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Background: Preliminary research has shown an inhibited growth rate of well-differentiated laryngeal 
squamous cell carcinoma cells (FD-LSC-1) in below-background radiation (BBR), but how the cells respond to 
this environmental stress and the potential mechanisms are yet unknown. The current study aimed to reveal the 
molecular differences in cells grown under BBR conditions and normal radiation at the transcriptional level.
Methods: The expression profiles between FD-LSC-1 cells grown in a deep underground laboratory and 
above ground laboratory collected on day 4 were investigated by whole-transcriptome analysis, including 
messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs 
(miRNAs). Functional analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment were then implemented for differentially expressed (DE) mRNAs and 
target genes of lncRNAs and circRNAs. Co-expression levels and the Bayesian network of DE genes were 
subsequently constructed, and the reliability of expression patterns were validated by quantitative real-time 
polymerase chain reaction (PCR).
Results: The study identified a total of 671 mRNAs, 286 lncRNAs, 489 circRNAs, and 6 miRNAs as 
significantly expressed in response to the environmental stress. The GO annotations regarding the biological 
processes category were mainly biological regulation, metabolic process, response to stimulus, cell cycle, and 
modification process. The KEGG enrichment analysis indicated that TGF-β and Hippo signaling played a 
crucial role in the transcriptional regulation of FD-LSC-1 cell growth under background radiation. Further 
network construction suggested that the enriched KEGG pathways affected this process by regulating cell 
proliferation-related genes including SMAD, SMAD7, CDH1, EGR1, and BMP2.
Conclusions: Below-background radiation can lead to transcriptional changes in FD-LSC-1 cells cultured 
in the deep underground. The inhibitory growth effect is associated with multiple biological processes as 
well as canonical pathways of proliferation.
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Introduction

Deep underground exploitation has now reached a 
depth of over 5,000 m (1), where background radiation 
is shielded from cosmic rays and neutrons (2). Ambient 
radiation is considered to impose biological changes on 
living organisms (3), but how living creatures respond 
to below-background radiation (BBR) has not yet been 
comprehensively evaluated. 

The known ‘Linear No-Threshold’ (LNT) model, which 
assumes that there is a linear increase in deleterious effects 
with no safe radiation dose level. However, increasing 
evidence suggests the risks of low doses of radiation 
might not strictly conform to the LNT model. Thus far, 
many studies have observed the behavior of life in deep 
underground laboratories with a dramatically reduced 
level of environmental radiation. As described by Planel et 
al. (4), the inhibitory effects on paramecia were revealed 
in caves 200 m underground, while the growth rate was 
restored after irradiation by a 60Co source at a dose rate 
close to natural radiation. Similar evidence suggested 
reduced growth of Deinococcus radiodurans and Shewanella 
oneidensis at 650 m underneath the Waste Isolation Pilot 
Plant (WIPP) (5,6). Further investigation showed altered 
activity of antioxidant enzymes and increased spontaneous 
mutation frequency of Chinese hamster V79 cells (V79) 
within the Gran Sasso National Laboratory (LNGS) in 
Italy (7). This preliminary evidence suggests that decreased 
ionizing radiation can contribute to cellular changes in 
living cultures.

In 2018, we set up a deep-underground cell culture 
laboratory (DUGL) at the Jiapigou Minerals Limited 
Corporation of China National Gold Group Corporation 
(CJEM), reaching a depth of 1470m rocky cover, as well as 
an above ground laboratory (AGL) at the CJEM external 
site as a control (1). Initial findings indicated a slower 
proliferation rate of V79 cells under BBR conditions, in 
accordance with Satta et al.’s study (8). Another tumor 
cell line of well-differentiated laryngeal squamous cell 
carcinoma cells, namely FD-LSC-1, was also reported 
to have a growth deceleration. As only few studies have 
extended experiments in BBR, the underlying mechanisms 
of the growth inhibition phenomenon on mammalian cells 
remain to be clarified, and thus understand the impact of 
low dose radiation on cell behaviors.

Hence, we cultured FD-LSC-1 cells,  which are 
moderately sensitive to radiation, in both the DUGL and 
AGL simultaneously. Whole-transcriptome analysis of FD-

LSC-1 cells was performed to obtain regulation pathways 
and factor genes concerning the mechanisms of cellular 
responses to low radiation levels. 

The findings reported here provide new insights into the 
adaptations of short-term cell growth in BBR and further 
integrated differential expressed genes of FD-LSC-1 cells 
that may facilitate delayed tumor cell proliferation. Our data 
also give direction to deep underground space development 
and advancing this field of research. Raw sequence data has 
been submitted in the Sequence Read Archive at NCBI 
under accession code PRJNA799455. We present the 
following article in accordance with the MDAR reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-2997/rc).

