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Background: Artificial intelligence (AI) has been extensively applied in the individualized diagnosis 
and treatment of critical illness, and numerous studies have been published on this topic. Therefore, a 
bibliometric analysis of these publications should be performed to provide a direction of hot topics and 
future research trends.
Methods: A bibliometric analysis was performed on the research articles to identify the hot topics and any 
unsolved issues regarding the use of AI in individualized diagnosis and treatment of critical illness. Articles 
published from January 2011 to December 2021 were retrieved from the Web of Science (WOS) core 
collection database for bibliometric analysis, and a cross-sectional analysis of the relevant studies that had 
been registered at ClinicalTrials.gov was also conducted. 
Results: The number of articles published showed an annually increasing trend, with a worldwide 
geographic distribution over the past decade. Ultimately, 427 research articles were included in the 
bibliometric analysis. The relevant articles were divided into four separate clusters that focused on AI 
application aspects, prediction model establishment, coronavirus disease 2019 (COVID-19) treatment and 
outcome assessments, respectively. “Machine learning” was the most frequent keyword (147 occurrences, 
165 links, and 395 total link strengths) followed by “risk”, “models”, and “mortality”. With 205 articles, 
the United States of America (USA) had interacted the most with other countries (20 links, and 94 
total link strength), while the domestic research institutes in China had infrequently collaborated with 
others. Approximately 130 trials focusing on the application of AI in the intensive care unit (ICU) and 
emergency department (ED) had been registered at ClinicalTrial.gov, and most of them (n=71, 54.6%) were 
interventional. The main research objectives of these trials were to provide decision making assistance and 
establish prediction models. However, only 3.8% (5 trials) of them had reached exact conclusions which 
favored the application of AI.
Conclusions: The application of AI has raised great interest in critical illness and has mainly been focused 
on decision making assistance and prediction model establishment. Cooperation between agencies engaged 
in AI research needs to be strengthened. An increasing number of trials have been registered at ClinicalTrial.
gov, and the results of them are promising.
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Introduction

Due to the deepened understanding of critical illness and 
advancements in treatment, the mortality rate of critically 
ill patients in the emergency department (ED) and intensive 
care unit (ICU) has gradually been decreasing (1). However, 
the pathophysiology of these patients is extremely complex, 
and it is sometimes difficult to make a clear differential 
diagnosis. Further, critically ill patients, such as those with 
sepsis, acute respiratory distress syndrome (ARDS), and 
infectious diseases, comprise a heterogenous population (2). 
Therefore, rapid diagnosis and personalized treatment based 
on dynamic and complex clinical situations are needed to 
improve the strategy making and prognosis of these patients (3).

Artificial intelligence (AI) refers to the ability of a 
computer or machine to perform tasks generally conducted 
by a human being (4). It was originally applied to image 
recognition, and later applied to critical care medicine 
to assist with difficult decision making (5). As the latest 
technologic advance in medicine, AI based on big-data 
has been conducted in most medical fields, especially in 
ICU, where is brimming with high volume of complex 
information (6). 

It has been reported that AI can make an accurate 
diagnosis by using a pathology graphic and text analysis 
system and identify the subtypes of sepsis and ARDS from 
the Medical Information Mart for Intensive Care (MIMIC) 
database (7). What’s more, a lot of hard work has been 
made to develop AI extensions both to the consolidated 
standards of reporting trials (CONSORT) and standards 
for reporting of diagnostic accuracy studies (STARD) 
guidelines (8,9). Thus, the CONSORT-AI and STARD-AI 
can provide more evidence-based materials to the practice 
guidelines. It should also be noted that the most utilized 
methods are unsupervised learning techniques which work 
like a “black box”. Thus, the underlying process of getting 
the outcomes or results is not clear to the user (10-12). There 
were, however, studies about AI application to advance 
individualized medical decisions in ICU are fragmented over 
past decade. Herein, we aimed to conduct a bibliometric 

analysis and describes the details of published documents 
qualitatively and quantitatively in this field. 

Registered trials have played an important role in 
changing daily clinical practice, especially during the 
coronavirus disease 2019 (COVID-19) pandemic (13). With 
the development of new drugs and therapies, individualized 
diagnosis and personalized treatment are urgently needed. 
However, information about the application of AI to 
critically ill patients is limited, and the application and 
development directions of AI for the next decade have not 
yet been clarified.

