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Background: Pancreatic acinar cells are susceptible to nuclear factor kappa B (NF-κB)-mediated 
inflammation and resulting cell necrosis during early acute pancreatitis. As adenosine monophosphate-
activated protein kinase alpha (Ampkα)/sirtuin 1 (Sirt1) pathway activity attenuates NF-κB activity, we 
examined whether the Ampkα/Sirt1 axis affects the progression of acute pancreatitis and associated lung 
injury in vivo. Furthermore, we explored the role of the ciliary protein sperm flagellar 2 (Spef2, Kpl2) in 
regulating Ampkα/Sirt1 activity in vitro and in vivo. 
Methods: Pancreatic injury, oxidative stress, acinar cell necrosis and apoptosis, acinar levels of Ampkα/
Sirt1/NF-κB signaling activity, NF-kB-mediated inflammatory markers, and markers of associated lung 
injury were measured in rat models of acute pancreatitis following pharmacological Ampkα activation with 
A769662 or self-complementary recombinant adeno-associated virus serotype 6 (scAAV6)-mediated Spef2 
overexpression. Additional in vivo rescue studies involving Ampkα silencing and/or constitutively active (CA)-
Sirt1 overexpression were performed in acute pancreatitis rats. In vitro immunoblotting and Ampkα activity 
assays were conducted in the pancreatic acinar cell line AR42J.
Results: Pharmacological Ampkα activation or Spef2 overexpression reduced acute pancreatitis severity, 
oxidative stress, necrosis, apoptosis, NF-kB-mediated inflammatory markers, and the degree of associated 
lung injury. Spef2 overexpression in AR42J cells in vitro promoted AmpkαThr172 phosphorylation and Ampkα 
activity. In vivo rescue studies revealed that Spef2’s suppressive effect on acute pancreatitis and associated 
lung injury is mediated via the Ampkα/Sirt1 axis. 
Conclusions: This study established the existence of a Spef2/Ampkα/Sirt1 axis in pancreatic acinar cells 
that is involved in the regulation of NF-κB-mediated acinar cell inflammation and resulting cell necrosis 
during acute pancreatitis.
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Introduction

Acute pancreatitis is a pancreatic inflammatory disorder (1).  
In  the  US,  acute  pancreat i t i s  i s  respons ib le  for 
approximately 279,000 new patient admissions and 
$2.6 billion in costs annually (1,2). Acute pancreatitis 
can be mild or severe, with the severe form causing 
significant pancreatic acinar cell necrosis and intense local 
inflammation. If left untreated, severe acute pancreatitis can 
lead to further systemic complications such as inflammatory 
response syndrome and multiple organ dysfunction. Severe 
acute pancreatitis can lead to acute lung injury, which is 
typically caused by severe infection (3). Acute lung injury 
is the most common distant organ dysfunction secondary 
to severe acute pancreatitis with an incidence of 27.7%. 
Due to unhealthy lifestyle habits (e.g., chronic alcohol 
consumption, overeating) (3), the incidence of severe acute 
pancreatitis has risen dramatically in recent years, and over 
50% of associated deaths occur within the first 2 weeks 
due to systemic complications (2,4). The current standard 
of care for severe acute pancreatitis is supportive care and 
fluid resuscitation, as there are no specific therapeutic 
interventions to treat this disease at present (5,6). 

Previous research demonstrates that the transcription 
factor nuclear factor kappa B (NF-κB) plays a key role in 
activating a pro-inflammatory cascade that can result in 
acute pancreatitis progression (6,7). As the role of NF-κB-
mediated inflammation during severe acute pancreatitis 
cases is now well-established, many believe this to be the 
dominating factor of disease progression (7,8). One of the 
first signs of multiple organ dysfunction and the leading 
cause of mortality in severe acute pancreatitis patients is 
acute respiratory distress syndrome (ARDS) (9,10). During 
the early phases of severe acute pancreatitis, immune cells 
such as neutrophils, alveolar macrophages, and lymphocytes 
infiltrate the lung parenchyma. As in severe acute 
pancreatitis, NF-κB promotes lung alveolar macrophage 
production of pro-inflammatory cytokines and increases 
the amount of lung injury (11,12). Consequently, a greater 
understanding of the molecular mechanisms that control 
NF-κB-mediated inflammation during the early phases 
of severe acute pancreatitis may be key in finding new 
therapeutic targets for the disease.

The serine/threonine kinase adenosine monophosphate-
activated protein kinase alpha (AMPKα, Ampkα) is a stress 
sensor that becomes activated in response to conditions 
of low energy (13). Upon activation, Ampkα initiates 
catabolic pathways that result in adenosine triphosphate 

(ATP) generation, while simultaneously inhibiting anabolic 
pathways to avoid ATP consumption (13). It is well-
established that Ampkα activity is negatively correlated 
with inflammation (14-16). Furthermore, several studies 
have shown that Ampkα upregulates expression of sirtuin 
1 (Sirt1), which functions to negatively regulate NF-
κB activity (17,18). Consequently, some researchers have 
attempted to target this Ampkα/Sirt1 axis in order to treat 
other NF-κB-mediated inflammatory diseases akin to severe 
acute pancreatitis (19).

With respect  to  severe acute pancreat i t i s ,  the 
phosphorylation of Ampkα has been shown to attenuate 
NF-κB activity in an animal model of acute pancreatitis, 
and the use of an Ampkα inhibitor abolishes this protective 
effect (20). As a result, the Ampkα/Sirt1 axis could prove to 
be an important pathway responsible for NF-κB-mediated 
acinar cell necrosis and inflammation in severe acute 
pancreatitis and associated lung injury. As the impact of 
Ampkα/Sirt1 on acinar cell necrosis and inflammation is still 
not clear, here we examined whether the pharmacological 
activation of the Ampkα/Sirt1 axis affects the progression 
of acute pancreatitis and associated lung injury in vivo. 
Furthermore, using acinar cell-specific self-complementary 
recombinant adeno-associated virus serotype 6 (scAAV6)-
mediated overexpression, we explored the role of the ciliary 
protein sperm flagellar 2 (Spef2, Kpl2) in regulating Ampkα/
Sirt1 activity in vitro and in acute pancreatitis and associated 
lung injury in vivo. We present the following article in 
accordance with the ARRIVE reporting checklist (available 
at https://atm.amegroups.com/article/view/10.21037/atm-
22-3118/rc).

Methods

Ethical statement

Institutional approval for this study was obtained in 
advance from the Ethics Committee of Mindong Hospital 
Affiliated to Fujian Medical University (Fu’an, China; 
No. 20200126K). All animal experiments were conducted 
in accordance with the National Institutes of Health 
(NIH) Guide for the Care and Use of Laboratory Animals 
(Bethesda, MD, USA). A protocol was prepared before the 
study without registration.

Cell lines and cell culture

The rat pancreatic acinar cell line AR42J was obtained from 

https://atm.amegroups.com/article/view/10.21037/atm-22-3118/rc
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the American Type Culture Collection (ATCC). Cells were 
cultured at 37 ℃ in 5% CO2 in Dulbecco’s modified Eagle’s 
media (DMEM; Gibco) supplemented with fetal bovine 
serum (FBS, 10%), penicillin (100 U/mL) and streptomycin 
(100 mg/mL) (Invitrogen).