Methods

Cell culture

The human cancer cell line FD-LSC-1 was obtained 
from the Chinese Academy of Science (Shanghai, China). 
The cells were maintained in Dulbecco’s modified Eagle’s 
medium (DMEM, Gibco, USA) with 10% fetal bovine 
serum (Gemini, USA) and 1% penicillin and streptomycin 
(Gibco, USA) solution. Cells at 80% confluency in 75 cm2 
bottom flasks were assigned randomly into the DUGL or 
AGL for further incubation at 37 ℃ and 5% CO2. The 
DUGL provided a low radiation environment whilst the 
AGL served as the control. Both cell groups were cultured 
simultaneously for 4 days, after which they were harvested.

RNA preparation 

Total RNA was extracted from cultured samples using 
Trizol reagent (Invitrogen, NY, USA).  The RNA 
quantity was verified spectrophotometrically with a 
NanoDrop-2000 spectrometer (NanoDrop Technologies, 
DE, USA) according to the manufacturer’s instructions. 
The integrity of RNA was confirmed with 1% agarose gel 
and electrophoretically with a 2100 Bioanalyzer (Agilent 
Technologies, CA, USA). Briefly, ribosomal RNA (rRNA) 
was removed using Ribo-Zero™ GoldKits (Epicentre, WI, 
USA). Only samples with an RNA integrity number (RIN) 
more than 7.0 were acceptable for RNA library preparation.

Whole-transcriptome sequencing (RNA-Seq)

RNA fragmentation was performed followed by conversion 

https://atm.amegroups.com/article/view/10.21037/atm-22-2997/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-2997/rc
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of  the rRNA-depleted RNA into s ingle-stranded 
complementary DNA (cDNA). Subsequently, 3 µg of total 
RNA from each sample was used to construct the cDNA 
library (NEB Next Ultra Directional RNA LibraryPrep 
Kit for Illumina, Ispawich, USA). First-strand cDNA was 
synthesized using random hexamer primers while second-
strand cDNA was generated using DNA Polymerase I 
and RNase H. After quality control, adapter ligation, and 
polymerase chain reaction (PCR) procedures, samples 
of total RNA from FD-LSC-1 cells were sequenced on 
NovaSeq 6000 Illumina equipment (Illumina, San Diego, 
CA, USA) in paired-end mode. 

RNA-Seq data processing

The sequencing data was analyzed through CASAVA software 
for base calling and raw data were transferred into FASTQ 
stored files. Reads with low quality data, N ratio more than 5%, 
adapter sequences, and rRNA were filtered out from all count 
data. As for microRNAs (miRNAs), reads without 3’linker 
sequence or reads with ployA/T were excluded as well. 

Clean reads of messenger RNA (mRNA) and long 
non-coding RNA (lncRNA) were mapped to a reference 
genome (GRCh38 (GCF_000001405.26), RefSeq assembly 
accession) (9) by HiSAT2 software. We subsequently used 
Coding-Non-Coding Index (CNCI), Coding Potential 
Calculator 2 (CPC2), and Coding Potential Assessment 
Tool (CPAT) to identify the potential coding ability of 
genes. The assembled transcripts without coding potential 
were the candidate set of lncRNAs.

The trimmed reads of miRNAs were aligned to the 
reference genome using Bowtie (10). Mapped reads to 
mature miRNAs in miRBase (release 21) were used to 
identify known miRNAs (11). The tool used for the 
identification and prediction of miRNAs was miRDeep2 
software (12) .  Transcript  per mil l ion (TPM) was 
implemented to determine the expression levels of miRNAs.

Sequence reads of circular RNAs (circRNAs) were 
mapped against the reference genome using BWA-MEM (13), 
and circRNA Identifier (CIRI) (14) was applied for efficient 
recognition. In addition, the expression levels of circRNAs 
were normalized via spliced reads per billion mapping 
(SRPBM) according to back-splicing reads.

Differential expression analysis

The DESeq2 package for R software (v3.5.1, 2018) was 
used to perform differential expression analysis of 2 

conditions (DUGL and AGL) based on the count data 
from HTSeq (15). Fragments per kilobase million (FPKM) 
mapped reads were used to estimate gene expression levels 
using StringTie (16). The statistical significance criteria 
of |log2(fold-change)| ≥1.0 and q value (adjusted P value) 
of less than 0.05 for gene expression levels determined 
differentially expressed (DE) factors, which was used for 
bioinformatics analyses. The false discovery rate (FDR) 
was controlled by the Benjamini-Hochberg algorithm (17) 

to adjusted P values. Hierarchical clustering analysis for 
the expression profiles was performed using the “pheatmap” 
package from R software. The distributions of DE RNAs 
were visualized by a volcano plot with the “ggplot2” 
package. Functional enrichment based on Gene Ontology 
(GO, http://www.geneontology.org/) was performed 
with GeneCodis3, where the gene sets were separated in 
accordance with the GO terms for biological processes 
(BPs), cellular components (CCs), and molecular functions 
(MFs). Pathway analysis was performed using the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
database to detect potential targets of DE genes between 
the DUGL and AUL groups. Both GO terms and KEGG 
pathways with corrected P values less than 0.05 were 
considered to be significantly enriched.