Thus, we conducted a bibliometric analysis to provide 
a comprehensive review of the AI field in critical care 
medicine and identify the currently solved and unsolved 
issues. Through analysis of the registered clinical studies, 
we also aimed to reveal the hotspots and future directions in 
this area.

Methods

Data sources and search strategy

Articles published from January 2011 to December 2021 
were screened by two authors of the research team in 
the Web of Science (WoS) core collection database for 
bibliometric analysis. Additionally, a cross-sectional analysis 
of relevant studies that had been registered at ClinicalTrials.
gov in the same period was carried out. 

Search strategy was based on “PICO” framework. P—
population/problem, which referred to the critical illness. 
I—intervention, in our study it comprised of various 
AI methods and machine-learning technologies. C—
comparison, which indicated the difference between AI 
assistance and manual handling. O—outcome, which 
outlined the results of individualized treatment and 
diagnosis (14,15). Search strategy was adopted from 
previous work and experts’ opinions (15,16). We refined 
the query to include keywords related to critical illness 
(“critical care/treatment”, “intensive care”, “intensive care 
unit”, “ICU”, “emergency medicine/treatment/service/
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care/department”, and “EICU”), AI technologies (“artificial 
intelligence”, “AI”, “algorithmic prognostication”, 
“computational intelligence”, “machine learning”), and 
individualized treatment and diagnosis (“individual”, 
“personalized”) in both Medical Subject Headings (MESH) 
and titles. The data for bibliometric analysis were extracted 
and downloaded in text format from the database, including 
details of the publication, authors, and titles. 

There are two standard weight attributes for an item 
which are defined as the links attribute and the total link 
strength attribute. They represent the number of links of 
an item with other items and the total strength of the links 
of an item with other items, respectively. For example, 
in the case of co-authorship links between researchers, 
the links attribute indicates the number of co-authorship 
links of a given researcher with other researchers. The 
total link strength attribute indicates the total strength of 
the co-authorship links of a given researcher with other 
researchers. Both weight attributes were calculated by 
VOSviewer with full counting. Further, the full data of the 
trials, including study type, participant age, gender, status, 
and study outcomes, were recorded from ClinicalTrials.gov.

Inclusion and exclusion criteria 

The articles for bibliometric analysis were restricted to 
original articles with English written. The exclusion criteria 
were as follows: (I) documents were written in non-English 
language and (II) documents were classified into non-
original article type according to the classification service.

Statistical analysis

The intrinsic functions of the WoS core collection database 
were applied to describe the basic characteristics of the 
retrieved publications. The online analysis platform of 
literature metrology (http://bibliometric.com/) successfully 
validated for bibliometric analysis and was used to 
determine the international cooperative relations in this 
study (17,18). 

VOSviewer (version 1.6.17; Leiden University, The 
Netherlands) was mainly used to construct and visualize 
co-occurrence networks of co-authorship, co-occurrence, 
citation, keywords, and themes extracted from literature. 
CiteSpace (Version 5.8 R3; Chen Meichao, Drexel 
University, Philadelphia, PA, USA) was used to reveal 
the evolution and turning point of the research field. 
Other analysis tools such as Bibliographic Item Co-

Occurrence Matrix Builder version 2.0 (BICOMB; Lei 
Cui, China Medical University, Shenyang, China) and 
Graphical Clustering Toolkit version 1.0 (gCLUTO; 
University of Minnesota, Minneapolis, MN, USA), were 
also applied to provide matrix of keywords clustering 
results. The categorical variables of the studies registered 
at ClinicalTrial.gov were described by frequencies and 
percentages.

Keywords occurred more than five times were defined 
as high-frequency keywords in VOSviewer and keywords 
burst defined as the occurrence of the keywords varied 
greatly over one year by CiteSpace (19). All clusters were 
calculated by VOSviewer, CiteSpace and gCLUTO with its 
own clustering algorithm. 

Results

Publications output

A total of 593 eligible publications were selected, of which 
432 (72.8%) were original articles, 93 (15.7%) were reviews, 
64 (10.8%) were conference papers, and 5 were other types 
of articles. It should be noted that almost half of the articles 
(34.6%) were published in 2021. Ultimately, 427 English 
written research articles were included in the bibliometric 
analysis (Figure 1).

Growth trend of publications

A rapid increase in the number of articles published in 
this field from 2011 to 2021 were detected, for which 
there was a wide global geographic distribution (Figure 2). 
The number of articles published in 2021 (161 articles) 
was about 35 times higher than that in 2011. Further, 54 
countries contributed to publications on the application of 
AI in the ED and ICU. The United States of America (USA) 
published the most articles (n=201), followed closely by 
China (n=57).

