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Background: Exosomes are involved in cell-to-cell communication, neovascularization, cancer metastasis, 
and drug resistance, which all play an important role in the occurrence and progression of hepatocellular 
carcinoma (HCC). Because there are few mechanistic studies about the function of exosomes in HCC, the 
goals of this study were to identify exosome-related genes in HCC, to establish a reliable prognostic model 
for HCC, and to explore underlying mechanisms.
Methods: The exoRBase and The Cancer Genome Atlas (TCGA) databases were used to analyze 
differentially expressed genes (DEGs). Cox regression and least absolute shrinkage and selection operator 
analyses were used to identify DEGs closely related to the overall survival of patients with HCC. An 
exosome-related prognostic model was then constructed in TCGA and validated in the International Cancer 
Genome Consortium database. A nomogram was developed to predict survival. CIBERSORT was used 
to estimate the abundance of different types of immune cells. Immunotherapy-related DEGs were used to 
predict the effect of immunotherapy.
Results: Forty-eight exosome-related DEGs were obtained; of them, five [exportin 1 (XPO1), lysosomal 
thiol reductase (IFI30), F-box protein 16 (FBXO16), calmodulin 1 (CALM1), MORC family CW-type zinc 
finger 3 (MORC3)] were selected to construct a predictive model. Patients with HCC were then divided 
into low- and high-risk groups using the best cut-off value, as determined by the X-tile software. Prognosis 
was significantly poorer in the high-risk than in the low-risk group (P=0.009; hazard ratio =2.65). Features 
related to exosomes were found to positively regulate immune response. Further analysis showed a higher 
risk score was associated with higher expression of immune checkpoint molecules, including programmed 
death ligand 1 (PD-L1), programmed death ligand 2 (PD-L2), T cell Ig and ITIM domain (TIGIT), and 
indoleamine-2,3-dioxygenase 1 (IDO1).
Conclusions: This study has identified a novel signature based on exosome-related genes that has 
potential as a prognostic biomarker for HCC. Our research provides an immunological perspective for the 
development of precision treatment for HCC.
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Introduction

Hepatocellular carcinoma (HCC) accounts for 85–90% 
of primary liver cancers and is the fourth leading cause of 
cancer-related death worldwide. Approximately 841,000 
new HCC cases are diagnosed worldwide each year (1,2). 
Despite new breakthroughs in targeted therapy, immune 
therapy, interventional therapy, surgical techniques, and liver 
transplantation, the prognosis of HCC remains poor due to 
its high rates of metastasis and recurrence (3-6). Traditional 
prognostic models for HCC use clinic-pathological 
parameters, such as stage, and other parameters; however, 
due to tumor heterogeneity among patients, these models 
no longer work satisfactorily. Therefore, it is necessary to 
investigate the underlying molecular mechanisms of HCC 
and to identify new diagnostic and prognostic markers for 
the disease (7,8).

Exosomes are tiny extracellular vesicles with a lipid 
bilayer membrane structure that were first discovered 
by Johnstone in 1989 in his study of reticulocytes (9). 
Later studies revealed that exosomes can transport 
biologically active molecules between cells to regulate 
the microenvironment between cells and the immune 
system, and are closely related to tumorigenesis and tumor 
development (3,10,11). Exosomes derived from tumor 
tissue contain numerous cancer-related biomarkers, such as 
microRNAs (miRNAs), which can be used to detect HCC 
at an early stage. Although some breakthroughs have been 
made in the field of exosome research, the specific biological 
functions of exosomes have yet to be fully elucidated (12-15). 
Therefore, the aim of this study was to comprehensively 
investigate exosome-related genes in HCC, which can help 
predict the outcome of HCC and discover potential new 
drug candidates for specific targeted therapy. We present 
the following article in accordance with the TRIPOD 
reporting checklist (available at https://atm.amegroups.
com/article/view/10.21037/atm-21-4400/rc).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Data collection

Genes related to liver-derived exosomes were downloaded 
from the exoRBase (http://www.exorbase.org/). Data on 
mRNA expression in 407 tumor and 58 normal tissue 
samples, and the corresponding clinical data, were obtained 
from The Cancer Genome Atlas (TCGA) (https://portal.
gdc.cancer.gov/). For the validation dataset, data on gene 
expression in 240 tumor and 202 normal tissue samples 
were obtained from the International Cancer Genome 
Consortium (ICGC) database (https://dcc.icgc.org/). The 
study flowchart is shown in Figure 1.