Construction of co-expression and Bayesian network 
analysis

Co-expression levels of significantly regulated mRNAs were 
computed using Stringdb of R software (18), and gene-
pairs were selected by setting combined score >0.9 for the 
causality network construction. We further implemented the 
bnlearn algorithm with Cytoscape (3.7.2) (19) to visualize 
the Bayesian network (200 iterations) (20) with mRNAs in 
selected nodes screened by degree >2 and weight >0.2.

Real-time quantitative polymerase chain reaction  
(qRT-PCR) 

To validate the gene expression patterns detected by 
RNA-Seq analysis, differentially expressed genes (DEGs) 
from transcriptome sequencing were randomly selected 
for assessment through qRT-PCR including mRNAs, 
lncRNAs, circRNAs, and miRNAs. The PrimeScript RT 
Reagent Kit with gDNA Eraser (RR047A, Takara, Japan) 
was used to synthesize cDNA from extracted total RNA. 
Reactions were performed on a 7500 real-time system 
(Applied Biosystems, USA). Relative quantification was 

http://www.geneontology.org/
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normalized against the housekeeping gene GAPDH 
for mRNAs, and β-actin for the others, by using the 
2-ΔΔCT method (21). The forward primer sequence of 
GAPDH was 5'-GATCTGGCACCACACCTTCT-3' 
and the reverse primer sequence was 5'-GGGGTG 
TTGAAGGTCTCAAA-3'. The forward primer sequence 
of β-actin: 5'-ATAGCACAGCCTGGATAGCAACGT
AC-3' and the reverse primer sequence was: 5'-CACCTTC
TACAATGAGCTGCGTGTG-3'. More than 3 respective 
sets of experiments were performed.

Statistical analysis

For the sequencing data, the statistical significance criteria 
of |log2(fold-change)| ≥1.0 and q value (adjusted P value) 
of less than 0.05 for gene expression levels determined 
differentially expressed (DE) factors. The FDR was 
controlled by the Benjamini-Hochberg algorithm (17) to 
adjusted P values. For the RT-PCR, the data are expressed 
as the mean ± standard error of the mean (SEM). The 
statistical analysis was performed using GraphPad Prism 
version 9.0 (GraphPad Software Inc., San Diego, CA, USA).

Results

Overview of genome-wide analyses

Following sequencing on an Illumina MiSeq, total raw 
reads were obtained per sample after removal of adaptors, 
ambiguous reads, and low quality reads. The number of 
reads for mRNAs, lncRNAs, and circRNAs was 90 million 
reads on average, with over 90% mapping to the genome, 
while reads of miRNAs were much lower, with 8–11 million 
reads and 65% mapping on average. A summary of the 
sequencing results, mapping quality, and mapping rate are 
outlined in Table S1.

In all, we identified 1,458 DE RNA transcripts (q value 
<0.05 and |log2FC| ≥1.0) in FD-LSC-1 cell samples 
grown in the DUGL and AGL for 4 days (Figure 1A-1C). 
Among them, there were 671 mRNAs, 286 lncRNAs, 489 
circRNAs, and 6 miRNAs present in the transcriptome 
database (GENCODE, Ensembl, and NCBI). Of these 
variably expressed coding genes, 465 genes were up-
regulated, and 206 genes were down-regulated between the 
2 cell groups. Specifically, 200 up-regulated and 86 down-
regulated lncRNAs were detected, while the numbers of 
corresponding significantly regulated circRNAs were 285 
and 204, respectively. Only 4 up-regulated and 2 down-

regulated miRNAs were identified, but none were novel 
(Table 1). 

Functional enrichment analysis of DEGs

The most abundant GO terms for BP were cell surface 
receptor signaling pathway (GO:0007166),  t issue 
development (GO:0009888), and positive regulation of 
developmental process (GO:0051094) (Figure 2). Up-
regulated genes were mainly involved in biological regulation 
(GO:0065007), response to stimulus (GO:0050896), 
regulation of biological process (GO:0050789), and 
regulation of cellular process (GO:0050794). In the CCs 
category, DEGs were enriched in 38 terms, and the top 
3 were plasma membrane (GO:0005886), cell periphery 
(GO:0071944), and extracellular region (GO:0005576) 
(Figure 2B). For MFs, up-regulated genes were prominently 
enriched in terms of receptor binding (GO:0005102), 
transcription regulatory region DNA binding (GO:0044212), 
and regulatory region nucleic acid binding (GO:0001067), 
similar to the down-regulated genes (Figure 2C). These 
MF terms are general and did not suggest that the effects 
of BBR trigger a wide range of cellular responses. In the 
KEGG pathway enrichment analysis, up-regulated genes 
were significantly enriched in the Hippo signaling pathway 
(map04390) and pathways in cancer (map05200), indicative 
of cell proliferation or apoptosis in response to radiation 
reduction (Figure 2D).