Bibliometric analysis of the keywords

The keywords were identified by VOSviewer and CiteSpace. 
Both tools extracted all keywords from the included articles 
based on the citation index service of WoS core collection 
database. Finally, a total of 2,504 keywords were identified 
from the included articles. Among them, 93 keywords 
were high frequency and included in the analysis. The co-
occurrence of high-frequency keywords were divided into 
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six clusters with a total link strength of 1,835 (Figure 3A). 
“Machine learning” was the most frequent keyword (147 
occurrences, 165 links, and 395 total link strengths), and 
was linked to 88 other high-frequency keywords (Figure 3B).  
“Artificial intelligence” (51 occurrences, 52 links, and 136 
total link strengths), “risk” (43 occurrences, 61 links, and 
146 total link strengths), “models” (42 occurrences, 63 
links, and 144 total link strengths), and “mortality” (37 
occurrences, 59 links, and 149 total link strengths) were 
the other four top high frequency keywords. Other high 
frequency keywords that ranked in the top ten included 
“classification”, “prediction”, “care”, “deep learning”, and 
“COVID-19”.

The top 15 keywords with the strongest burst values are 
summarized in Figure 3C. From 2011 to 2021, “big-data” 

had the strongest burst strength (strength: 6.74), followed 
by “machine learning algorithm” (strength: 5.51), “patient 
care” (strength: 4.51), “real time” (strength: 3.95), and “deep 
learning” (strength: 3.79). In 2017, the most frequently 
observed keyword bursts included “precision medicine” 
(strength: 3.66), “heart rate” (strength: 3.66), and “treatment 
decision” (strength: 3.05), to the exclusion of “big-data” 
and “machine learning algorithm”. The two keywords that 
maintained high burst values from 2019 to 2021 were “deep 
learning” (strength: 3.79) and “machine learning” (strength: 
2.89).

Co-citation clustering and time evolution analysis

The whole silhouette [defined as the homogeneity of a 
cluster, values ranges (0–1), ≥0.7 represent the clustering 
is efficient and convincing] of the co-cited references 
clustering was 0.93, and the Q score was 0.88 [defined 
as modularity, values ranges (0–1), ≥0.3 represent the 
clustering is significant] by analysis tool CiteSpace. Articles 
on AI application research in the ED and ICU were divided 
into 81 clusters, and the clusters of the largest connected 
components (as labeled by the log likelihood ratios) are 
shown in Figure 4A. The top five largest clusters were 
“COVID-19” (#0, size: 54, silhouette: 0.94), “artificial 
intelligence” (#1, size: 44, silhouette: 0.90), “optimization” 
(#2, size: 38, silhouette: 0.94), “triage” (#3, size: 16, 
silhouette: 0.96), and “risk prediction” (#35, size: 3, 
silhouette: 0.99). Additionally, the time evolution analysis 
indicated that the top five largest clusters were highly cited 
after 2013 (Figure 4B).

Id
en

tif
ic

at
io

n
S

cr
ee

ni
ng

In
cl

ud
ed

Publications identified in WoS core 
collection database between 2011–2021

(n=593)

Publications in English
(n=587)

Articles assessed in bibliometrics analysis
(n=427)

Excluded non-English writing papers (n=6)
• Written in German (n=5)
• Written in Icelandic (n=1)

Excluded non-research papers (n=160)
• Editorial (n=11)
• Abstract (n=57) 
• Review (n=92)
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Research themes and topic trends

In the application of AI, four theme clusters were found 
among the ED and ICU studies (Figure 5A). The red 
cluster mainly represents the fundamental and new research 
areas in the application of AI. The green cluster shows the 
prediction model establishment. The blue cluster represents 
the performance and future prospect of AI in COVID-19 
treatment. The yellow cluster indicates the outcomes of 
patients with critical illness. Figure 5B shows the trends of 
these topics, and the dot color, which ranges from purple to 
yellow, illustrates different research times. Recently, studies 

have mainly focused on the relation of machine learning 
models and clinical outcomes.

