical axis on the left represents 
the scale-free fit index, namely signed R2. The higher the R2, the closer the network is to the scale-free distribution. The vertical axis on the 
right displays the mean of all the adjacency functions in the matching gene module, namely mean connectivity. (C) Identification of gene co-
expression modules. The gene dendrogram was picked up by clustering the dissimilarity ground on consistent Topological Overlap with the 
corresponding module colors represented by the color row. The similar modules were merged in line with the set criteria (set MEDissThres 
parameter to 0.35). (D) The module-trait heatmap. The corresponding correlation and P values are displayed for each cell type. The legend 
represents the correlation coefficient, with red and blue representing positive and negative correlation, respectively. WGCNA, Weighted 
gene co-expression network analysis.
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were overlapped with the 87 differentially expressed genes 
and a total of 46 immune cell-related genes in gram-
negative sepsis were identified (Figure 3C). The potential 
biological functions of all 46 immune cell-related genes 
were investigated using Metascape. As shown in Figure 
3D, these genes were primarily enriched in biological 
processes and pathways closely involved in immunity 
and inflammation, including neutrophil degranulation, 
leukocyte differentiation, regulation of phosphatidylinositol 
3-kinase signaling, anti-inflammatory responses favoring 
Leishmania parasite infection, and regulation of leukocyte 
activation.

Identification of hub immune cell-related genes in  
gram-negative sepsis

To screen for hub immune cell-related genes in gram-
negative sepsis, the LASSO algorithm was used to obtain  
11 immune cell-related gene signatures, including NLR 
family CARD domain-containing 4 (NLRC4), platelet-
derived growth factor C (PDGFC), NEDD4 E3 ubiquitin 
protein ligase (NEDD4), sulfotransferase family 1 B member 
1 (SULT1B1), dachshund family transcription factor 1 
(DACH1), CEA cell adhesion molecule 21 (CEACAM21), 
solute carrier family 26 member 8 (SLC26A8), cystatin F 
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Figure 3 Screening for differentially expressed genes and enrichment analysis. (A) Differentially expressed genes in normal and sepsis 
samples are shown in the volcano plot. The horizontal axis represents the fold change of difference (sepsis/control, taking log2). The 
vertical axis represents the specific threshold [−log10 (adjusted P value)]. Each dot represents a gene. Blue dots correspond to genes that are 
downregulated in sepsis samples and red dots represent significantly upregulated genes. Grey dots represent non-differentially expressed 
genes between the two groups. (B) A heatmap of all 87 DEGs. (C) A Venn diagram showing the overlapping genes between the 87 DEGs 
and the 1,100 genes identified in MEdarkorange. (D) Enrichment results of the top 10 of the 46 intersecting genes. DEGs, differentially 
expressed genes.
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(CST7), ral guanine nucleotide dissociation stimulator like 
4 (RGL4), G-quadruplex forming sequence containing 
lncRNA (ST3GAL4-AS1), and C-type lectin domain 
containing 5A (CLEC5A) (Figure 4A,4B). To obtain more 
robust gene signatures, the SVM-RFE algorithm was used 
and two immune cell-related gene signatures were detected 
at 5-fold cross-validation, namely, NLRC4 and RGL4 
(Figure 4C,4D). After the overlapping immune cell-related 
gene signatures were algorithm-selected, NLRC4 and 
RGL4 were ascertained as hub immune cell-related genes in 
gram-negative sepsis (Figure 4E). Subsequently, ROC curve 
analysis was used to validate the diagnostic value of NLRC4 
and RGL4. The area under the ROC curve for NLRC4 and 
RGL4 were 0.906 and 0.712, respectively (Figure 4F).

Gene interaction network of NLRC4 and RGL4 in gram-
negative sepsis

IPA analysis was performed to investigate the interaction 
of NLRC4 and RGL4 with other differentially expressed 
genes in gram-negative sepsis and normal samples. Ten 
gene networks were identified, with scores ranging from 2 
to 41. NLRC4 was in network 2 and was associated with 
developmental disorders, humoral immune responses, and 
protein synthesis (score =30). RGL4 was found in network 
6 and was associated with hereditary disorders, organismal 
injury and abnormalities, and skeletal and muscular 
disorders (score =14). By connecting the two networks, 
NLRC4 and RGL4 were predicted to indirectly interact 
with other differentially expressed genes, such as NEDD4, 
CST7, and CLEC5A (Figure 5).