Adenoviral vectors and small-interfering RNAs (siRNAs)

Self-complementary recombinant adeno-associated virus 
serotype 6 (scAAV6) vector expressing a non-coding 
control cDNA sequence (scAAV6.NC), rat Spef2 cDNA 
(scAAV6.Spef2), or a combination of rat Spef2 cDNA and 
constitutively-active rat Sirt1 cDNA (scAAV6.Spef2+CA-
Sirt1) under the control of the pancreatic acinar cell-
specific rat elastase I (elastase 3B, Ela3b) promoter (21) were 
constructed by Genepharma (Shanghai, China). Briefly, 
cDNA fragments were amplified with reverse transcription 
polymerase chain reaction. Recombinant scAAV6 vectors 
containing the sequences were prepared in HEK293 cells as 
previously described (22). The adenoviral vector titer was 
determined using the gradient dilution method, and the 
prepared adenoviral particles were stored at −80 ℃.

We employed a combination of three siRNAs against 
rat Prkaa1 (Ampkα, NM_019142.2) (RiboBio Co. Ltd., 
China) in order to ensure efficient knockdown (siAmpkα 
= rat Ampkα siRNA.1 + rat Ampkα siRNA.2 + rat Ampkα 
siRNA.3). Sequences were as follows: rat Ampkα siRNA.1 
forward 5'-UUAC AGA GGG AUU CAA AUA CUG 
AGG-3' and reverse 5'-CCU CAG UAU UUG AAU CCC 
UCU GUAA-3'; rat Ampkα siRNA.2 forward 5'-UGAU 
CAU CGA GGA AAG AAU CGG GUG-3' and reverse 5'-
CAC CCG AUU CUU UCC UCG AUG AUCA-3'; rat 
Ampkα siRNA.3 forward 5'-AUAA GUA AGU CCU ACU 
AUC CAC UUG-3' and reverse 5'-CAA GUG GAU AGU 
AGG ACU UAC UUAU-3'; and negative control siRNA 
(siCtrl) forward 5'-UUC UCC GAA CGU GUC ACGU-3' 
and reverse 5'-ACG UGA CAC GUU CGG AGAA-3'.

Rat models of acute pancreatitis

Wistar rats were obtained from Beijing Vital River 
Laboratory Animal Technology Co., Ltd., China. All rats 
were male and weighted between 200–250 g. Rats were 
housed in large metallic cages (three per cage) under a 
standard natural day-light cycle at 25 ±1 ℃ and provided 
standard chow and water ad libitum. 

A rat model of acute pancreatitis was established as 
previously described (23-27). Sample sizes of experimental 

cohorts were based on previously published studies using 
the same rat model (28,29). In brief, anesthetized rats were 
treated with urethane (20%; 0.5 mL/kg). After laparotomy, 
the hepatic duct was identified and clamped near the hilus of 
the livers. A retrograde infusion of sodium taurocholate (5%,  
1 mL/kg; Jingmei Biotechnology, China) at a constant rate 
of 0.1 mL/min was performed through the anterior wall of 
the duodenum using a 1-mL syringe. The sham-operated 
control rats received an infusion with an equivalent volume 
of saline. After ten minutes the clamp was removed, 
followed by abdominal closure.

For the first series of in vivo experiments, rats were 
randomly assigned to three groups by random number 
generator: (I) sham-operated control as described above; 
(II) acute pancreatitis + vehicle (0.3 mL/kg DMSO 
administered intravenously 1 hour post injury); and (III) 
acute pancreatitis + the Ampkα agonist A769662 [10 mg/kg  
in 0.3 mL/kg DMSO administered intravenously 1 hour 
post injury (30)]. 

For the second series of in vivo experiments, rats were 
randomly assigned into three groups by random number 
generator: (I) sham-operated control as described above; (II) 
acute pancreatitis + scAAV6.NC; and (III) acute pancreatitis 
+ scAAV6.Spef2. Rats were injected with scAAV6.NC or 
scAAV6.Spef2 (5×1011 viral particles/rat) via retrograde 
pancreatic ductal delivery three weeks prior to acute 
pancreatitis induction as previously described (22). The 
ductal delivery procedure did not affect acute pancreatitis 
markers or systemic inflammatory markers compared to 
sham-operated control (Table S1). Post-surgery, rats were 
placed on a heating pad to maintain body temperature and 
were subcutaneously injected with carprofen (10 mg/kg) to 
alleviate post-operative pain/discomfort. 

For the third series of in vivo experiments, rats were 
randomly assigned into four groups: (I) sham-operated 
control as described above; (II) acute pancreatitis + scAAV6.
NC + siCtrl; (III) acute pancreatitis + scAAV6.Spef2 + 
siCtrl; (IV) acute pancreatitis + scAAV6.Spef2 + siAmpkα; 
and (V) acute pancreatitis + scAAV6.Spef2 + CA-Sirt1 + 
siAmpkα. scAAV6 vectors were delivered as described above. 
For siRNA therapy, siCtrl or siAmpkα were administered by 
daily infusion for three days prior to the induction of acute 
pancreatitis. 

After 24 hours following acute pancreatitis induction, 
rats were sacrificed. A priori, subjects were to be excluded 
if they did not survive until this humane endpoint. No 
subjects were excluded from this study, and there were no 
unexpected adverse events. Pancreatic tissue, lung tissue, 

https://cdn.amegroups.cn/static/public/ATM-22-3118-supplementary.pdf
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bronchoalveolar lavage fluid (BALF), and peripheral blood 
samples were collected for further examination. Rat serum 
was isolated via centrifugation of whole blood at 3,000 ×g for 
15 minutes and then stored at −80 ℃ for downstream use. 

Tissue and serum measurements

T h e  l e v e l s  o f  l a c t a t e  d e h y d r o g e n a s e  ( L D H ) , 
malondialdehyde (MDA), lipid peroxide (LPO), and 
myeloperoxidase (MPO) from pancreatic tissue were 
measured according to the manufacturer’s protocol 
(Jiancheng Bioengineering Institute, China). C-reactive 
protein (CRP) levels were measured from serum as 
previously described using a biochemical analyser (Toshiba, 
Japan) (25). Serum interleukin (IL)-18, tumor necrosis 
factor-alpha (TNF-α), IL-6, and IL-1β levels as well as 
in vitro pancreatic acinar cell LDH secretion levels were 
assayed using ELISA kits (R&D Systems). Serum amylase 
and lipase levels were determined by starch-iodine assay and 
nephelometry, respectively, according to the kit instructions 
(Nanjing Jiancheng Bioengineering Institute).

Hematoxylin and eosin (H&E) tissue staining

Tissue damage and inflammation was calculated from H&E 
stated tissue sections visualized under a light microscope 
(40×). The scoring system used was previously reported by 
Kusske et al. (31).