Identification of differentially expressed genes and 
competing endogenous RNA network construction

Differentially expressed genes (DEGs) related to exosomes 
and liver cancer were identified using the limma package 
in R software. Those DEGs with an adjusted P<0.05 and 
|log2(fold change)| >1 were selected for further analysis, as 
described below:

(I) The miRcode database (http://mircode.org/) was 
used to search for interactions between long non-
coding RNAs (lncRNAs) and miRNAs, and to 
match miRNA interactions;

(II) The TargetScan (http://targetscan.org/) and 
miRanda (http://www.microrna.org/) databases 
were used to predict miRNA-targeted mRNAs;

(III) The Encyclopedia of RNA Interactomes database 
(http://starbase.sysu.edu.cn/) was used to predict 
the relationships between circular RNAs (circRNA) 
and miRNAs.

A competing endogenous RNA (ceRNA) network 
comprising mRNAs obtained from these databases 
that overlapped with the exosome-related mRNAs was 
constructed. Results were graphed by Cytoscape 3.7.2. 
[Cytoscape is provided by the U.S. National Institute of 
General Medical Sciences (NIGMS)].

Development and validation of a prognostic model

First, we performed univariate Cox regression analysis in 

Submitted Aug 21, 2021. Accepted for publication Apr 24, 2022.

doi: 10.21037/atm-21-4400

View this article at: https://dx.doi.org/10.21037/atm-21-4400

https://atm.amegroups.com/article/view/10.21037/atm-21-4400/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-4400/rc
http://www.microrna.org/microrna/home.do


Annals of Translational Medicine, Vol 10, No 15 August 2022 Page 3 of 12

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(15):817 | https://dx.doi.org/10.21037/atm-21-4400

TCGA database and two-sided P<0.05 was set as statistically 
significant. The glmnet package in R software was used to 
narrow the genetic screening range, after which least absolute 
shrinkage and selection operator (LASSO) regression 
was performed (16). We performed 1,000 replicates  
on the dataset and selected markers with >500 times 
replicates. The regression coefficient (β) was obtained from 
the LASSO regression. The prognostic index (PI) was then 
calculated using the following formula: 

 [1]
( )
( )
( )

PI βmRNA1 mRNA1expression

βmRNA2 mRNA2 expression

βmRNAn mRNAn expression

= × +

× + +

×



The X-tile software was used to establish the optimal 
cut-off value to divide patients into high- and low-risk 
groups. The predictive power of the prognostic model was 
evaluated using Kaplan-Meier survival analysis, and the 
model was validated in the ICGC database.

Identification of independent prognostic parameters for HCC

Independent factors affecting clinical prognosis of patients 

with HCC were obtained by univariate and multivariate Cox 
proportional hazards regression analyses. Two-sided P<0.05 
was considered significant. Hazard ratios (HRs) and 95% 
confidence intervals (CIs) were calculated for each factor.

Establishment and evaluation of a forecast nomogram

Independent prognostic factors obtained from the Cox 
analyses were used to construct a nomogram to predict the 
1- , 2- and 3-year survival rates of patients with HCC. The 
nomogram was verified internally using a calibration chart, 
and its predictive ability was assessed through time-varying 
receiver operating characteristic (ROC) curve analysis (17,18).