Functional enrichment analysis of DE lncRNAs 

Metabolic process (GO:0008152) was one of the most 
representative subcategory GO terms under the BP 
category, which involved regulation of cellular metabolic 
process (GO:0031323), primary metabolic process 
(GO:0080090), nitrogen compound metabolic process 
(GO:0051171), nucleobase-containing compound metabolic 
process (GO:0034654), and RNA metabolic process 
(GO:0051252). Other important BP terms were also linked 
to the biosynthetic process of heterocycle (GO:0018130), 
nucleobase-containing compound (GO:0034654), aromatic 
compound (GO:0019438), and organic cyclic compound 
(GO:1901362) (Figure 3A). Accordingly, the results of 
genes enriched in the CC category were intracellular 
membrane-bounded organelle (GO:0043231), nucleoplasm 
(GO:0005654), intracellular part (GO:0044424), and 
intracellular (GO:0005622) (Figure 3B). Within the MF 
category, regulated genes were prominently enriched in the 

https://cdn.amegroups.cn/static/public/ATM-22-2997-Supplementary.pdf
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Figure 1 The distributions of DE RNAs between the DUGL and AGL groups. (A) The volcano plot and hierarchical cluster analysis of 
DE mRNA. (B) The volcano plot and hierarchical cluster analysis of DE lncRNA. (C) The volcano plot and hierarchical cluster analysis 
of DE circRNA. In the volcano plots, red dots represent up-regulated genes, while blue dots represent down-regulated genes (q<0.05, 
and |log2FC| ≥1.0). The clustering heat maps are colored with red and blue, corresponding to expression levels from high to low. The X 
and Y axis refer to each comparison sample and selected DE RNAs, respectively. DE, differentially expressed; DUGL, deep underground 
laboratory; AGL, above ground laboratory; FC, fold change.

terms of transferase activity (GO:0016740), catalytic activity 
(GO:0003824), protein binding (GO:0005515), and DNA 
binding (GO:0003677) (Figure 3C). Then, we determined 

the 17 KEGG pathways that were significantly enriched in 
response to different radiation backgrounds. Metabolic and 
proliferative pathways (e.g., pathways in cancer, lysosome, 
amino sugar and nucleotide sugar metabolism, viral 
carcinogenesis, basal cell carcinoma, focal adhesion, Wnt 
signaling pathway, Hippo signaling pathway) were partially 
overlapped with the KEGG analysis outcomes of DEGs 
(Figure 3D).

In the comparison of the overall GO enrichment, the host 
genes of circRNAs were mostly enriched in macromolecule 
modification (GO:0043412), protein modification process 
(GO:0036211), cellular protein modification process 
(GO:0006464), cell cycle (GO:0007049), and cellular 
response to stress (GO:0033554) (Figure 4). The cell cycle 
item needed further exploration, since this process was 
closely related to proliferation and apoptosis. A total of 

Table 1 Overview of significantly regulated RNAs between DUGL 
and AGL conditions

RNAs Up-regulated Down-regulated Total

mRNAs 465 206 671

lncRNAs 200 86 286

circRNAs 285 204 489

miRNAs 10 2 12

Total 960 498 1,458

DUGL, deep underground laboratory; AGL, above ground 
laboratory.
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Figure 2 Functional analysis of DE mRNAs. The bubble chart displays GO and KEGG pathway enrichment results with the top 10 terms. 
(A) BP; (B) CC; (C) MF; (D) KEGG pathway classification. The labels on the Y axis represent GO annotations and KEGG pathways. Circle 
size refers to gene numbers. The degrees of enrichment are visualized by colors (q value <0.05), with red representing the highest degree of 
enrichment. DE, differentially expressed; GO, Gene Ontology; BP, biological processes; CC, cellular components; MF, molecular functions; 
KEGG, Kyoto Encyclopedia of Genes and Genomes.

50 terms in the CC category were significantly enriched, 
including intracellular (GO:0005622), intracellular part 
(GO:0044424), nuclear part (GO:0044428), intracellular 
organelle (GO:0043229), and intracellular membrane-
bounded organelle (GO:0043231) (Figure 4B). The highest 
enrichment of the MF category was associated with catalytic 
activity (GO:0003824), while others were protein binding 
(GO:0005515) and transferase activity (GO:0016740), 
among others (Figure 4C). KEGG analysis referred to 

the lysine degradation (hsa00310) pathway which was 
significantly enriched, including 5 up-regulated and  
2 down-regulated circRNAs (Figure 4D). 