Lung tissue analyses

Tissues were fixed, dehydrated, embedded, and cut into thin 
4-mm sections for H&E staining and blinded microscopy 
examination. Lung lesions were scored in accordance to 
a previously reported criterion (32,33). The upper-lung 
lobe on the right side was collected and the wet weight was 
measured to evaluate lung edema. Samples were dehydrated 
for 48 hours in a 70 ℃ oven and then reweighed. These 
data were used to calculate the lung W/D ratio. Lung 
MPO activity assays were conducted as previously reported 
(34,35). Absorbance (460 nm) was measured at 25 ℃ and 
the ability of samples to break down H2O2 in the presence 
of O-dianisidine dihydrochloride was measured.

Bronchoalveolar lavage fluid (BALF) analyses

Frozen BALF was homogenized in preparation for ELISA 
assays. IL-1β and TNF-α were measured according to the 

manufacturer’s protocol. Total protein levels were measured 
using Coomassie brilliant blue staining.

Establishment of in vitro models 

AR42J cells were seeded in 10-cm dishes at a density 
of 1×107 cells/dish in 10 mL medium with 100 nM 
dexamethasone (Sigma) for 24 h to enhance the acinar 
phenotype (36). For in vitro adenoviral experiments, AR42J 
cells were then treated with scAAV6.NC or scAAV6.
Spef2 (4×108 viral particles, multiplicity of infection =40).  
72 hours following viral infection, overexpression efficacy 
was measured using qPCR and immunoblot analysis. 

For in vitro siRNA experiments, dexamethasone-treated 
AR42J cells from above were plated at 50% confluence 
in serum-free media and transfected with siRNA (50 nM 
each siRNA) using Xtreme siRNA transfection reagent 
in accordance with the manufacturer’s protocol (RiboBio, 
China). In control cells, an equivalent volume of PBS was 
added. Twelve hours following transfection, knockdown 
efficacy was measured using qPCR and immunoblot analysis. 

72 hours following viral infection and 12 hours following 
siRNA transfection, AR42J cells were incubated with 
cerulein (Sigma-Aldrich) to establish an in vitro model 
of acute pancreatitis (23). Cell counting Kit-8 (CCK-
8; Dojindo Molecular Technologies, Japan) was used to 
measure cell viability.

Terminal deoxynucleotidyl transferase dUTP nick end 
labeling (TUNEL) assay

TUNEL staining was conducted to measure cell apoptosis 
levels. The TUNEL detection kit was followed as per 
manufacturer’s protocol (HRP kit DBA; Italy). In brief, 
tissue sections were covered with proteinase K (15 μg/mL)  
at room temperature for 15 minutes.  A 5-minute 
incubation at room temperature with H2O2 (3%) was used 
to inactivate endogenous peroxidases. Next, sections were 
incubated with TUNEL buffer (37 ℃) for 90 minutes in 
a humidified atmosphere. Then, sections were incubated 
with horseradish peroxidase (HRP)-conjugated secondary 
antibodies at room temperature for 30 minutes before 
diamino-benzidine (DAB) was used to visualize the signal. 
The number of positive cells per field (400×) were counted 
for 10 fields per slide. 

To assess different treatments, AR42J cells were 
plated into a 24-well plate and incubated with different 
treatments. The One Stem TUNEL Assay Kit (Beyotime 
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Biotechnology, China) was used to calculated apoptosis 
as per the manufacturer’s protocol. Signal intensity was 
measured via fluorescence microscopy.

Ampkα activity assay

Endogenous Ampkα activity in AR42J cell lysates was 
assayed as previously described (37). Lysate samples were 
diluted to a concentration of 1 mg/mL in resuspension 
buffer containing 50 mM Tris HCl (pH 8, 4 ℃), 1 mM 
EDTA, 10% glycerol (w/v), 0.02% Brij-35 (w/v), 1 mM 
dithiothreitol, protease, and phosphatase inhibitors (Sigma). 
To incorporate 32P into the AMARA peptide, diluted 
sample (2 μL) was incubated with 200 μM AMARA peptide 
(AMARAASAAALARRR), 200 μM [32P]ATP[γ-P], 200 μM 
AMP in 40 mM HEPES–NaOH buffer (pH 7.0), 80 mM 
NaCl, 5 mM MgCl2, 0.8 mM dithiothreitol, and 8% (w/v)  
glycerol (to achieve a total volume of 25 μL) for 5 min at 
30 ℃. At the end of 5 min, 15 μL mixture was blotted onto 
1 cm2 phosphocellulose paper, which was then washed 
thrice (10 min for each wash) in 150 mM phosphoric acid 
followed by a final 5 min wash in pure acetone. The papers 
were dried and counted in 4 mL scintillation fluid (EcoLite). 
Ampkα activity was reported as picomoles of incorporated 
32P per minute per mg of protein.

Immunofluorescence

Cells were plated into 24 well plates and fixed using 
paraformaldehyde (4%) for 30 minutes before a further 
20-minute incubation with Triton X-100 (0.5%) to 
permeabilize cells. Next, cells were incubated for 2 hours 
with cleaved caspase-3 (CC-3) antibodies (Abcam) the 
washed three times with PBS. Secondary antibodies were 
added for a 1 hour incubated and DAPI was used as a cell 
nuclei stain. Finally, cells were visualized using a confocal 
microscope (Olympus).

ATP assays

ATP levels were calculated using the Enhanced ATP 
Assay as per the manufacturer’s protocol (S0027; Beyotime 
Biotechnology, China). Levels are expressed as nmol/
OD730 and measured against a standard curve.

Cell necrosis and apoptosis via flow cytometry

The FITC Annexin V Apoptosis Detection Kit I (BD 

Biosciences) was used to calculate cell necrosis and 
apoptosis. In brief, cells were washed with PBS and 
resuspended in binding buffer. Next, cells were incubated 
with Annexin V and PI according to the kit protocols. 
Finally, cells were analysed via flow cytometry (Epics 
Altra II, Beckman Coulter). Necrotic cells were defined as 
Annexin V+/PI+ (dot plot’s upper-right quadrant), while 
apoptotic cells were defined as Annexin V+/PI− (38) (dot 
plot’s lower-right quandrant). 

Quantitative real-time reverse transcription PCR (qPCR) 
analysis

qPCR was used to assess mRNA expression levels in 
pancreatic tissues as previously reported (39). Total RNA 
was extracted using an RNA Extraction Kit (Invitrogen) and 
RNA was converted into cDNA as per the manufacturer’s 
protocol (Toyobo, China). qPCR was conducted using 
SYBER Prime Script reagent and a LightCycler PCR 
System (Roche). The primer sequences were as follows: rat 
Spef2 forward 5'-GAA GTA TTG ATG ATG AGA TTA 
CA-3' and reverse 5'-CGA TAG TTG CTG ATG GAT-
3'; rat Ampkα forward 5'-ATC CGC AGA GAG ATC CAG 
AA-3' and reverse 5'-CGT CGA CTC TCC TTT TCG 
TC-3'; rat Sirt1 forward 5'-TGA AGC TGT TCG TGG 
AGA TAT TTTT-3' and reverse 5'-CAT GAT GGC AAG 
TGG CTC AT-3'; and rat Gapdh forward 5'-TGG AGT 
CTA CTG GCG TCTT-3' and reverse 5'-TGT CAT ATT 
TCT CGT GGT TCA-3'. PCR cycling conditions were as 
follows: amplification at 95 ℃ for 30 seconds, followed by 
40 cycles at 95 ℃ for 5 seconds to denature, and 60 ℃ for 
20 second to anneal. Expression levels were calculated using 
the 2−ΔΔCT method with rat Gapdh as a housekeeping gene.