According to the matrix generated by BICOMB and bi-
clustering by gCLUTO, the keywords that appeared more 
than three times were divided into six clusters (Figure 6). The 
different clusters of the keywords represent the application 
of AI in different disease study fields. For example, Cluster 
0 represents the application of AI to dementia, Cluster 
1 represents the application of AI technology to human 
immunodeficiency virus research, Cluster 3 and Cluster 
4 summarize the algorithmic design in the pediatric and 
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Figure 3 Co-occurrence network of keywords from 2011 to 2021. (A) The co-occurrence of all high-frequency keywords. (B) The co-
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mental health fields, respectively. In addition, Cluster 
5 focuses on the clinical application of AI to sepsis, 
COVID-19, and severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2).

Analysis of co-authorship

According to the domestic and international literature 
search, 56 countries published relevant papers. Figure 7 
displays the cooperative relationship among the countries or 
regions. Notably, with 205 articles, the USA had the highest 
frequency of interactions with other countries (20 links, 
and 94 total link strength). The main active collaborators 
with the USA were China, England, and Canada. Of the 
1,018 institutions, 34 institutions that had published five or 
more papers were included in the analysis. Harvard Medical 
School had the most institutional partnerships with 17 
organizations (25 total link strength), and their main partner 

was Massachusetts General Hospital (4 link strength), 
followed by Massachusetts Institute of Technology (18 
total link strength), and Stanford University (16 total link 
strength). Additionally, with six articles and 28 citations, 
Zhejiang University had no links to other organizations.

Analysis of the registered trials

From 1st January, 2011 to 31st December, 2021, 130 trials 
were identified that examined the application of AI in the 
ED and ICU. Among them, 59 (45.4%) were observational 
study and 57 (43.8%) are applied to prospective data. 
Additionally, 25 trials (19.2%) had recruited children as 
participants. In terms of the status of the trials, only 36 
(27.7%) had been completed. The results of most (125 
trials, 96.2%) were not able to be retrieved during our study 
period. Further details are provided in Table 1. 

The registered trials had three predominant basic 
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Figure 4 Co-citation clustering and time evolution analysis. (A) The top 5 clusters of the co-cited references analysis. (B) The time 
evolution analysis of the top 5 clusters of the co-cited references. 
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objectives. First, a great number of trials sought to evaluate 
or create deep learning and machine learning models 
for predicting the clinical or cognitive status of patients 
admitted to the ED or ICU. Notably, the algorithms used 
in these studies sought to assist practitioners in patient care 
decision making. Second, other trials sought to establish 
a medical database that included standardized, structured 
clinical diagnosis, and treatment information, and provide 
a multi-modal data technology system for future AI 
technology. Third, other trials sought to assess AI-assisted 

operations or robotic surgery in the improvement of public 
health.

Discussion

In this study, we conducted a bibliometric analysis of 
the application of AI in critical illness and undertook a 
comprehensive review of the relevant trials registered 
at ClinicalTrials.gov. Though 427 articles from WoS 
core collection database and 130 clinical trials from 
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ClinicalTrials.gov were limited quantities according to our 
study, the results based on authoritative databases illustrated 
the achievement of AI application in individualized diagnosis 
and treatment were gradually increased. Therefore, it has 
great importance and applicability in the clinical practice. 
One attractive result from our analysis was that the number 

of published articles has continued to increase annually, and 
in the last decade, the global geographic distribution of the 
articles has been wide. The relevant articles focused on the 
following four aspects: (I) AI application; (II) prediction 
model establishment; (III) COVID-19 treatment; and 
(IV) outcome assessment. Among the trials that had been 
registered, only 3.8% (5 trials) of them had reached exact 
conclusions which favored the application of AI.

With the development of modern science, more external 
life support equipment has been applied in the treatment 
of critically ill patients, such as mechanical ventilation 
(MV), extracorporeal membrane oxygenation (ECMO), and 
continuous renal replacement therapy (CRRT). Thus, the 
success rate of resuscitation in the ED or ICU is gradually 
improving and a great volume of data can be collected 
during the hospital stay (20,21). “Big Data”, “Machine 
Learning” and “AI” have already formed an “iron triangle” 
(22,23), and our bibliometric analysis revealed that most of 
these terms were keywords in the included studies.