Co-expression and Bayesian causal network analysis

We performed co-expression network analysis based on the 
sequencing results to detect mRNA modules, of which 133 
of 671 filtered target genes were significantly correlated 
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Figure 3 Functional analysis of DE lncRNA target genes with top 10 enrichment. GO categories are classified into (A) BP, (B) CC, and 
(C) MF. (D) KEGG pathway results are shown subsequently. GO annotations and KEGG pathways are listed on the left Y axis. Circle size 
represents the number of enriched lncRNAs. Enrichment degrees are colored from red to violet, with lower q values (red) suggesting more 
significant enrichment (q value <0.05). DE, differentially expressed; GO, Gene Ontology; BP, biological processes; CC, cellular components; 
MF, molecular functions; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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and 192 interaction pairs were recognized by combined 
score >0.9 (Figure 5A). Among them, most connections 
with other members of the module were SMAD family 
member 3 (SMAD3), SMAD family member 7 (SMAD7), 
bone morphogenetic protein 2 (BMP2), Jun proto-oncogene 
(JUN), cadherin 1 (CDH1), early growth response 1 (EGR1), 
and fibroblast growth factor 2 (FGF2). According to 
screening based on degree >2 and weight >0.2, 49 candidate 
genes were further applied for Bayesian causal network 

construction, which depicted that the most significantly 
correlated hub genes were mitogen-activated protein kinase 
13 (MAPK13), ETS1, SRY-box transcription factor 9 (SOX9), 
neurotensin receptor 1 (NTSR1), and SMAD7 (Figure 5B).

Verification of DEGs by qRT-PCR 

To validate the gene expression profiles obtained by 
RNA-Seq analysis, we randomly assayed genes from each 
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Figure 4 Functional analysis of host genes of DE circRNAs. The bubble charts encompass (A) BP, (B) CC, (C) MF and (D) KEGG 
pathways with top 10 terms. Annotations of GO categories and KEGG pathways are labeled on the left Y axis. The size of the circle 
corresponds to enriched numbers while the color depicts enrichment degree, where red to violet indicates q values from high to low, 
respectively. DE, differentially expressed; BP, biological processes; CC, cellular components; MF, molecular functions; GO, Gene Ontology; 
KEGG, Kyoto Encyclopedia of Genes and Genomes.

mRNA, lncRNA, miRNA and circRNA list for qRT-
PCR verification. Consequently, these selected genes 
demonstrated concordant expression patterns between 
the RNA-Seq and qRT-PCR results (Figure 6A-6D). The 
primers are listed in Tables 2-5. 

Discussion

Exploring life underground was once unimaginable, 

however, a series of evolution experiments and cultures 
of model organisms have become achievable at hundreds 
or even thousands of meters underground. Repeated 
observations regarding the delayed growth rate of 
prokaryotes, eukaryotes, and Drosophila from different 
studies indicate that living systems somehow adapt to the 
low radiation environment by cell population changes (22). 

In our previous work, the growth reduction of V79 and 
FD-LSC-1 cells was observed compared to cultures grown 
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Figure 5 Co-expression and Bayesian causal network analysis of DE genes. Networks were constructed based on RNA sequencing. In both 
the (A) co-expression and (B) Bayesian causal network, each node represents a gene. Straight and arrowed lines indicate the relationship 
between 2 interaction genes and their targeted genes, respectively. The colored circles are terms with the most significance, while the black 
text is the name of the gene. DE, differentially expressed.

A BCo-expression network Bayesian network

at a surface radiation level (23). As levels of relative humidity, 
temperature, and carbon dioxide (CO2) concentration 
remained the same at both the DUGL and AGL incubators, 
reduced cell growth can be traced to radiation exposure, 
given that the total gamma (γ) radiation dose rate was 
estimated to be extremely low (0.035–0.045 µSv/h)  
in the DUGL (23). The stimulatory effect and potential 
mechanisms of cellular alterations in response to low 
radiation stress are still not well known; therefore, our study 
expected to unveil the underlying mechanisms contributing 
to the impeded growth rate of FD-LSC-1 cells at the gene 
regulation level. 

Our findings identified 671 coding genes and 762 non-
coding RNAs as significantly expressed among samples 
under different environmental stress. The results of the 
transcriptomic analyses displayed distinct genetic profiles 
when compared to cells grown in the AGL, with a majority 
of transcripts up-regulated. Particularly, a few genes, being 
proven to negatively regulate proliferation, were identified 
as up-regulated, such as testin (TES) (24) and headcase 
protein homolog (HECA) (25). Other genes that have 
central roles in proliferation and the cell cycle were also 
found to be differentially expressed (i.e., fibroblast growth 
factor 18, FGF18; ski-like protein, SKIL) (26,27). While 

some results might remain controversial, the changes in 
gene profiles predicted a trend that BBR could contribute 
to delayed growth. Also, we consistently observed DEGs 
associated with the flux of numerous amino acids (28), 
such as metabolism of tyrosine (tyrosine-protein kinase 
ABL2), histidine (phosphoglycerate mutase 1, PGAM1), and 
catabolism of arginine (protein-arginine deiminase type-1, 
PADI1), suggesting amino acid modulation in response to 
the stress of reduced environmental radiation. As noted, we 
identified 6 DE miRNAs, but none were novel or involved 
in functional enrichment. 