Western blotting analysis

Western blotting was used as previous reported (40,41). In 
brief, cells or tissues were homogenized and lysed in protein 
lysis buffer supplemented with protease inhibitors (Beyotime 
Biotechnology, China) and phosphatase inhibitors (Roche). 
Following centrifugation, the supernatant was collected. 
Protein lysates were then subjected to SDS-PAGE 
(Jiancheng Bioengineering Institute, China). Protein within 
the gel was transferred onto polyvinylidene difluoride 
membranes. Non-specific proteins were blocked using 5% 
milk, followed by an incubation with primary antibodies 
against: rat Spef2/Kpl2 (#orb157763, Biorbyt), rat Ampk 
alpha subunit (Ampkα; #2532, CST), rat phospho-Ampk 
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alphaThr172 subunit (p-AmpkαThr172; #2535, CST), rat Sirt1 
(#9475, CST), rat NF-κB p65 subunit (p65; #4764, CST), 
rat phospho-NF-κB p65Ser536 subunit (p-p65Ser536; #3033, 
CST), rat TNF-α (#ab66579, Abcam), rat IL-1β (#NB600-
633, Novus Biologicals), and rat cleaved caspase-3 (CC-
3; #9664, CST). Rat β-actin (#4967, CST) was used as 
a loading control. Next, membranes were washed and 
incubated with a horseradish peroxidase (HRP)-conjugated 
mouse anti-rabbit IgG secondary antibody (#5127, CST). 
Protein was detected via enhanced chemiluminescence 
(Pierce Chemical). Protein expression was calculated using 
ImageJ densitometry relative to β-actin expression.

Statistical analyses

Data represented as means ± standard deviations (SDs). 
GraphPad Prism 6.0 was used to perform all statistical 
analyses. Student’s t-test or one-way ANOVA with a post-
hoc Bonferroni test was conducted to compare means 
values between groups. P<0.05 was considered statistically 
significant.

Results

Enhancing Ampkα activity attenuates acute pancreatitis 
and associated lung injury in vivo

The morphological structure of pancreatic tissue was 
normal in the sham-operated control group (Figure 1A).  
The pancreatic tissue collected from rats in the acute 
pancreatitis group treated with a vehicle (dimethyl 
sulfoxide, DMSO) showed noticeable edema, hemorrhage, 
neutrophil infiltration, cell necrosis, and disrupted acini 
and lobule structures 24 hours post-treatment. However, 
in the acute pancreatitis rats treated with the selective 
Ampkα agonist A769662, there was a significant reduction 
in edema, hemorrhage, neutrophil infiltration, and 
cell necrosis when compared to the rats in the vehicle-
treated acute pancreatitis group. Pathological scoring of 
pancreatic tissues 24 hours post-treatment matched the 
foregoing observations (Figure 1B). In comparison to those 
in the vehicle-treated acute pancreatitis group, the rats 
treated with A769662 had significantly reduced pancreatic 
expression levels of the stress markers lactate dehydrogenase 
(LDH), malondialdehyde (MDA), lipid peroxide (LPO), 
and myeloperoxidase (MPO; Figure 1C). Pancreatic ATP 
levels, an indicator of cell health, were significantly reduced 
in the vehicle-treated acute pancreatitis rats when compared 

to those in the sham-operated control rats (Figure 1D). 
However, the A769662-treated acute pancreatitis rats had 
higher levels of ATP when compared to the vehicle-treated 
acute pancreatitis rats. Necrosis levels were significantly 
increased in the vehicle-treated acute pancreatitis rats 
when compared to those in the sham-operated control rats  
(Figure 1E) .  However, the A769662-treated acute 
pancreatitis rats had lower levels of necrosis when compared 
to the vehicle-treated acute pancreatitis rats.

To measure pancreatic tissue apoptosis, a terminal 
deoxynucleotidyl transferase dUTP nick end labeling 
(TUNEL) assay was performed on pancreatic tissue 
samples from each group. Pancreatic apoptosis levels 
were significantly elevated in the vehicle-treated acute 
pancreatitis rats when compared to those in the sham-
operated control rats. However, the A769662-treated 
acute pancreatitis rats had lower levels of apoptosis 
when compared to the vehicle-treated acute pancreatitis 
rats (Figure S1A,S1B). Furthermore, these differences 
between the groups were mirrored by the protein levels 
of the apoptotic mediator cleaved caspase-3 (CC-3;  
Figure S1C,S1D).

Analyzing Ampkα/Sirt1/NF-κB signaling activity in 
pancreatic tissue, we found AmpkαThr172 phosphorylation, 
Sirt1 expression, and NF-κB p65 phosphorylation to 
be significantly elevated in the vehicle-treated acute 
pancreatitis rats compared to that in the sham-operated 
control rats (Figure 1F and Figure S2). However, these levels 
were reduced in the A769662-treated acute pancreatitis 
rats. Consistent with this, serum collected 24 hours post-
treatment showed that the vehicle-treated acute pancreatitis 
rats had elevated levels of the pro-inflammatory cytokines 
CRP, TNF-α, IL-1β, IL-6, and IL-18 when compared to 
the sham-operated control rats. However, these levels were 
reduced in the A769662-treated acute pancreatitis rats 
(Figure 1G). 

We next assessed the rat subjects for acute pancreatitis-
associated lung injury 24 hours post-treatment. The 
morphological structure of the lung tissue was normal in the 
sham-operated control group. In the vehicle-treated acute 
pancreatitis rats, intense edema, severe alveolar congestions, 
and immune cell infiltration occurred (Figure 1H). In the 
A769662-treated acute pancreatitis group, the degree of 
edema and immune cell infiltration was markedly reduced. 
The pathological scores also demonstrated improvements 
in the A769662-treated acute pancreatitis group (Figure 1I).  
The lung wet-to-dry (W/D) ratio was increased in the 
vehicle-treated acute pancreatitis rats relative to the sham-