Critical illness management always requires rapid 
diagnosis and timely treatment. However, sometimes 
decision making is very difficult due to the similarity of the 
clinical symptoms. Thus, AI assistance has been applied 
based on “Big Data” analyses to establish prediction models 
for disease diagnosis and outcome evolution (24,25). 
For example, multimodal models based on dynamically 
associated biological markers and basic characteristics of the 
hosts have already been established for risk and mortality 
prediction in ICU patients with COVID-19 (24,26). 
Meanwhile, natural language processing (NLP) plays 
another important role in extracting valuable information, 
which can provide high-quality data for AI and benefit for 
treatment strategy making, dosage of medications adjusting 
and parameters changing in MV (27). Furthermore, 
medical imaging, offers potential prospects for diagnosing, 
monitoring and surveying complications (28). It is also 
reported that the combination of AI and specimen 
morphological recognition has a promising future in 
differential diagnosis of interstitial exudative inflammation 
of lung in ICU (29). 

Due to the heterogeneity of the diseases and population, 
individualized treatment is recommended in the ICU. It has 
been demonstrated that AI assistance can clearly distinguish 
phenotype and retype in sepsis, ARDS and other symptom 
complexes (30,31). Thus, the combination of a reliable 
prediction model and personalized medicine may improve 
the outcome. However, both internal and external validation 
is required to establish a credible prediction model. Digital 

Table 1 Characteristics of 130 clinical trials registered in 
ClinicalTrial.gov

Characteristics n (%)

Study type

Interventional 71 (54.6)

Observational 59 (45.4)

Time perspective

Prospective 57 (43.8)

Retrospective 17 (13.1)

Others 56 (43.1)

Participant age (years)

<18 25 (19.2)

18–64 114 (87.7)

≥65 116 (89.2)

Trial status

Not recruiting 20 (15.4)

Recruiting 47 (36.2)

Completed 36 (27.7)

Suspended 1 (0.8)

Terminated/withdrawn 7 (5.4)

Unknown 6 (4.6)

Results

With results 5 (3.8)

Without result 125 (96.2)

Funding source

Industry 15 (11.5)

Other 115 (88.5)

Locations

America 85 (65.4)

Asia 21 (16.2)

Europe 52 (40.0)

Middle East 5 (3.8)
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twin, a virtual/digital replica of physical entities aimed to 
access cost-effective simulations, was always combined with 
AI analysis tools, which can quickly evaluate many possible 
ICU treatment alternatives. It is still in its infancy and data 
collection and team establishment are quite difficult. Unify 
data and model standards, share data and models, innovate 
on service and establish forums would make research and 
development of digital twins more coherent in critical 
care medicine (32,33). Meanwhile, it is also important to 
strengthen the cooperative relationship between different 
countries and institutions to make up for the small sample 
size of a single institution.

The ethical issue of AI is another unavoidable matter 
and it has already become one of the mostly controversial 
challenge of emergency and critical care medicine. AI and 
algorithms are established from the electronic systems and 
database and algorithms written may naturally contain 
errors which may lead to unforeseen consequences. Thus, 
current regulatory oversight is quite necessary and “double 
check” is recommended (34,35).

Clinical trials play an important role in the diagnosis 
and treatment of critically ill patients. The safety and 
effectiveness of new drugs and therapies have been tested 
in these trials, and some of them might be suggested in 
practice guidelines and recommendations as changes to the 
treatment strategy (36,37). ClinicalTrials.gov is a public 
registry platform that increases the transparency of research 
projects in progress or those that have been completed (38). 
As many as 130 trials have been registered on this platform, 
and 43.8% of them are applied to prospective data which 
will coincide with the development in critical care medicine. 
It can be expected that they may have more impact and can 
provide more practical instruction. Notably, only 27.7% of 
the registered trials have been completed and only 3.8% 
of the clinical trials have presented favorable results. Thus, 
the feasibility of these trials may still be problematic, and a 
high-quality control process and good coordination among 
multidisciplinary teams are needed.

The present study provided a comprehensive review of 
the application of AI in the ED and ICU, but still has some 
limitations. First, the WoS core collection database and 
ClinicalTrials.gov are updated dynamically, and thus, the 
most recent data might be missing from this study. Second, 
we only included English written articles and trials in the 
final analysis. However, the findings of articles and trials 
written in other languages may not concur with our results. 
Thus, bibliometric analysis and review of the registered 

trials should also be dynamic and updated in the future.

Conclusions

The application of AI to critical illness for individualized 
diagnosis and treatment is a research field with great 
potential. Cooperation between agencies engaged in AI 
research needs to be strengthened. A growing number of 
trials focusing on decision-making assistance and prediction 
model establishment have been registered at ClinicalTrial.
gov, and a quality-control process should be implemented 
to ensure research completion.
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