Immune cell type scores and immunotherapy effect

CIBERSORT is a new analytical tool to characterize cell 
composition based on gene expression profiling which is 
frequently used to evaluate immune cell infiltration (19). 
In the present study, CIBERSORT was used to forecast 
differences in the ratios of immune cell types between the 
low- and high-risk patient groups. The Genefilter package 

Competing endogenous RNA network construction 
from the exoRBase database

TCGA cohort, 407 tumor and 58 normal tissues

18 genes significantly related to OS (P<0.01)

Validation of prognostic model in ICGC Kaplan-Meier curve and ROC analysis

48 DEGs (adjusted P<0.05 and |log2FC| >1)

Five genes related to OS (appearing over 
500 times out of a total of 1,000-fold 

cross-validation repetitions)

• Kaplan-Meier curve and ROC analysis
• Building a predictive nomogram
• Computation of immune cell type fractions
• Evaluating immune-related DEGs

Prognostic
model

Differential expression analysis

Univariate Cox regression analysis

LASSO analysis

Figure 1 Study flowchart. DEGs, differentially expressed genes; FC, fold change; ICGC, International Cancer Genome Consortium; 
LASSO, least absolute shrinkage and selection operator; OS, overall survival; ROC, receiver operating characteristic; TCGA, The Cancer 
Genome Atlas.
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of R was used to screen each sample, and P<0.05 was 
considered significant.

Immunotherapy is a very promising treatment method 
for patients with HCC, and its therapeutic effect is related 
to molecules including programmed death ligand 1 (PD-
L1), programmed death ligand 2 (PD-L2), T cell Ig and 
ITIM domain (TIGIT), and indoleamine-2,3-dioxygenase 
1 (IDO1). Differences in the expression of these molecules 
between the low- and high-risk groups were evaluated.

Statistical analysis

Cox regression and LASSO regression analyses were 
used to develop the prognostic model, and univariate and 
multivariate Cox proportional hazards regression analyses 
were used to identify independent prognostic parameters 
for HCC. Two-tailed P<0.05 was considered significant. 
Statistical analyses were performed with R 4.0.2. 

Results

Construction of the ceRNA network

Using data downloaded from the exoRBase database, 
differences in mRNA, lncRNA, and circRNA expression 
between tumor and non-tumor tissues were identified. 
Relationships between mRNAs, lncRNAs, miRNAs, 
and circRNAs, and between lncRNA-miRNA, miRNA-
mRNA, and circRNA-miRNA pairs were explored. Then, 
miRNAs were used to develop a ceRNA network with 
Cytoscape software. In all, 722 lncRNA-miRNA pairs, 680 
miRNA-mRNA pairs, and 64 circRNA-miRNA pairs were 
obtained. Finally, 19 differentially expressed (DE) lncRNAs,  
45 DEmiRNAs, 47 DEmRNAs, and 2 DEcircRNAs were 
used to construct a ceRNA network.

Construction of an exosome-related gene prognostic model 
in TCGA

Based on intersections between mRNAs found in the 
ceRNA network and TCGA genes, 48 DEGs were 
identified. Univariate Cox regression analysis revealed  
18 DEGs that were significantly correlated with overall 
survival (OS) in patients with HCC (P<0.01). LASSO 
analysis was used to narrow down the range of genes. 
Five DEGS that appeared >500 times in a total of 1,000 
replicates were selected, and these genes (XPO1, IFI30, 
FBXO16, CALM1, MORC3) were chosen to establish a 

prognostic model using the following equation:

[2]

( )
( )
( )
( )
( )

PI 0.469 expression

0.141 expression

0.218 expression

0.146 expression

0.343 expression

= × +

× +

× +

× +

− ×

XPO1

IFI30

FBXO16

CALM1

MORC3

X-tile indicated that the best cut-off value to discriminate 
between high- and low-risk patients was 2.06. The patients 
were divided into low- and high-risk groups, and Kaplan-
Meier analysis revealed that OS was significantly poorer 
for the high-risk group than the low-risk group (P<0.001; 
HR 3.51; 95% CI: 1.68–7.31; Figure 2A). The area under 
the time-dependent ROC curve for 3- and 5-year OS was 
0.681 and 0.708, respectively, indicating the good predictive 
performance of the prognostic model (Figure 2B).