https://cdn.amegroups.cn/static/public/ATM-22-3118-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-3118-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-3118-supplementary.pdf
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Figure 1 Enhancing Ampkα activity attenuates acute pancreatitis and associated lung injury in vivo. Pancreatic and lung tissues and 
peripheral blood samples were harvested from sham-operated control (SO Ctrl), acute pancreatitis + DMSO vehicle (AP + Veh), and acute 
pancreatitis + Ampkα agonist A769662 (AP + A76) rats 24 hours post-induction. (A) Representative H&E staining of pancreatic tissues. 
(B) Pathological scoring of pancreatic injury. (C) Pancreatic LDH, MDA, LPO, and MPO activity levels. (D) Pancreatic ATP levels. (E) 
Pancreatic necrosis levels. (F) Representative immunoblots of pancreatic Ampkα/Sirt1/NF-κB signaling proteins. (G) Serum CRP, TNF-α, 
IL-1β, IL-6, and IL-18 levels from peripheral blood samples. (H) H&E staining of lung tissue showing extensive edema, alveolar congestion, 
and immune cell infiltration (scale bar =500 μm). (I) Pathological scoring of lung tissue injury. (J) Lung W/D ratio. (K) Lung MPO activity. (L) 
BALF TNF-α and IL-1β levels and (M) BALF protein content. Data represented as means ± SDs. N=6 rats per cohort. *P<0.05, **P<0.01 
(one-way ANOVA with Bonferroni post-hoc). DMSO, dimethyl sulfoxide; Ampkα, adenosine monophosphate-activated protein kinase 
alpha; H&E, hematoxylin and eosin; LDH, lactate dehydrogenase; MDA, malondialdehyde; LPO, lipid peroxide; MPO, myeloperoxidase; 
ATP, adenosine triphosphate; Sirt1, sirtuin 1; NF-κB, nuclear factor kappa B; CRP, C-reactive protein; TNF-α, tumor necrosis factor alpha; 
IL-1β, interleukin-1 beta; W/D, wet-to-dry; BALF, bronchoalveolar lavage fluid; SD, standard deviation; ANOVA, analysis of variance.
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operated control rats (Figure 1J) and greatly reduced in the 
A769662-treated acute pancreatitis rats. Lung MPO activity 
was increased in the vehicle-treated acute pancreatitis rats 
(Figure 1K) and greatly reduced in the A769662-treated 
acute pancreatitis rats. Bronchoalveolar lavage fluid (BALF) 
TNF-α and IL-1β levels were elevated in the vehicle-
treated acute pancreatitis group and greatly reduced in 
the A769662-treated acute pancreatitis group (Figure 1L). 
BALF protein levels were greatly elevated in the vehicle-
treated acute pancreatitis group (Figure 1M) and greatly 

reduced in the A769662-treated acute pancreatitis group. 
Collectively, these data demonstrate that Ampkα activation 
offers a protective role in acute pancreatitis and associated 
lung injury in vivo.

Overexpression of Spef2 promotes Ampkα activity in 
pancreatic acinar cells in vitro

Most eukaryotic cells possess a microtubular protrusion 
called a primary cilium that regulates intracellular signaling 
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effectors associated with cell growth and proliferation, 
including AMPK and liver kinase B1 (LKB1) (42). In silico 
analysis of previously-published gene microarray data 
derived from wild-type (WT) mice over a 5-day period 
following cerulein-induced acute pancreatitis [GEO: 
GSE40895 (43)] revealed that the ciliary protein Spef2 is the 
most significantly downregulated gene in acute pancreatitis 
(Figure S3A). We also confirmed pancreatic Spef2 
downregulation in gene microarray data from a shorter-
term (10-hour) murine model of cerulein-induced acute 
pancreatitis [GEO: GSE109227 (44)]. Notably, our Search 
Tool for the Retrieval of Interacting Genes (STRING) 
analysis of the Spef2 protein revealed that Spef2 interacts 
with adenosine kinase (Adk; Figure S3B). Adk is a conserved 
phosphotransferase that converts adenosine into AMP, 
which stimulates Ampkα activity (45,46) by phosphorylation 
at its T172 residue. Also, previous research indicates that 
the Spef2 protein itself contains an adenylate kinase (AK) 
domain (47), which catalyzes the interconversion of adenine 
nucleotides [2 adenosine diphosphate (ADP) ↔ AMP + 
ATP] and maintains AMP-Ampkα signaling (48). 

Based on this evidence, we hypothesized that enhancing 
Spef2 expression may promote Ampkα activity in pancreatic 
acinar cells. Following adenoviral vector delivery of rat 
Spef2 (scAAV6.Spef2) or a negative control (scAAV6.Ctrl) 
under the control of the rat elastase I promoter to enable 
pancreatic acinar cell-specific Spef2 overexpression, we 
conducted immunoblotting and Ampkα activity assays 
in scAAV6.Ctrl AR42J cells and scAAV6.Spef2 AR42J 
cells. We confirmed Spef2 messenger RNA (mRNA) 
and protein overexpression in scAAV6.Spef2 AR42J cells  
(Figure S3C,S3D). We also found that Spef2 overexpression 
by scAAV6.Spef2 significantly increased AmpkαThr172 
phosphorylation (Figure S3D,S3E) and Ampkα activity 
(Figure S3F) in AR42J whole cell lysates.

Pancreatic acinar cell-specific Spef2 overexpression 
attenuates acute pancreatitis and associated lung injury in 
vivo

As Spef2 is downregulated in acute pancreatitis (43,44) and 
Spef2 promotes Ampkα activation in vitro, we hypothesized 
that Spef2 overexpression in pancreatic acinar cells in vivo 
would offer a protective role against acute pancreatitis and 
associated lung injury. Therefore, we performed an in vivo 
experiment using scAAV6.Spef2 or scAAV6.Ctrl to enable 
acinar cell-specific Spef2 overexpression. 

As with the previous experimental series, we assessed 

pancreatic injury 24 hours post-treatment. We confirmed 
scAAV6-driven pancreatic Spef2 overexpression by 
quantitative polymerase chain reaction (qPCR; Figure S4). 
Hematoxylin and eosin (H&E) staining and pathological 
scoring of pancreatic tissue (Figure 2A,2B); pancreatic LDH, 
MDA, LPO, and MPO assays (Figure 2C); pancreatic ATP 
levels (Figure 2D); pancreatic necrosis levels (Figure 2E);  
pancreatic apoptosis levels (Figure S5); immunoblotting 
of Spef2 and Ampkα/Sirt1/NF-κB signaling proteins  
(Figure 2F and Figure S6); and serum levels of inflammatory 
mediators (Figure 2G) revealed that Spef2 overexpression 
offered a protective role in acute pancreatitis in vivo. 
In addition, assessment of acute pancreatitis-associated 
lung injury 24 hours post-treatment revealed that 
Spef2 overexpression offered a protective role in acute 
pancreatitis-associated lung injury in vivo (Figure 2H-2M). 

Spef2’s suppressive effect on in vitro pancreatic acinar cell 
death and inflammation mediated via the Ampkα/Sirt1 
axis 

As Spef2 promotes Ampkα activation in vitro and offers a 
protective role in acute pancreatitis and associated lung 
injury in vivo, we hypothesized that Spef2’s effects may 
be mediated through the Ampkα/Sirt1 axis. Therefore, 
we conducted a series of in vitro rescue studies involving 
delivery of scAAV6.Spef2 (for Spef2 overexpression), 
siAmpkα (for Ampkα silencing), and/or scAAV6.CA-
Sirt1 [for constitutively active (CA)-Sirt1 overexpression] 
to cerulein-treated AR42J cells. We confirmed scAAV6-
driven Spef2 and Sirt1 mRNA overexpression by qPCR as 
well as Ampkα mRNA silencing by siAmpkα in AR42J cells  
(Figure S7). We also demonstrated that protein levels of 
Spef2 were higher in cerulein + scAAV6.Spef2 + siCtrl 
AR42J cells than in cerulein + scAAV6.NC + siCtrl AR42J 
cells. Moreover, the cerulein + scAAV6.Spef2 + siAmpkα 
AR42J cells had significantly reduced protein levels of 
Ampkα and Sirt1 when compared to the cerulein + scAAV6.
Spef2 + siCtrl AR42J cells. We also demonstrated that 
protein levels of Sirt1 were restored in cerulein + scAAV6.
Spef2+ CA-Sirt1 + siAmpkα AR42J cells (Figure 3A and 
Figure S8). 