Verification of NLRC4 and RGL4 in patients with sepsis by 
qRT-PCR

The detection of NLRC4 and RGL4 in sepsis was 
performed for validation. The expression levels of NLRC4 
and RGL4 in participants with sepsis were significantly 
higher than those in the non-infectious group (P=0.0021 
and 0.0267, respectively; Figure 6A,6B).

Discussion

Sepsis is characterized by the intricate interplay between 
varying cellular constituents of innate and adaptive 
immunity, in the context of tremendous pro-inflammatory 
and anti-inflammatory factors, in which a wide range of 
cytokines and chemokines are closely involved. Four types 

of immune cells with different distributions were found 
between gram-negative sepsis and normal samples, namely 
plasma cells, resting memory CD4 T cells, macrophages 
M1, and eosinophils. Indeed, sepsis has been shown to 
directly or indirectly affect almost all immune cell types, 
in number and function (24). The specific functions and 
mechanisms of these immune cells in sepsis have been 
studied extensively. 

Plasma cells play a crucial role in the acute response to 
infections and act as antibody-secreting machines for long-
term host protection by providing humoral immunity. Most 
pathogens transmit from cell to cell through extracellular 
fluids. The extracellular space is preserved by humoral 
immunity, being dependent on antibody-mediated 
responses (25). Antibodies produced by plasma cells damage 
extracellular microorganisms, thereby blocking the spread 
of infections (26). Although many pathogens can cause 
sepsis, plasma cell-mediated humoral immunity is important 
for sepsis response. Studies have shown that plasma cells 
generated from the lungs of mice or humans that have 
recovered from pneumococcal infections can protect against 
bacterial pneumonia (27). After challenge, plasma cells 
upregulate interleukin (IL)-10 expression via a Toll-like 
receptor-driven mechanism in a short time (28).

Resting memory CD4+ T cells are thought to be one 
of the HIV reservoirs, which represent a major barrier to 
HIV eradication (29). In addition, these cells are associated 
with allograft transplant rejection and tolerance, as well 
as immune infiltration in multiple cancers. While there is 
little in the literature regarding resting memory CD4+ T 
cells to sepsis or bacterial infections, there are some data 
regarding to cell heterogeneity. Heterogeneity refers to 
the diversity of the cell population, and not the conversion 
of a single differentiated cell into another subtype. Cell 
maintenance in a quiescent state is critical for self-renewal 
potential and differentiation plasticity. For cell survival 
and homeostatic proliferation, resting memory CD4+ T 
cells were dependent on signals with IL-7 and IL-15, but 
not major histocompatibility complex (MHC) class II (30). 
Using major lineage-defining phenotypic markers, resting 
memory CD4+ T cells have been shown to remain stable 
over time (31).

Macrophages are phagocytic cells that participate 
in steady-state tissue homeostasis via clearance of 
apoptotic cells and different types of growth factors (32). 
Macrophages are broadly divided into two categories: M1 
and M2. The former recruit immune cells to the infection 
site, whereas M2 macrophages activate anti-inflammatory 
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responses.  The gene expression of M1 and M2 is 
modulated by various transcription factors that contribute 
to macrophage polarization (33). M1 macrophages express 
high levels of pro-inflammatory cytokines such as IL-
1β, IL-6, TNF-α, and reactive nitrogen, which exert a 
central effect on host defense against infections. Recently, 
macrophages have been demonstrated to be the recipient 
cells for exogenous exosomes and to be the direct link with 

serum exosomes. However, the same origin exosomes in 
the early stage (excessive inflammatory response) and the 
late stage of sepsis (immunosuppression) may have opposite 
effects (34). Researchers have shown that exosomal miR-30d-
5p in neutrophils induces M1 macrophage polarization and 
initiates macrophage pyroptosis in acute lung injury caused 
by sepsis (35). Thus, inhibition of M1-polarized macrophages 
may have a significant effect on sepsis treatment.