External validation of the exosome-related gene prognostic 
model in the ICGC

The predictive power of our prognostic model was validated 
using samples from the ICGC. As described above, patients 
were divided into low- and high-risk groups using a cut-
off value of 2.06; the overall survival rate of patients in the 
low-risk group was higher than that of patients in the high-
risk group (P=0.009; HR 2.65; 95% CI: 0.88–8; Figure 2C). 
The area under the curve of the five-gene prognostic model 
for 3- and 5-year survival was 0.667 and 0.817, respectively  
(Figure 2D), indicating the reliability of the model.

Interpretation of the model genes

Gene set enrichment analysis functional annotation showed 
that the five HCC exosome-related genes in the prognostic 
model were enriched in the base excision repair, cell cycle, 
and glycolysis pathways (Figure 3A). As shown in Figure 3B,  
single deletions were found in XPO1 (2p15), FBXO16 
(8p21.1), CALM1 (14q32.11), and MORC3 (21q22.13). 
Regression analysis  between gene expression and 
methylation revealed that there were negative correlations 
between methylation and gene expression of CALM1, 
FBXO16, IFI30, and MORC3; however, no obvious 
correlation was found for XPO1 (Figure 3C-3G).

Establishing the predictive nomogram

Univariate Cox regression analysis revealed TNM stage 
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Figure 2 Establishment of a prognostic model of exosome-related genes in The Cancer Genome Atlas database and evaluation of the 
performance of the exosome-related prognostic model in the International Cancer Genome Consortium dataset. (A,C) Kaplan-Meier 
survival curves of the five prognostic genes in the testing (A) and validation (C) datasets. (B,D) Receiver operating characteristic (ROC) 
curve analysis of the predicted 3- and 5-year overall survival based on the five genes in the testing (B) and validation (D) datasets. AUC, area 
under the curve.

1.0

0.8

0.6

0.4

0.2

0.0

S
en

si
tiv

ity

1.0

0.8

0.6

0.4

0.2

0.0

S
en

si
tiv

ity

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l r
at

e

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l r
at

e

1–Specificity
0.0 0.2 0.4 0.6 0.8 1.0

Time, years
0 2.5 5 7.5 10

Time, years
0 2.5 5 7.5 10

Time, years
0 1 2 3 4 5 6

Time, years
0 1 2 3 4 5 6

1–Specificity
0.0 0.2 0.4 0.6 0.8 1.0

High risk
Low risk

Risk = high

Risk = low

Risk = high

Risk = low

High risk
Low risk

3-year: AUC =0.681
5-year: AUC =0.708

3-year: AUC =0.667
5-year: AUC =0.817

P=0.009
Hazard ratio =2.65
95% CI: 0.88–8

P<0.001
Hazard ratio =3.51
95% CI: 1.68–7.31

36

307

6

94

23

209

16

184

10

111

3

55

1

15

1

1

0

0

0

40

0

7

0

1

Number at risk Number at risk

A

B

C

D

and risk score to be significant predictors for survival 
(Figure 4A). Through multivariate Cox regression analysis, 
TNM stage and risk score were confirmed as independent 
prognostic factors (Figure 4B). 

Subsequently, a nomogram including TNM stage and 
the risk score was built. Using the nomogram, scores are 
assigned to independent factors at each level for individual 
patients, with the total score calculated by summing 
these scores. By transforming the relationship of the total 
score, the 1-, 2- and 3-year survival rates can be obtained  
(Figure 4C). A calibration map was used for internal 
verification of the nomogram, which showed that there 
was good conformity between the predicted and observed 
results (Figure 4D-4F).

Computation of immune cell type fractions

CIBERSORT was used to directly analyze the types and 
expression of immune cells in tissues from patients with 
HCC, combined with the Leukocyte signature matrix 
(LM22). Differences in 22 types of immune cells were 
examined between the low- and high-risk HCC groups. 
Significant differences were found for two types of 
immune cells: regulatory T (Treg) cells (P=0.043) and M2 
macrophages (P=0.048; Figure 5A). Based on this result, 
we may conclude that high levels of Treg cells and M2 
macrophages in patients with HCC are related to a poor 
prognosis. Figure 5B shows the proportion of each immune 
cell type in each sample, more intuitively showing the 
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distribution of immune cells in different samples.