Consistent with our in vivo observations, AmpkαThr172 
phosphorylation and Sirt1 expression were downregulated 
while NF-κB p65 phosphorylation, TNF-α expression, 
and IL-1β expression were upregulated in cerulein-treated 
AR42J cells compared to in control cells (Figure 3A and 
Figure S8). Spef2 overexpression enhanced AmpkαThr172 

https://cdn.amegroups.cn/static/public/ATM-22-3118-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-3118-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-3118-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-3118-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-3118-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-3118-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-3118-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-3118-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-3118-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-3118-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-3118-supplementary.pdf
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Figure 2 Pancreatic acinar cell-specific Spef2 overexpression attenuates acute pancreatitis and associated lung injury in vivo. Pancreatic 
and lung tissues and peripheral blood samples were harvested from sham-operated control (SO Ctrl), acute pancreatitis + DMSO vehicle 
(AP + Veh), and acute pancreatitis + scAAV6-delivered Spef2 (AP + scAAV6.Spef2) rats 24 hours post-induction. (A) Representative H&E 
staining of pancreatic tissues. (B) Pathological scoring of pancreatic injury. (C) Pancreatic LDH, MDA, LPO, and MPO activity levels. (D) 
Pancreatic ATP levels. (E) Pancreatic necrosis levels. (F) Representative immunoblots of pancreatic Spef2 and Ampkα/Sirt1/NF-κB signaling 
proteins. (G) Serum CRP, TNF-α, IL-1β, IL-6, and IL-18 levels from peripheral blood samples. (H) H&E staining of lung tissue showing 
extensive edema, alveolar congestion, and immune cell infiltration (scale bar =500 μm). (I) Pathological scoring of lung tissue injury. (J) Lung 
W/D ratio. (K) Lung MPO activity. (L) BALF TNF-α and IL-1β levels and (M) BALF protein content. Data represented as means ± SDs. 
N=6 rats per cohort. *P<0.05, **P<0.01 (one-way ANOVA with Bonferroni post-hoc). Spef2, sperm flagellar 2; DMSO, dimethyl sulfoxide; 
H&E, hematoxylin and eosin; LDH, lactate dehydrogenase; MDA, malondialdehyde; LPO, lipid peroxide; MPO, myeloperoxidase; ATP, 
adenosine triphosphate; Ampkα, adenosine monophosphate-activated protein kinase alpha; Sirt1, sirtuin 1; NF-κB, nuclear factor kappa B; 
CRP, C-reactive protein; TNF-α, tumor necrosis factor alpha; IL-1β, interleukin-1 beta; W/D, wet-to-dry; BALF, bronchoalveolar lavage 
fluid; SD, standard deviation; ANOVA, analysis of variance. 
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phosphorylation and Sirt1 expression and reduced NF-
κB p65 phosphorylation in cerulein-treated AR42J cells 
(Figure 3A and Figure S8). Addition of siAmpkα to Spef2 
overexpression AR42J cells knocked-down AmpkαThr172 
phosphorylation and Sirt1 expression and enhanced 
NF-κB p65 phosphorylation. Addition of CA-Sirt1 
overexpression to the above cells rescued the effects of 
siAmpkα and restored Spef2’s downregulation of NF-κB 
p65 phosphorylation. 

LDH assays (Figure 3B), ATP assays (Figure 3C), 
necrosis assays (Figure 3D), TUNEL and CC-3 staining 
assays (Figure 3E-3H), and inflammatory mediator release 
assays (Figure 3I) revealed that cerulein-treated AR42J 
cells showed greater oxidative stress, necrosis, apoptosis, 
and inflammation compared to control cells. Spef2 
overexpression reduced these effects in cerulein-treated 
AR42J cells (Figure 3B-3I). Addition of siAmpkα to Spef2 
overexpression AR42J cells enhanced these effects, while 

https://cdn.amegroups.cn/static/public/ATM-22-3118-supplementary.pdf
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Figure 3 Spef2’s suppressive effect on in vitro pancreatic acinar cell necrosis and inflammation mediated via the Ampkα/Sirt1 axis. 72 hours 
following scAAV6.NC, scAAV6.Spef2, or scAAV6.Spef2 + CA-Sirt1 infection and 12 hours following siCtrl or siAmpkα transfection, AR42J 
cells were incubated with cerulein to establish an in vitro model of acute pancreatitis. (A) Representative immunoblots of pancreatic Spef2 
and Ampkα/Sirt1/NF-κB signaling proteins. (B) LDH levels. (C) ATP levels. (D) Cell necrosis levels. (E) Representative TUNEL staining 
images and (F) associated quantitative measurements of apoptosis. (G) Representative CC-3 fluorescent staining images. CC-3 staining in 
green and DAPI nuclei staining in blue (scale bar =200 μm). (H) IOD quantitation of fluorescent CC-3 staining. (I) Cell supernatant TNF-α 
and IL-1β levels. Data represented as means ± SDs. N=3 biological replicates × 2 technical replicates. *P<0.05, **P<0.01 (one-way ANOVA 
with Bonferroni post-hoc). Spef2, sperm flagellar 2; Ampkα, adenosine monophosphate-activated protein kinase alpha; Sirt1, sirtuin 1; 
CA, constitutively active; NF-κB, nuclear factor kappa B; LDH, lactate dehydrogenase; ATP, adenosine triphosphate; TUNEL, terminal 
deoxynucleotidyl transferase dUTP nick end labeling; CC-3, cleaved caspase-3; DAPI, 4',6-diamidino-2-phenylindole; TNF-α, tumor 
necrosis factor alpha; IL-1β, interleukin-1 beta; SD, standard deviation; ANOVA, analysis of variance; IOD, integrated optical density.
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addition of CA-Sirt1 overexpression to these cells rescued 
the effects of siAmpkα and restored Spef2’s downregulation 
of oxidative stress, necrosis, apoptosis, and inflammation 
(Figure 3B-3I). In sum, Spef2’s suppressive effect on in vitro 
pancreatic acinar cell necrosis and inflammation is mediated 
via the Ampkα/Sirt1 axis.

Spef2’s suppressive effect on in vivo acute pancreatitis and 
associated lung injury mediated via the Ampkα/Sirt1 axis 

Having shown that Spef2’s suppressive effect on acinar cell 
necrosis and inflammation is Ampkα/Sirt1 axis-mediated, 
we performed an additional rodent experiment to confirm 
this phenomenon in vivo. Therefore, we conducted a series 
of in vivo rescue studies involving delivery of scAAV6.Spef2 
(for Spef2 overexpression), siAmpkα (for Ampkα silencing), 
and/or scAAV6.CA-Sirt1 (for CA-Sirt1 overexpression) to 
acute pancreatitis rats. 