Figure 5 The interaction network analysis. The interaction network of hub genes and their relationship to the regulation of other genes. 
Red and green indicate upregulated differential genes and downregulated differential genes, respectively. (Figure 5 was made by QIAGEN 
Ingenuity Pathway Analysis.) 
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It  is  well-known that eosinophils  are a crucial 
pathological component of bronchial asthma and play 
a significant role in allergic diseases, parasitic diseases, 
and infections. Eosinophils have been found to be tissue-
damaging in acute lung injury (36). After being recruited 
to inflammatory tissues, the number and function of 
eosinophils may vary depending on the environment. 
A recent analysis of eosinophil transcriptome in mice 
demonstrated that the expression profile of eosinophils was 
similar to other bone marrow cells, such as macrophages 
and neutrophils (37). Eosinophils exhibit functional 
heterogeneity driven by their response to different 
inflammatory environments.  Eosinophils can also 
downregulate the expression of pro-inflammatory genes 
(such as TNF-α and IL-6) and upregulate the expression of 
anti-inflammatory genes (such as IL-10). They also promote 
the transformation of macrophages from M1 to M2 
type, suggesting that eosinophils play a role in inhibiting 
LPS-induced lung inflammation. Contrary to the results 
calculated by CIBERSORT in this study, eosinophils show 
a decrease in numbers during severe bacterial infections. 
Some researchers even consider the reduction in eosinophil 
numbers to be indicative of an infection (38-40). The 
secretion of adrenal corticosteroids may increase in severe 
bacterial infections and inhibit the release of eosinophils.

Using LASSO and SVM-RFE algorithms, 11 and 
2 characteristic genes related to sepsis were identified, 
respectively. NLRC4 and RGL4 were obtained through 
intersections to retain more reliable core characteristic 
genes. Moreover, ROC curves revealed that the area under 
the curve of the two core genes were both greater than 0.7, 
indicating good diagnostic value and potential as candidate 
diagnostic markers for sepsis. This was consistent with the 
qRT-PCR results obtained from the clinical participants. 

Actually, nearly 200 biomarkers have been found 
to identify early sepsis. However, sepsis is a highly 
heterogeneous syndrome that cannot be completely 
defined by one or more biomarkers. Biomarkers, we are 
familiar with, such as PCT, CRP, TNF α and IL-6 have no 
specificity in the early diagnosis of sepsis. More and more 
biomarkers related to genes have been discovered, which 
may provide new insights for the early identification and 
targeted therapy of sepsis.

Inflammasomes are key orchestrators of the innate 
immune response. The activation of neuronal apoptosis 
inhibitory protein (NAIP)/NLR family caspase and the 
recruitment of domain-containing protein 4 (NLRC4) 
inflammasome may be decisive elements for constraining 

gram-negative bacterial infections (41), especially those 
associated with Salmonella typhimurium. NLRC4 is a 
member of the NLR family that is associated with sensing 
cytoplasmic receptors in bacteria. NLRC4 is a dedicated 
flagellin sensor in eukaryotic cells and may be composed 
of a variety of immune complexes (42). In contrast to its 
protective role, a recent study showed that NLRC4 gene 
silencing alleviated inflammatory reactions and reduced 
inflammatory cell infiltration (43). Nlrc4−/− mice showed 
reduced inflammation and controlled bacterial load more 
effectively than wild-type infected mice during gram-
positive pneumonia (44), providing novel ideas for the 
treatment of sepsis. To date, there have been no studies 
examining RGL4 expression during severe infection or 
sepsis. A study exploring the mechanism of RGL4 in lung 
adenocarcinoma (45) showed that RGL4 may be involved in 
immune infiltration, and its decreased expression is highly 
correlated with various types of tumor-infiltrating immune 
cells, especially memory B cells, CD8+T cells, macrophages, 
and neutrophils. RGL4 may have potential applications in 
causing or evading immunosuppression, and these warrant 
further investigation.