GO analyses were subsequently implemented for the 
whole transcriptome. In the BP category, up-regulation of 
coding genes were mainly enriched in biological regulation 
and response to stimulus, indicating that these genes may 
be potentially targeted for stress responses and cell growth. 
Similar to our previous study, significant enrichment in 
metabolic process categories was detected among identified 
DE lncRNAs (29). Consistent with the above, modification 
process, cellular response to stress, and the cell cycle were 
representative items of the host genes of circRNAs, which 
implied interactions with mRNAs and lncRNAs under an 
ionizing radiation-deprived environment.

The KEGG analysis indicated significant enrichment of 
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Figure 6 Expression relationships of (A) DE genes, (B) DE lncRNA, (C) DE miRNA, and (D) DE circRNA were validated by qRT-PCR 
compared to RNA-Seq results. All experiments were performed in triplicate. DE, differentially expressed. qRT-PCR, quantitative Real-time 
PCR. **, P<0.01; ns, not significant.
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DEGs within the Hippo signaling pathway and pathways 
in cancer, which might play a prominent role in the 
suppression of tumor cells underground in a short duration. 
Some evidence suggests that the genes enriched in both 
pathways, such as SMAD3, CDH1, TGFβ2 (transforming 
growth factor beta 2), Wnt family member 6 (Wnt6), 
and GLI family zinc finger 2 (GLI2), have functions in 
proliferation and cell growth. CDH1, known as a tumor 
suppressor, is implicated in maintaining genomic stability 
and restraining cancer progression, which was highly 
expressed in FD-LSC-1 cells underground (30). Notably, 
unlike our preliminary observation of V79 cells (29), most 
of the enriched candidates were up-regulated, whereas only 
the expression level of BCL2 binding component 3 (BBC3), 
Wnt6, and BMP2 were decreased in the Hippo signaling 
pathway. Exposure to ionizing radiation can induce 

transcription of BBC3, causing cell apoptosis in response to 
DNA-damaging stimuli (31). Based on our results, BBC3 
expression was decreased in tumor cells, which might be 
attributed to the reduced γ-radiation environment. It is also 
reported that Wnt6 and BMP2 are overexpressed in several 
malignancies (32,33). Conversely, their expression was 
decreased in FD-LSC-1 cells cultured in the DUGL, which 
suggested that Wnt6 and BMP2 might be involved in the 
growth repression caused by a low radiation environment.

Additionally, lncRNAs have evidently shown the 
ability to modulate proliferation, the cell cycle, and other 
physiological activities of cells (34). KEGG analysis 
uncovered target mRNAs of lncRNAs that were enriched 
in several pathways linked to proliferation and metabolism, 
but this was unsurprising since many were cancer-related 
pathways as well. Apart from the pathways in cancer 
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Table 2 Correlation of differentially expressed genes (log2FC and relative quantification) and primers for real-time PCR (DUGL vs. AGL)

Gene name F-primer R-primer RNA-Seq qPCR

CTGF TTACCAATGACAACGCCTCC GATGCACTTTTTGCCCTTCTTA 2.310 2.35362

ALPI CCATCTTCGGGTTGGCCCC CTCTCATTCACGTCTGGTCGC −3.713 −3.716051

NCCRP1 CATGGACTGGTTCGAGGACAG TAATGGCGGAATACGTGGGA −1.199 −1.231767

GABARAPL1 CCTTACTGTTGGCCAGTTCTA CTCATCACTGTAGGCCACATA 1.107 1.0973112

THBS1 AAGACGCCTGCCCCATCAAT GTTGTTGCAGAGACGACTACG 1.164 1.6176506

CYR61 GGGTCTGTGACGAGGATAGT ATTCCAAAAACAGGGAGCCG 1.213 1.2392157

FSTL1 CCAGACCACGATGTGGAAACG GCCTCTTGTGAGGTTTGCAT 1.018 1.0304913

RBM3 GGGCTCAACTTTAACACCGA CATCCAGAGACTCTCCGTTC 1.280 1.2968883

AKR1C1 CTTGATATTTTTGCTGGCCCC GCTGAAATCACCAAGCAGGA −1.14 −1.118154

S100P AGGTGGGTCTGAATCTAGCA GTCTTTTCCACTCTGCAGGAA −1.396 −1.391631

GDF15 AGTTGCACTCCGAAGACTCC AGCCGCACTTCTGGCGT −1.646 −1.668346

LDLR TGGGGGTCTTCCTTCTATGG CCATCTGTCTCGAGGGGTAG −1.213 −1.198412

ROR1 TCTCAAGTGAACTCAACAAAGATTC GAGGTGGATTCCCAGAGACT 1.575 1.7494217

DHX38 CTCTATGGTAGCTTTGGGCG GGGATTTCTCTCACCAAGCG −0.337 −0.306457

PITX1 CCAGCCAAGAAGAAGAAGCA TTCTTGAACCAGACCCGCA −0.642 −0.603244

FC, fold change; PCR, polymerase chain reaction; DUGL, deep underground laboratory; AGL, above ground laboratory; qPCR, 
quantitative Real-time PCR.