As with the previous in vivo experimental series, we 
assessed pancreatic injury 24 hours post-treatment. 
We confirmed scAAV6-driven Spef2 and Sirt1 mRNA 
overexpression by qPCR as well as Ampkα mRNA silencing 
by siAmpkα in pancreatic tissue (Figure S9). H&E staining 

and pathological scoring of pancreatic tissue (Figure 4A,4B); 
pancreatic LDH, MDA, LPO, and MPO assays (Figure 4C);  
pancreatic ATP levels (Figure 4D); pancreatic necrosis 
levels (Figure 4E); pancreatic apoptosis levels (Figure S10);  
immunoblotting of Spef2 and Ampkα/Sirt1/NF-κB 
signaling proteins (Figure 4F and Figure S11); and serum 
levels of inflammatory mediators (Figure 4G) revealed that 
Spef2’s protective role in acute pancreatitis is Ampkα/Sirt1 
axis–mediated. In addition, assessment of acute pancreatitis–
associated lung injury 24 hours post-treatment revealed that 
Spef2’s protective role in acute pancreatitis is Ampkα/Sirt1 
axis-mediated (Figure 4H-4M). 

Discussion

The pathological changes of early acute pancreatitis occur 
in acinar cells (49). Mild and severe acute pancreatitis 
share several common acinar cell characteristics; however, 
disease severity and prognosis differ greatly between the 
two. The response to the initial intracellular damage 
becomes a vital factor in determining the extent of 
inflammation, which influences the development of 
either mild or severe acute pancreatitis. Specifically, mild 

https://cdn.amegroups.cn/static/public/ATM-22-3118-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-3118-supplementary.pdf
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Figure 4 Spef2’s suppressive effect on in vivo acute pancreatitis and associated lung injury mediated via the Ampkα/Sirt1 axis. Pancreatic and 
lung tissues and peripheral blood samples were harvested from sham-operated control (SO Ctrl), acute pancreatitis + DMSO vehicle (AP 
+ Veh), acute pancreatitis + scAAV6-delivered Spef2 + control siRNA (AP + scAAV6.Spef2 + siCtrl), acute pancreatitis + scAAV6-delivered 
Spef2 + Ampkα siRNA (AP + scAAV6.Spef2 + siAmpkα), and acute pancreatitis + scAAV6-delivered Spef2 + Ampkα siRNA + scAAV6-
delivered CA-Sirt1 (AP + scAAV6.Spef2 + CA-Sirt1 + siAmpkα) rats 24 hours post-induction. (A) Representative H&E staining of pancreatic 
tissues. (B) Pathological scoring of pancreatic injury. (C) Pancreatic LDH, MDA, LPO, and MPO activity levels. (D) Pancreatic ATP levels. 
(E) Pancreatic necrosis levels. (F) Representative immunoblots of pancreatic Spef2 and Ampkα/Sirt1/NF-κB signaling proteins. (G) Serum 
CRP, TNF-α, IL-1β, IL-6, and IL-18 levels from peripheral blood samples. (H) H&E staining of lung tissue showing extensive edema, 
alveolar congestion, and immune cell infiltration (scale bar =500 μm). (I) Pathological scoring of lung tissue injury. (J) Lung W/D ratio. 
(K) Lung MPO activity. (L) BALF TNF-α and IL-1β levels and (M) BALF protein content. Data represented as means ± SDs. N=6 rats 
per cohort. *P<0.05, **P<0.01 (one-way ANOVA with Bonferroni post-hoc). Spef2, sperm flagellar 2; Ampkα, adenosine monophosphate-
activated protein kinase alpha; Sirt1, sirtuin 1; DMSO, dimethyl sulfoxide; siRNA, small-interfering RNA; CA, constitutively active; H&E, 
hematoxylin and eosin; LDH, lactate dehydrogenase; MDA, malondialdehyde; LPO, lipid peroxide; MPO, myeloperoxidase; ATP, adenosine 
triphosphate; NF-κB, nuclear factor kappa B; CRP, C-reactive protein; TNF-α, tumor necrosis factor alpha; IL-1β, interleukin-1 beta; W/D, 
wet-to-dry; BALF, bronchoalveolar lavage fluid; SD, standard deviation; ANOVA, analysis of variance.
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acute pancreatitis is predominantly characterized by mild 
inflammation and acinar cell apoptosis, whereas severe 
acute pancreatitis is predominantly characterized by 
higher levels of inflammation and acinar cell necrosis (50).  
Disease mortality in acute pancreatitis patients is strongly 
associated with the degree of tissue necrosis, as patients 
with detectable necrosis levels of greater than 50% have 
a significantly higher mortality rate (51). As acinar cell 
necrosis is a rapid process (23), the ability to quickly 
reduce or prevent inflammation during early acute 
pancreatitis could limit acinar cell necrosis and overall 
disease progression. 

Here, we first investigated the role of Ampkα on acinar 
cell necrosis, apoptosis, and inflammation in a rodent 
model of acute pancreatitis and associated lung injury. 
The serine/threonine kinase Ampkα negatively regulates 
pro-inflammatory NF-κB activity (46). In our in vivo 
rodent model, pharmacological Ampkα activation with 
the thienopyridone derivative A769662 (52) reduced 
acute pancreatitis severity, oxidative stress, necrosis, 
apoptosis, NF-kB-mediated inflammation, and the 
degree of associated lung injury. This is consistent with 
numerous previous studies showing the anti-inflammatory 
effects of Ampkα agonism in other animal models of 
inflammatory disease, including inflammatory liver  
fibrosis (53), cardiac inflammation (54), amyloid-β-induced  
neuroinflammation (55), adipose tissue inflammation (56), 
inflammation‐driven muscle atrophy (57), and synovial 
tissue inflammation (58). Previous molecular research 
reports that Ampkα’s negative regulation of NF-κB activity 
operates through its downstream intermediaries Sirt1, 
forkhead box O (Foxo), and peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (Pgc1α) (46).  
Accordingly, we found that pharmacological Ampkα 
activation stimulated anti-inflammatory Sirt1 upregulation 
in acinar cells.

Ampkα activity is regulated through a myriad of 
mechanisms, most notably the allosteric activation of the 
enzyme by the intracellular messenger molecule AMP (from 
which Ampkα derives its name) (59). Therefore, enzymes 
that regulate intracellular AMP levels—such as ADK, AK, 
AMP deaminase (AMPD), and 5'-nucleotidases (NT5Cs)—
can have profound effects upon Ampkα activity (60,61). 
Here, we found that the ciliary protein Spef2—which 
contains an AK domain (47)—promotes Ampkα activity 
in acinar cells and is downregulated in acute pancreatitis. 
Therefore, we postulated the existence of a Spef2/Ampkα/
Sirt1 axis and hypothesized that this axis may be involved in 

the regulation of NF-κB-mediated acinar cell inflammation 
and resulting cell necrosis during acute pancreatitis. To test 
this hypothesis, we conducted a series of in vitro and in vivo 
rescue studies involving delivery of scAAV6.Spef2 (for Spef2 
overexpression), siAmpkα (for Ampkα silencing), and/or 
scAAV6.CA-Sirt1 (for CA-Sirt1 overexpression). Indeed, we 
found that Spef2’s suppressive effect on acute pancreatitis 
and associated lung injury is mediated via the Ampkα/Sirt1 
axis. Our findings are consistent with previous research 
supporting the anti-NF-κB-mediated inflammatory effects 
of Ampkα/Sirt1 signaling (62-64).