Evaluation of immune-related DEGs

Blocking immune checkpoints is a promising method for 

treating many cancers. Therefore, in the present study 
we evaluated differences in the expression of key immune 
checkpoint molecules, including PD-L1, PD-L2, TIGIT, 
and IDO1, between low- and high-risk HCC patients. As 
shown in Figure 6A-6D, the expression levels of immune 

Figure 3 Enrichment analysis, changes in copy numbers, and DNA methylation. (A) Gene set enrichment analysis of the five genes in the 
prognosis model. The graph (upper panel) shows the enriched pathways, whereas the lower panel shows expression levels. (B) Changes in 
the copy number of the five genes in patients with hepatocellular carcinoma. The outer circle shows the arrangement of chromosomes, 
whereas the inner markers are single deletions of four of the genes: XPO1 (2p15), FBXO16 (8p21.1), CALM1 (14q32.11), and MORC3 
(21q22.13). (C-G) Regression analysis between gene expression and DNA methylation for the five genes in the prognostic model. KEGG, 
Kyoto Encyclopedia of Genes and Genomes.
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Figure 4 Construction of the predictive nomogram. (A,B) Forrest plots of the univariate (A) and multivariate (B) Cox regression analyses 
in HCC. (C) Building the nomogram for predicting the overall survival of patients with HCC in The Cancer Genome Atlas cohort. The 
nomogram plot was built based on two independent prognostic factors in HCC. (D-F) Calibration maps showing conformity between the 
predicted and observed results. AFP, α-fetoprotein; OS, overall survival; HCC, hepatocellular carcinoma.
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checkpoint molecules were higher in the high-risk group 
than in the low-risk group (P<0.05). Based on this finding, 
we may conclude that high expression levels of exosome-

related genes are related to a poor prognosis of HCC, 
which may account for patients’ heterogeneous responses 
to immunotherapy and help to identify specific patient 
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Figure 5 Relationship between the exosome-related prognostic signature and heterogeneity in immune cell infiltration. (A) Differences in 
immune cell infiltration between the high- and low-risk groups of patients with hepatocellular carcinoma. The data is shown as a violin plot, 
and the horizontal axis representing different immune cells and the vertical axis representing the degree of cell infiltration (*P<0.05; ns, not 
significant). (B) Histogram showing the relative infiltration of immune cell populations in tumor samples from The Cancer Genome Atlas 
dataset for which RNA-sequencing data were available.

populations that may benefit from immunotherapy.

Discussion

Hepatocellular carcinoma is a fatal malignant tumor 
that has been a public health problem in many countries 
for many years. Although there has been considerable 
progress in the treatment of HCC, survival rates have not 
improved satisfactorily (19). Accumulating evidence shows 

that the malignant phenotype is affected by the cancer-
related microenvironment. Hence, discovering immune 
biomarkers to predict the prognosis of patients with HCC 
is important and may also help with immunotherapy (20-22).  

In the present study, we used the TCGA database to 
develop a prognostic model based on exosome-related genes 
(XPO1, IFI30, FBXO16, CALM1, and MORC3) to predict 
the prognosis of patients with HCC, and then successfully 
validated the prediction ability of the model using an 
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Figure 6 Differences in the expression of the immunomodulatory molecules (A) PD-L1, (B) PD-L2, (C) TIGIT, and (D) IDO1 between the 
low- and high-risk groups of patients with hepatocellular carcinoma. And is shown as box plots, with the boxes indicating the interquartile range 
and the median value indicated by the horizontal line; whiskers show the range. Circles indicate individual values. PD-L1, programmed death 
ligand 1; PD-L2, programmed death ligand 2; TIGIT, T cell Ig and ITIM domain; IDO1, indoleamine-2,3-dioxygenase 1.