Finally, using IPA, we identified 10 gene networks 
involving NLRC4 and RGL4, indicating that there are 
many immune-related pathways involved in the classic 
pathway, such as primary immunodeficiency signaling, 
T cell receptor signaling, inducible co-stimulator ligand 
(iCOSL) signaling in T helper cells, and CTLA4 signaling 
in cytotoxic T lymphocytes. Functional disease pathways 
mainly involve immune inflammatory pathways, such as 
inflammatory responses, immunological diseases, and 
antigen presentation. We demonstrated that NLRC4 and 
RGL4 can interact with other differential genes, which 
also suggests that the two may regulate sepsis by affecting 
the expression of other differential genes in addition 
to their own roles. For instance, CST7, CLEC5a, and 
NEDD4 indirectly interact with NLRC4 and RGL4 in 
gene networks and are also involved in immune regulation 
and inflammatory responses. Transcriptomic profiling has 
verified that neutrophil-specific upregulation of cystatin 
F (encoded by CST7) is a sign of acute inflammation in 
humans (46). CST7 is significantly upregulated in patients 
with sepsis compared to their expression in healthy 
controls (46-48). Myeloid C-type lectin 5A (CLEC5A), 
namely myeloid DAP12-associated lectin-1 (49), plays 
an important role in immune defense, resulting from 
innate immunity. Studies have shown that CLEC5A is a 
critical pattern recognition receptor in Listeria infection 
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(a gram-positive, intracellular bacterium) (50). Activation 
of CLEC5A/TLR2 heterocomplexes boosts formation 
of inflammasomes (NALP3, NLRC4, AIM-2) and causes 
NET (neutrophil extracellular trap) constitution and pro-
inflammatory cytokine release (50-52), and thus, may have 
great potential in the treatment of sepsis. Researchers have 
shown that the E3 ubiquitin ligase Nedd4 is a considerable 
negative regulator of the non-canonical inflammasome 
pathway. Nedd4 deficiency promotes death from sepsis 
and pyroptosis in mice, as a result of non-canonical 
inflammasome activation (53). In fact, by comparison with 
the normal group, the differential genes were abnormally 
expressed in patients with gram-negative sepsis. Target 
binding miRNA and lncRNA were predicted around 
differential genes to build ceRNA (competing endogenous 
RNAs). Thus, lncRNA-miRNA-mRNA interaction was 
obtained.

Interestingly, Akkaya et al. (54) demonstrated a novel 
underlying effect of NLRC4 in mediating a variety of 
eosinophilic functions. NLRC4−/− mice displayed a decreased 
number of eosinophils and impaired T helper 2 (Th2) cell 
responses (such as decreased secretion of IL-5 and IL-13) 
in a model of allergic airway disease induction. They also 
found that Th2 responses weakened after the transfection of 
EoL-1 cells with short interfering RNAs targeting human 
NLRC4. This suggested that high levels of eosinophils and 
NLRC4 are not only involved in allergic responses, but also 
in acute inflammation.

Sepsis begins with a burst of inflammatory cytokines and 
then reaches an immunosuppression stage with cytokine 
depletion, eventually leading to host death. There is no 
accurate standard for the specific course and stage of sepsis. 
Therefore, we can only start to evaluate a patient’s stage 
after the onset of the disease upon admission to hospital, 
which imposes limitations for this study. This approach 
might be reconsidered because early warning signs of sepsis 
are usually nonspecific, and alerting systems may show 
false-positive signals in multiple instances. The functional 
validation of these potential biomarkers for sepsis requires 
further experimentation. In addition, the patient cases that 
satisfied the Sepsis 3.0 diagnostic criteria were not strictly 
associated with sepsis caused by gram-negative bacterial 
infection (no bacterial culture results have been confirmed). 
Nonetheless, our verification results demonstrated a 
difference in key genes, which indicated that the two 
immune cell-related genes may have diagnostic value. 

In conclusion, this study examined the infiltration of 

immune cells by CIBERSORT in gram-negative sepsis and 
provided novel insights into the molecular mechanisms of 
immune cells associated with the pathogenesis of gram-
negative sepsis. Moreover, this current report identified 
NLRC4 and RGL4 as potential diagnostic biomarkers for 
gram-negative sepsis.
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