To conclude, this study established the existence of 
a Spef2/Ampkα/Sirt1 axis in pancreatic acinar cells that 
is involved in the regulation of NF-κB-mediated acinar 
cell inflammation and resulting cell necrosis during acute 
pancreatitis. We found that the ciliary protein Spef2 
suppressed acute pancreatitis and associated lung injury 
via activating the Ampkα/Sirt1 axis, and Spef2 could be 
a potential biomarker for the prevention, diagnosis, and 
treatment of acute pancreatitis-induced lung injury. Further 
work is needed to fully elucidate the etiology of acinar cell 
Spef2 downregulation in acute pancreatitis and the precise 
mechanism(s) of action underlying Spef2’s effects on Ampkα 
activity in acinar cells. 
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Table S1 No change in acute pancreatitis or inflammatory markers following ductal delivery of scAAV6 vector

Serum parameter
Day 1 post-injection Day 3 post-injection

SO Ctrl (n=6) scAAV6 (n=12) P value [unpaired t-test] SO Ctrl (n=6) scAAV6 (n=12) P value [unpaired t-test]

Amylase (U/dL) 1558±122 1666±230 0.21 1591±146 1700±274 0.29

Lipase (U/dL) 81.1±12.3 89.4±14.9 0.23 81.4±12.8 86.6±12.5 0.43

Crp (ng/mL) 198.9±27.9 223.1±43.4 0.17 199.4±32.9 215.0±40.0 0.39

Tnf-α (pg/mL) 2.48±0.36 2.74±0.45 0.21 2.46±0.39 2.76±0.62 0.23

Il-1β (pg/mL) 3.29±0.22 3.54±0.70 0.28 3.24±0.14 3.27±0.56 0.90

Data represented as means ± standard deviations (SDs). SO Ctrl, sham-operated control; Tap, trypsinogen activation peptide; Crp, 
C-reactive protein; Tnf-α, tumor necrosis factor-alpha

Figure S1 Enhancing Ampkα activity during acute pancreatitis reduces cell apoptosis. (A) Representative TUNEL staining measuring 
(B) pancreatic cell apoptosis in tissues from the treatment groups described in Figure 1. (C,D) Representative immunoblots and ImageJ 
densitometric quantitation of pancreatic cleaved caspase-3 (CC-3) expression. Data represented as means ± SDs. N=6 rats per cohort. 
*P<0.05, **P<0.01 (one-way ANOVA with Bonferroni post-hoc).
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Figure S2 Densitometric analysis of Figure 1F immunoblots. (A-C) Quantitation of pancreatic Ampkα/Sirt1/NF-κB signalling protein 
expression by ImageJ densitometry. β-actin used as loading control. Data represented as means ± SDs. N=6 rats per cohort. *P<0.05, 
**P<0.01 (one-way ANOVA with Bonferroni post-hoc).

Figure S3 Spef2 overexpression promotes Ampkα phosphorylation and Ampkα activity in AR42J cells. (A) Heatmap of significantly 
dysregulated genes in microarray data derived from a murine model of cerulein-induced acute pancreatitis. (B) STRING protein-protein 
interaction analysis (medium confidence>0.040) reveals that rat Spef2 interacts with rat adenosine kinase (Adk). (C) qPCR of Spef2 mRNA 
expression in AR42J cells following adenoviral vector delivery of rat Spef2 (scAAV6.Spef2) or negative control (scAAV6.Ctrl). (D,E) 
Representative immunoblots and ImageJ densitometric quantitation of Spef2 expression and AmpkαThr172 phosphorylation and (F) Ampkα 

activity assay in scAAV6.Ctrl AR42J cells and scAAV6.Spef2 AR42J cells. Data represented as means ± SDs. N=3 biological replicates ×2 
technical replicates. **P<0.01 (one-way ANOVA with Bonferroni post-hoc).
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Figure S4 qPCR validation of Spef2 overexpression in scAAV6.Spef2 rats. Quantitation of pancreatic tissue Spef2 mRNA expression by 
qPCR. Gapdh used as housekeeping control. Data represented as means ± SDs. N=6 rats per cohort. **P<0.01 (one-way ANOVA with 
Bonferroni post-hoc).

Figure S5 Spef2 overexpression during acute pancreatitis reduces cell apoptosis. (A) Representative TUNEL staining measuring (B) 
pancreatic cell apoptosis in tissues from the treatment groups described in Figure 2. (C,D) Representative immunoblots and ImageJ 
densitometric quantitation of pancreatic cleaved caspase-3 (CC-3) expression. Data represented as means ± SDs. N=6 rats per cohort. 
*P<0.05, **P<0.01 (one-way ANOVA with Bonferroni post-hoc).
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Figure S7 qPCR validation of gene overexpression and silencing in AR42J cells. Quantitation of AR42J cell Spef2, Ampkα, and Sirt1 
mRNA expression by qPCR. Gapdh used as housekeeping control. Data represented as means ± SDs. N=3 biological replicates ×2 technical 
replicates. *P<0.05, **P<0.01 (one-way ANOVA with Bonferroni post-hoc).

Figure S6 Densitometric analysis of Figure 2F immunoblots. Quantitation of pancreatic Spef2 and Ampkα/Sirt1/NF-κB signalling protein 
expression by ImageJ densitometry. β-actin used as loading control. Data represented as means ± SDs. N=6 rats per cohort. *P<0.05, 
**P<0.01 (one-way ANOVA with Bonferroni post-hoc).
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Figure S8 Densitometric analysis of Figure 3A immunoblots. Quantitation of AR42J cell Spef2 and Ampkα/Sirt1/NF-κB signalling protein 
expression by ImageJ densitometry. β-actin used as loading control. Data represented as means ± SDs. N=3 biological replicates × 2 technical 
replicates. *P<0.05, **P<0.01 (one-way ANOVA with Bonferroni post-hoc).
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Figure S9 qPCR validation of gene overexpression and silencing in model rats. Quantitation of pancreatic tissue Spef2, Ampkα, and Sirt1 
mRNA expression by qPCR. Gapdh used as housekeeping control. Data represented as means ± SDs. N=6 rats per cohort. *P<0.05, **P<0.01 
(one-way ANOVA with Bonferroni post-hoc).

Figure S10 Spef2 overexpression during acute pancreatitis reduces cell apoptosis in a Sirt1/Ampk-dependent manner. (A) TUNEL staining-
based assessment of pancreatic cell apoptosis in tissues from the treatment groups described in Figure 4. (B,C) Representative immunoblots 
and ImageJ densitometric quantitation of pancreatic cleaved caspase-3 (CC-3) expression. Data represented as means ± SDs. N=6 rats per 
cohort. *P<0.05, **P<0.01 (one-way ANOVA with Bonferroni post-hoc).
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Figure S11 Densitometric analysis of Figure 4F immunoblots. Quantitation of pancreatic Spef2 and Ampkα/Sirt1/NF-κB signalling 
protein expression by ImageJ densitometry. β-actin used as loading control. Data represented as means ± SDs. N=6 rats per cohort. *P<0.05, 
**P<0.01 (one-way ANOVA with Bonferroni post-hoc).