Table 3 Correlation of differentially expressed lncRNAs (log2FC and relative quantification) and primers for real-time PCR (DUGL vs. AGL)

Gene name F-primer R-primer RNA-Seq qPCR 

ENSG00000232324 GGAATAACACACCCTCCCTC AGAGGAAGGTAGAGCCTGTG 2.3981793 2.4598464

TBILA GTTGTTTCCAGTTTGGTCACT GCAGTCCTGTATCTGCTTTTC 1.8199685 1.9473007

ENSG00000261051 CACGTCCTAGTGGTTTAGAGG CTTCCCGAGGTCACACAAAG 2.0321083 1.8752409

ENSG00000260604 AGCTGTTTCCAAAGACACCC CAGTGAGAGATTCACAGCCC 2.0695075 1.8526164

ENSG00000273760 CACGCCACTGCCTTCTC CTGTGTGCTTGGAAGAGTGT 1.5833876 1.7194941

MIR23AHG GTAACTGGCTGCTAGGAAGG CCAGCATAGATAGGTGGGTG 1.7100933 1.6874927

ENSG00000234311 GGACACGGACCTAGACACT CTGACCTGCAAGACCGTAG −2.2794272 −2.8774890

LINC01671 AGCCTTGGCAAACTCCAAGA GACATCTGAACCCAATTCAGGA −2.4803996 −2.3549789

LINC00602 TTGTGCTCTCAGGAACGACT GTTCTGGCAACGAGGCTAC −1.8677201 −2.0195099

LOC100505664 TCTGCTAGGACTTCTGCCAT CTGGAAACTGCTGAGCCAT −1.7630108 −1.9146524

ENSG00000270412 GTGCTTTCTTGCGGGTCAG GCTGCCTTATGTAACCTGCGA −1.8504048 −1.7674258

SOCS3-DT TTGAGGGCTCAGGAGCTATAC CTCTGGAGCGTACCCTGT −1.7010041 −1.7056152

CACTIN-AS1 CACGGGGAGGAAACTGAGG GGCACAGTAAAGGGGCTTC −1.6376511 −1.5169541

LINC02870 TGTGAACAGGAAGCTGAGAAC GAGGCTTCTCTGGGTATAAAGC −1.3689746 −1.5157920

ENSG00000251095 AGGTAGTCGTACAGTGTCCA GTCTTTGGTGAGTCTCTCGGA −1.5540582 −1.5641373

FC, fold change; PCR, polymerase chain reaction; DUGL, deep underground laboratory; AGL, above ground laboratory; qPCR, 
quantitative real-time PCR.
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Table 4 Correlation of differentially expressed miRNAs (log2FC and relative quantification) and primers for real-time PCR (DUGL vs. AGL)

Gene name Primer RNA-Seq qPCR

hsa-miR-4454 GTACACTTAGGCCGGATCCGA −4.191426 −4.1926645

hsa-miR-15b-3p GGCGAATCATTATTTGCTGCTCTA −1.5221586 −1.5908128

hsa-miR-6858-3p CCAGCCCCTGCTCACCCCT −1.9512010 −1.4481064

hsa-miR-1307-5p TCGACCGGACCTCGACCG −0.9050458 −1.1267616

hsa-miR-27a-5p AGGGCTTAGCTGCTTGTGAGC 1.8772767 1.8814850

hsa-miR-1290 GCGCCGTGGATTTTTGGAT 2.5306787 2.5546392

hsa-miR-1247-3p CGGGAACGTCGAGACTGGAGC 2.9733626 2.9044312

FC, fold change; PCR, polymerase chain reaction; DUGL, deep underground laboratory; AGL, above ground laboratory; qPCR, 
quantitative real-time PCR.

Table 5 Correlation of differentially expressed circRNAs (log2FC and relative quantification) and primers for real-time PCR (DUGL vs. AGL)

Gene name F-primer R-primer RNA-Seq qPCR

hsa_circ_0028331 ACGACAAACGCTCGGGCTTC GCGGACCTTGTTGCTCTTGA 1.54772896 1.8758754

hsa_circ_0006446 TCTACCTCACGATGCTCCTCT GCAGCCAAAACTCGGGACT 1.18693227 1.1162001

hsa_circ_0041671 GGTTCCAACAGTCATGCCAAA GTGCCCAAAGTGGGTTATATGG 4.54034592 1.9645740

hsa_circ_0036098 CTGTGTGAAGGCCCAGACATT GCCCATTTTCCAGACGAACAG −0.73249871 −0.932299

hsa_circ_0007610 CAGTCATGGCCAAGGTTAACAA TGTCTTCATCTGAATCATCTTCCC −0.63495933 −0.5582185

FC, fold change; PCR, polymerase chain reaction; DUGL, deep underground laboratory; AGL, above ground laboratory; qPCR, 
quantitative real-time PCR.

and Hippo signaling, as both were consistent with the 
aforementioned outcomes of DEGs, we also focused on 
pathways of lysosomes, focal adhesion, as well as amino 
sugar and nucleotide sugar metabolism that were well 
represented in identified lncRNAs. Lysosomes are crucial 
organelles that function as metabolic signaling hubs and 
have been reported to integrate different environmental 
signals to regulate metabolic pathways (35). We speculated 
that adaptive responses may rely on the focal adhesion (FA) 
pathway due to environmental stress, as assembly of these 
structures are cell mechanosensitive (36).