external database. 
The genes used to build our prognostic model have 

been studied previously. Azizian et al. reported that XPO1 
is frequently overexpressed in cancer cells and that its 
suppression leads to reductions in proteins such as MYC 
and epidermal growth factor receptor (20). XPO1 interacts 
with hundreds of proteins, which may affect its nuclear 
export activity. Originally identified as an autoantigen in 
inflammatory myopathies, MORC3 is recognized as a human 
ATPase and has been linked to cancer (21,22). CALM1 is 
a Ca2+ receptor protein which mediates a large number of 
signaling processes, including proliferation, motility, and 
differentiation. It had been found that CALM1 expression 
is strongly associated with many cancers (23). FBXO16 is 
a tumor suppressor that attenuates nuclear β‐catenin, and 
suppresses the growth, migration, and invasion of cancer 
cells (24). IFI30 has been found to be highly expressed in 
malignant glioma and to possibly have an influence on 
response to chemotherapy (25). Based on the results of the 

present study, IFI30 may affect the prognosis of HCC, but 
further studies are needed to illustrate the mechanism in 
detail. Furthermore, microenvironment analysis indicated 
that high IFI30 expression was accompanied by greater 
infiltration of M2 macrophages, which may be a research 
direction (25). Also, the five genes used in our prognostic 
model were found to be enriched mainly in the base excision 
repair, cell cycle, and glycolysis pathways, which have a clear 
relationship with tumor occurrence and development (26-29).

From another viewpoint, our model could be used to 
predict the prognosis of tumors and potential new treatment 
targets. Abnormal DNA methylation is well known to occur 
in all kinds of cancers and, in previous studies (30,31), we 
found that the expression of CALM1, FBXO16, IFI30, and 
MORC3 was negatively correlated with their methylation. 
Normal cells can transform to tumor cells through the 
occurrence of driver mutations and then the process of 
methylation; from this, it can be inferred that these genes 
play a role in tumorigenesis.
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Liu et al. found that functional Treg cells facilitate 
the development of an M2 macrophage phenotype by 
repressing the CD8+ T cell-interferon γ axis and promoting 
the mitochondrial integrity of M2 macrophages via CD8+ 
T cells (32). Based on their study, it can be inferred that 
there is a positive correlation between Treg cells and M2 
macrophages; however, in the present study, the opposite was 
observed, which may indicate that, in HCC, tumorigenesis 
and progression may occur as a result of changes in these 
pathways.

We confirmed that the prognostic model we developed 
can divide patients with HCC into low- and high-risk 
groups, and then showed that the oncologic outcomes of 
the low-risk group were better than those of the high-risk 
group. A nomogram was then built to predict the 1-, 2-, 
and 3-year survival rates. The calibration plot demonstrated 
that the resulting curve was very close to the real (observed 
data) curve, which means well predictive value. Thus, we 
further analyzed differences in infiltrating immune cells 
and immune-related gene expression between the low- and 
high-risk groups. In the present study, high-risk patients 
were more likely than low-risk patients to have higher levels 
of immune checkpoint molecules and a poor prognosis.

Many studies have focused on the role of exosomes 
in intercellular communication in HCC. It is widely 
accepted that HCC cells communicate with normal cells 
and promote the development and metastasis of HCC 
through exosomes. Some exosomes regulate the signal 
transduction pathway between cells, whereas others can be 
used as medicines due to the protective effects of the outer 
membrane (33,34). However, there is a lack of research 
on exosome-related genes for predicting survival and the 
effect of immunotherapy in HCC. In recent years, there 
have been breakthroughs in the treatment of liver cancer, 
especially in immunotherapy (35,36); the present study adds 
to the bank of exploratory research in this area and will 
hopefully contribute to future studies.

However, this study has some limitations. First, our study 
was retrospective and its findings need to be further verified 
in prospective studies, especially randomized control trials. 
Second, the LASSO analysis may have resulted in some 
important factors that contribute to the prognosis of HCC 
being overlooked. Third, the expression and the prognostic 
effects of the five genes used to develop the model require 
further investigation at the protein level. Fourth, functional 
experiments are needed to clarify it’s the potential 
mechanism. Finally, the detailed mechanism between tumor 
cells and immune cells requires further clarification.

Conclusions

This study has identified a novel signature based on 
exosome-related genes that has potential as a biomarker 
for the prognosis of HCC. These results may provide an 
immunological perspective for the development of precision 
treatment for HCC.
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