Of the dysregulated circRNAs in our study, KEGG 
mapping revealed lysine degradation was the only 
significant pathway. There seems to be no direct evidence to 
explain the cellular changes within the BBR environment, 
but activation of lysine metabolism, especially degradation 
of lysine, is correlated with cell proliferation impairment 
of tumors (37). Considering the limited data in this study, 
further investigation should be undertaken to confirm the 
functional role of lysine metabolism in the DUGL.

In further network analysis, we observed co-expressed 

gene modules concerning a variety of signaling pathways 
that are likely to be responsible for the regulation of cell 
proliferation and the cell cycle. Of the hub genes identified, 
SMAD3 was markedly up-regulated in DUGL cultures, 
functioning as a tumor suppressor and as a primary 
mediator in TGF-β signaling (38). Importantly, our findings 
indicated that SMAD3, along with other regulated genes 
such as SMAD7, BMP2, and yes-associated protein (YAP), 
was closely related to either the canonical TGF-β or Hippo 
signaling, whereby shielded radiation might potentially 
lead to the outcome of FD-LSC-1 cell growth reduction 
in the DUGL. Overexpression of SMAD7, as shown in 
our study, was found to be a potent inhibitory regulator in 
TGF-β-induced proliferation (39). The antagonistic effect 
is triggered by inhibiting SMAD2 and SMAD3 (SMAD2/3) 
phosphorylation, and thus the SMAD2/3 protein fails to 
form a complex with SMAD4 that translocates into the 
nucleus to control gene transcription of proliferation and 
other cellular processes (40,41). Previous research has 
confirmed that the activation of SMAD2/3 also participated 
in crosstalk with Hippo signaling when SMAD2/3 bound 
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to the pathway transducer YAP, leading to cell growth 
regulation (42). Likewise, stimulating BMP2 can directly 
interact with the SMAD complex and subsequently 
promotes nuclear translocation to regulate target genes (33). 
The expression level of YAP trended upwards in contrast to 
cultures grown in parallel, although failed to reach statistical 
difference. Further research on the interaction between 
TGF-β and the Hippo pathway is necessary to explore 
how they modulate cell populations in a radiation-deprived 
background.

Admittedly, our study has some limitations. One 
concern about the findings was the short-term incubation 
time (4 days) of cell samples, leading to limited long-term 
information of mechanisms under low-dose radiation. A 
lack of metabolomics and phosphoproteomics data limited 
our ability to conduct ‘omics integrative analyses which 
can provide greater insight and better characterization of 
biological effects in the DUGL. Notwithstanding these 
limitations, our study does suggest potential mechanisms of 
the environment-specific adaptations of FD-LSC-1 cells. 
Further study should not be confined to cell cultures, and 
in-depth experiments and animal models are necessary in 
the long term to answer whether low doses are beneficial 
for cancer patients.

Conclusions

Overall, the present study describes gene profiling of FD-
LSC-1 cells cultured in different background radiation 
conditions and interprets the potential mechanisms of their 
environmental stress responses. The identified RNAs were 
involved in several proliferative and metabolic pathways that 
may induce proliferation differences of tumor cells caused 
by the physical environment. These findings contribute 
to understanding the implication of reduced radiation on 
living organisms and challenge the conventional perception 
that radiation only has detrimental effects. To further 
substantiate the suppressive growth effects, long-term 
observations underground will be conducted, which may 
help us contend with cancer progression as well.
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Table S1 Sequence counts for each sample showing total reads and mapping rate.

Sample ID
mRNA + lncRNA circRNA miRNA

Total reads Q30 (%) Mapping rate Total reads Q30 (%) Mapping rate Total reads Match rate (%)

DUGL-1 90944754 91.523 0.9451 89185916 93.109 0.9998 10049366 67.83

DUGL-2 89202446 91.943 0.959 107753740 93.221 0.9998 11331648 64.7

DUGL-3 83859136 90.869 0.9521 97322210 93.459 0.9997 11399364 68.75

AGL-1 94825328 93.197 0.9578 101882260 93.348 0.9997 10452382 69.28

AGL-2 56705944 88.656 0.9393 111828624 93.539 0.9997 8459156 64.8

AGL-3 83597374 91.569 0.9458 90009586 93.612 0.9997 8375536 63.72

DUGL, deep underground laboratory; AGL, above ground laboratory; Q30, phred quality score 30.
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